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Lie Groups and p-Compat Groups

W. G. Dwyer

Abstract. A p-compact group is the homotopical ghost of a compact
Lie group; it is the residue that remains after the geometry and algebra
have been stripped away. This paper sketches the theory of p-compact
groups, with the intention of illustrating the fact that many classical
structural properties of compact Lie groups depend only on homotopy
theoretic considerations.

1 From compact Lie groups to p-compact groups

The concept of p-compact group is the culmination of a series of attempts, stretch-
ing over a period of decades, to isolate the key homotopical characteristics of
compact Lie groups. It has been something of a problem, as it turns out, to deter-
mine exactly what these characteristics are. Probably the first ideas along these
lines were due to Hopf [10] and Serre [31].

1.1. Definition. A finite H-space is a pair (X,m), where X is a finite CW–
complex with basepoint ∗ and m : X × X → X is a multiplication map with
respect to which ∗ functions, up to homotopy, as a two-sided unit.

The notion of compactness in captured here in the requirement that X be
a finite CW–complex. To obtain a structure a little closer to group theory, one
might also ask that the multiplication on X be associative up to homotopy. Finite
H-spaces have been studied extensively; see [18] and its bibliography. Most of
the results deal with homological issues. There are a few general classification
theorems, notably Hubbuck’s theorem [11] that any path-connected homotopy
commutative finite H-space is equivalent at the prime 2 to a torus; this is a
more or less satisfying analog of the classical result that any connected abelian
compact Lie group is a torus. Experience shows, though, that there is little hope
of understanding the totality of all finiteH-spaces, or even all homotopy associative
ones, on anything like the level of detail that is achieved in the theory of compact
Lie groups. The problem is that there are too many finite H-spaces; the structure
is too lax.

Stasheff pointed out one aspect of this laxity [32] that is particularly striking
when it comes to looking at finite H-spaces as models for group theory. He discov-
ered a whole hierarchy of generalized associativity conditions, all of a homotopy
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theoretic nature, which are satisfied by a space with an associative multiplication
but not necessarily by a finite H-space. These are called An-conditions (n ≥ 1);
a space is an H-space if it satisfies condition A2 and homotopy associative if it
satisfies condition A3. Say that a space X is an A∞-space if it satisfies condition
An for all n. The following proposition comes from combining [32] with work
of Milnor [22] [21] and Kan [17]; it suggests that that A∞-spaces are very good
models for topological groups. From now on we will use the term equivalence for
spaces to mean weak homotopy equivalence.

1.2. Proposition. If X is a path-connnected CW–complex, the following four
conditions imply one another:

1. X is an A∞-space,

2. X is equivalent to a topological monoid,

3. X is equivalent to a topological group, and

4. X is equivalent to the space ΩY of based loops on some 1-connected pointed
space Y .

In fact, there are bijections between homotopy classes of the four structures. There
is a similar result for disconnected X, in which conditions 1 and 2 are expanded
by requiring that an appropriate multiplication on π0X make this set into a group.

If X is a topological group as in 1.2(3), then the space Y of 1.2(4) is the ordi-
nary classifying space BX. Proposition 1.2 leads to the following convenient for-
mulation of the notion “finite A∞-space” or “homotopy finite topological group”.
This definition appears in a slightly different form in work of Rector [30].

1.3. Definition. A finite loop space is a triple (X,BX, e), where X is a finite
CW–complex, BX is a pointed space, and e : X → ΩBX is an equivalence.

Finite loop spaces appear as if they should be very good homotopy theoretic
analogs of Lie groups, but one of the very first theorems about them was pretty
discouraging. Rector proved in [29] that there are an uncountable number of
distinct finite loop space structures on the three-sphere S3. In other words, he
showed that there are an uncountable number of homotopically distinct spaces
Y with ΩY ≃ S3. This is in sharp contrast to the geometric fact that up to
isomorphism there is only one Lie group structure on S3. It suggests that the
theory of finite loop spaces is unreasonably complicated.

Rector’s method was interesting. For any space X, Bousfield and Kan (also
Sullivan) had constructed a rationalization XQ of X, and Fp-completions X p̂ (p a
prime); if X is a simply connected space with finitely generated homotopy groups,
then πiXQ

∼= Q ⊗ πiX and πiX p̂
∼= Zp ⊗ πiX. (Here Zp is the ring of p-adic

integers.) For such spaces there is a homotopy fibre square on the left

X −−−−→
∏

p X p̂




y





y

XQ −−−−→ (
∏

p X p̂)Q

πiX −−−−→
∏

p Zp ⊗ πiX




y





y

Q⊗ πiX −−−−→ Q⊗ (
∏

p Zp ⊗ πiX)
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which is a geometric reflection of the algebraic pullback diagrams on the right.
This fibre square, called the arithmetic square [33] [3], amounts to a recipe for
reconstituting X from its Fp-completions by mixing in rational glue. Rector con-
structed an uncountable number of loop space structures on S3 by taking the
standard Lie group structure on S3, Fp-completing to get “standard” loop space
structures on each of the spaces (S3)p̂, and then regluing these standard structures
over the rationals in an uncountable number of exotic different ways. In particu-
lar, all of his loop space structures become standard after Fp-completion at any
prime p. Later on [9] it became clear that this last behavior is unavoidable, since
up to homotopy there is only one loop space structure on the space (S3)p̂.

Apparently, then, the theory of finite loop spaces simplifies after Fp-
completion, and it is exactly this observation that leads to the definition of p-
compact group. The definition uses some terminology. We will say that a space Y
is Fp-complete if the Fp-completion map Y → Y p̂ is an equivalence; if Y is simply
connected and H∗(Y ;Fp) is of finite type, then Y is Fp-complete if and only if the
homotopy groups of Y are finitely generated modules over Zp. We will say that
Y is Fp-finite if Hi(Y ;Fp) is finite-dimensional for each i and vanishes for all but
a finite number of i (in other words, if H∗(Y ;Fp) looks like the Fp-homology of a
finite CW–complex).

1.4. Definition. Suppose that p is a fixed prime number. A p-compact group is
a triple (X,BX, e), where X is a space which is Fp-finite, BX is a pointed space
which is Fp-complete, and e : X → ΩBX is an equivalence.

Here the idea of “compactness” is expressed in the requirement that X be
Fp-finite. Assuming in addition that BX is Fp-complete is equivalent to assuming
that X is Fp-complete and that π0X is a finite p-group.

1.5. Example. If G is a compact Lie group such that π0G is a p-group, then the
Fp-completion of G is a p-compact group.

The definition of p-compact group is a homotopy theoretic compromise be-
tween between the inclination to stay as close as possible to the notion of Lie group,
and the desire for an interesting and manageable theory. The reader should note
that it is the remarkable machinery of Lannes [19] which makes p-compact groups
accessible on a technical level. For instance, the machinery of Lannes lies behind
the uniqueness result of [9] referred to above.

Organization of the paper. In section 2 we describe a general scheme for trans-
lating from group theory to homotopy theory. Sections 3 and 4 describe the
main properties of p-compact groups; almost all of these are parallel to classical
properties of compact Lie groups [4]. The final section discusses examples and
conjectures.

It is impossible to give complete references or precise credit in a short paper
like this one. The basic results about p-compact groups are in [6], [7], [8], [23], and
[25]. There is a treatment of compact Lie groups based on homotopy theoretic
arguments in [4]. The interested reader should look at the survey articles [20],
[24], and [26], as well as their bibliographies, for additional information.
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1.6. Terminology. There are a few basic topological issues which it is worth point-
ing out. We assume that all spaces have been replaced if necessary by equivalent
CW–complexes. If f : X → Y is a map of spaces, then Map(X,Y )f is the compo-
nent containing f of the space of maps X → Y . The space Autf (X) is the space of
self-equivalences of X over Y ; to obtain homotopy invariance, this is constructed
by replacing f by an equivalent Serre fibration f ′ : X ′ → Y and forming the space
of self homotopy equivalences X ′

∼

−→ X ′ which commute with f ′.
The notation H∗

Qp
(Y ) stands for Q ⊗ H∗(Y ;Zp); this is a variant of rational

cohomology which is better-behaved than ordinary rational cohomology for spaces
Y which are Fp-complete.

2 A dictionary between group theory and homotopy theory

We now set up a dictionary which will allow us to talk about p-compact groups
in ordinary algebraic terms. We begin with concepts that apply to loop spaces
in general (a loop space is a triple (X,BX, e) with e : X

∼

−→ ΩBX) and then
specialize to p-compact groups. From now on we will refer to a loop space or
p-compact group (X,BX, e) as a space X with some (implicit) extra structure.

2.1. Definition. Suppose that X and Y are loop spaces.

• A homomorphism f : X → Y is a pointed map Bf : BX → BY . Two
homomorphisms f, f ′ : X → Y are conjugate if Bf and Bf ′ are homotopic.

• The homogeneous space Y/f(X) (denoted Y/X if f is understood) is the
homotopy fibre of Bf .

• The centralizer of f(X) in Y , denoted CY (f(X)) or CY (X), is the loop space
ΩMap(BX,BY )Bf .

• The Weyl Space WY (X) is the space AutBf (BX); this is in fact a a loop
space, essentially because it is an associative monoid under composition (1.2).
The normalizer NY (X) of X in Y is the loop space of the homotopy orbit
space of the action of WY (X) on BX by composition.

• A short exact sequence X → Y → Z of loop spaces is a fibration sequence
BX → BY → BZ; Y is said to be an extension of Z by X.

2.2. Remark. If X and Y are discrete groups, treated as loop spaces via 1.2, and
f : X → Y is an ordinary homomorphism, then the above definitions specialize to
the usual notions of coset space, centralizer, normalizer, and short exact sequence,
at least if X → Y is injective. It is not hard to see that in general there are
natural loop space homomorphisms CY (X) → NY (X) → Y ; the homomorphism
CY (X) → Y , for instance, amounts to the map Map(BX,BY )Bf → BY given
by evaluation at the basepoint of BX. There is always a short exact sequence
X → NY (X) → WY (X).

The key additional definitions for p-compact groups are the following ones.
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2.3. Definition. A p-compact group X is a p-compact torus if X is the Fp-
completion of an ordinary torus, and a p-compact toral group if X is an extension
of a finite p-group by a p-compact torus. If f : X → Y is a homomorphism of
p-compact groups, then f is a monomorphism if Y/f(X) is Fp-finite.

3 Maximal tori and cohomology rings

If X is a p-compact group, a subgroup Y of X is a p-compact group Y and a
monomorphism i : Y → X (i is called a subgroup inclusion). In general, if
f : Y → X is a homomorphism of p-compact groups, the associated loop space
homomorphism g : CX(Y ) → X is not obviously a subgroup inclusion; it is not
even clear that CX(Y ) is a p-compact group. For special choices of Y , though, the
situation is nicer.

3.1. Proposition. Suppose that f : Y → X is a homomorphism of p-compact
groups, and that Y is a p-compact toral group. Then CX(Y ) → X is a subgroup
inclusion.

A p-compact group is said to be abelian if the natural map CX(X) → X is an
equivalence.

3.2. Proposition. A p-compact group is abelian if and only if it is the product
of a p-compact torus and a finite abelian p-group. If A is an abelian p-compact
group and f : A → X is a homomorphism, then f naturally lifts over the subgroup
inclusion CX(A) → X to a homomorphism f ′ : A → CX(A).

A subgroup Y of X is said to be an abelian subgroup if Y is abelian, or a
torus in X if Y is a p-compact torus. If Y ′ is another subgroup of X, Y ′ is said
to be contained in Y up to conjugacy if the homomorphism Y ′ → X lifts up to
conjugacy to a homomorphism Y ′ → Y .

3.3. Definition. A torus T in X is said to be a maximal torus if any other torus
T ′ in X is contained in T up to conjugacy.

We will say that an abelian subgroupA ofX is self-centralizing if the mapA →
CX(A) is an equivalence. If Z is a space which is Fp-finite, the Euler characteristic
χ(Z) is the usual alternating sum of the ranks of the Fp homology groups of Z.

3.4. Proposition. Suppose that X is a p-compact group and that T is a torus
in X. Then T is maximal if and only if χ(X/T ) 6= 0. If X is connected, then T
is maximal if and only if T is self-centralizing.

3.5. Proposition. Any p-compact group X has a maximal torus T , unique up
to conjugacy.

A space is said to be homotopically discrete if each of its components is con-
tractible.

3.6. Proposition. Suppose that X is a p-compact group with maximal torus T .
Then the Weyl space WX(T ) is homotopically discrete, and π0WX(T ), with the
natural composition operation, is a finite group.
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If T is a maximal torus for X, the finitely generated free Zp-module π1T is
called the dual weight lattice LX of X; its rank as a free module is the rank rk(X)
of X. The finite group appearing in 3.6 is called the Weyl group of X and denoted
WX ; by definition, WX acts on LX .

3.7. Definition. If M is a finitely generated free module over a domain R (such
as Zp), an automorphism α of M is said to be a reflection (or sometimes a pseu-
doreflection or generalized reflection) if the endomorphism (α− Id) of M has rank
one. A subgroup of Aut(M) is said to be generated by reflections if it is generated
as a group by the reflections it contains.

3.8. Proposition. Suppose that X is a connected p-compact group of rank r.
Then the action of WX on LX is faithful and represents WX as a finite subgroup
of GLr(Zp) generated by reflections.

3.9. Proposition. Suppose that X is a connected p-compact group with maximal
torus T , Weyl group W , and rank r. Then the cohomology rings H∗

Qp
(BT ) and

H∗

Qp
(BX) are polynomial algebras over Qp of rank r, and the natural restriction

map H∗

Qp
(BX) → H∗

Qp
(BT )W is an isomorphism.

3.10. Proposition. If X is a p-compact group, then the cohomology ring
H∗(BX;Fp) is finitely generated as an algebra over Fp.

4 Centers and product decompositions

A product decomposition of a p-compact group X is a way of writing X up to
homotopy as a product of two p-compact groups, or, equivalently, a way of writing
BX up to homotopy as a product of spaces. The most general product theorem
is the following one.

4.1. Proposition. If X is a connected p-compact group, then there is a natural
bijection between product decompositions of X and product decompositions of LX

as a module over WX .

In general, connected p-compact groups are constructed from indecomposable
factors in much the same way that Lie groups are, by twisting the factors together
over a finite central subgroup.

4.2. Definition. A subgroup Y of a p-compact group X is said to be normal if
the usual map NX(Y ) → X is an equivalence. The subgroup Y is central if the
usual map CX(A) → X is an equivalence.

If the subgroup Y of X is normal, then there is a loop space structure on
X/Y (because X/Y is equivalent to the Weyl space WX(Y )) and a short exact
sequence Y → X → X/Y of p-compact groups.

4.3. Proposition. Any central subgroup of a p-compact group X is both abelian
and normal; moreover, there exists up to homotopy a unique maximal central sub-
group ZX of X (called the center of X). The center of X can be identified as
CX(X).
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The center of X is maximal in the sense that up to conjugacy it contains any
central subgroup A of X.

4.4. Proposition. If X is a connected p-compact group, the quotient X/ZX has
trivial center.

If X is connected, the quotient X/ZX is called the adjoint form of X. For
connected X there is a simple way to compute ZX from what amounts to ordinary
algebraic data associated to the normalizer NX(T ) of a maximal torus T in X.

4.5. Definition. A connected p-compact group X is said to be almost simple if
the action of WX on Q⊗LX affords an irreducible representation of WX over Qp;
X is simple if X is almost simple and ZX = {e}.

4.6. Proposition. Any 1-connected p-compact group is equivalent to a product
of almost simple p-compact groups. The product decomposition is unique up to
permutation of factors.

4.7. Proposition. Any connected p-compact group with trivial center is equiva-
lent to a product of simple p-compact groups. The product decomposition is unique
up to permutation of factors.

4.8. Proposition. Any connected p-compact group is equivalent to a p-compact
group of the form

(T ×X1 × · · · ×Xn)/A

where T is a p-compact torus, each Xi is a 1-connected almost simple p-compact
group, and A is a finite abelian p-subgroup of the center of the indicated product.

5 Examples and conjectures

Call a connected p-compact group exotic if it is not equivalent to the Fp-completion
of a connected compact Lie group. The reader may well ask whether there are any
exotic p-compact groups, or whether on the other hand the study of p-compact
groups is just a way of doing ordinary Lie theory under artificially difficult circum-
stances. In fact, there are many exotic examples: Sullivan constructed loop space
structures on the Fp-completions of various odd spheres Sn (n > 3) [33], and it is
possible to do more elaborate things along the same lines, see, e.g., [1] and [5].

Conjecturally, the theory splits into two parts.

5.1. Conjecture. Any connected p-compact group can be written as a product
X1 × X2, where X1 is the Fp-completion of a compact Lie group and X2 is a
product of exotic simple p-compact groups.

In addition, all of the exotic examples are conjecturally known.

5.2. Conjecture. The exotic simple p-compact groups correspond bijectively, up
to equivalence, to the exotic p-adic reflection groups of Clark and Ewing [1].
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Here a p-adic reflection group is said to be exotic if it is not derived from the
Weyl group of a connected compact Lie group. For example, it would follow from
5.2 there is up to equivalence only one exotic simple 2-compact group, the one
constructed in [5]. Closely related to the above conjectures is the following one.

5.3. Conjecture. Let X be a connected p-compact group with maximal torus T .
Then X is determined up to equivalence by the loop space NX(T ).

This would the analog for p-compact groups of a Lie-theoretic result of Curtis,
Wiederhold and Williams [2]. It is easy to see that the loop space NX(T ) is
determined by the Weyl group WX , the p-adic lattice LX , and an extension class
in H3(WX ;LX). Explicit calculation with examples shows that if p is odd the
extension class vanishes. It would be very interesting to find a simple, direct
way to construct a connected p-compact group X from NX(T ). For a connected
compact Lie group G, this would (according to [2]) give a direct way to constuct
the homotopy type of BG, or at least the Fp-completion of this homotopy type,
from combinatorial data associated to the root system of G. All constructions of
this type which are known to the author involve building a Lie algebra and then
exponentiating it; this kind of procedure does not generalize to p-compact groups.

The strongest results along the lines of 5.3 are due to Notbohm [27] [28].
The theory of homomorphisms between general p-compact groups is relatively

undeveloped, though there is a lot of information available if the domain is a p-
compact toral group or if the homomorphism is a rational equivalence [12] [14].
The general situation seems complicated [13], but it might be possible to find
some analog for p-compact groups of the results of Jackowski and Oliver [15] on
“homotopy representations” of compact Lie groups (see for instance [16]).
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