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Construtions of Smooth 4-Manifolds

Ronald Fintushel1and Ronald J. Stern2

Abstract. We describe a collection of constructions which illustrate a
panoply of “exotic” smooth 4-manifolds.
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1. Introduction

At the time of the previous (1994) International Congress of Mathematicians,
steady, but slow, progress was being made on the classification of simply connected
closed smooth 4-manifolds. In particular, the Donaldson invariants had begun to
take a particularly nice form [13] (also [4]), their computations were becoming more
routine [3], and their behavior under blowing up (i.e. taking connected sum with
CP

2) was well understood [2]. Due to the complexity of the Donaldson invariants,
great hope was held out that an even better understanding of these invariants
would close the books on the classification of simply connected 4-manifolds.

A few short months after the 1994 ICM, the 4-manifold community was blind-
sided by the introduction of the now famous Seiberg-Witten equations [28]. Most
of the results obtained by using Donaldson theory were found to have quicker, and
sometimes more general, counterparts using the Seiberg-Witten technology. The
potential applications of the difficult Donaldson technology became much more
transparent using these new equations. As of July 1998, there is good news as well
as bad news. The good news is that many of the earlier focus problems have been
solved. In particular, the Thom conjecture [14] and its natural generalizations
have been verified [20, 21]; also the study of symplectic 4-manifolds has taken a
more central role [23, 24, 25, 26]. The bad news is that recent constructions and
computations indicate that the Seiberg-Witten and Donaldson theories are too
weak to distinguish simply connected smooth 4-manifolds [6]. It is these latter
constructions and computations that we will discuss at this 1998 International
Congress of Mathematicians. It is becoming more apparent that we are seeing
only a small constellation of 4-dimensional manifolds. More seriously, we are
lacking a reasonable conjectural classification of simply connected closed smooth
4-manifolds.

Current technology has given us many more 4-manifolds than had been ex-
pected in 1994. The authors hope that during the 2002 ICM the construction of
large classes of new 4-manifolds will be discussed; in particular, they hope that a
sufficiently large collection of 4-manifolds will have been discovered so as to allow
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for some general patterns to emerge and, at least, a conjectural classification to
again be on the books.

2. The knot surgery construction

Let X be a simply connected oriented smooth closed 4-manifold. Its most basic
invariant is its intersection form

QX : H2(X;Z)⊗H2(X;Z) → Z

defined by counting signed transverse intersections of embedded oriented surfaces
representing given homology classes. It is a famous theorem of M. Freedman [10]
that QX determines the homeomorphism type of X, and an equally renowned
theorem of S.K. Donaldson [1] that QX is not sufficient to determine the diffeo-
morphism type of X. In this section we shall discuss geometric operations on a
given smooth 4-manifold which preserve the underlying topological structure and
alter its smooth structure. In particular, we shall consider the following construc-
tion: Let X be a simply connected smooth 4-manifold which contains a smoothly
embedded torus T of self-intersection 0. Given a knot K in S3, we replace a tubu-
lar neighborhood of T with S1 × (S3 \ K) to obtain the knot surgery manifold

XK .
More formally, this procedure is accomplished by performing 0-framed surgery

on K to obtain the 3-manifold MK . The meridian m of K can be viewed as a circle
in MK ; so in S1×MK we have the smooth torus Tm = S1×m of self-intersection 0.
Since a neighborhood of m has a canonical framing in MK , a neighborhood of the
torus Tm in S1 × MK has a canonical identification with Tm × D2. The knot
surgery manifold XK is given by the fiber sum

XK = X#T=Tm
S1 ×MK = (X \ T ×D2) ∪ (S1 ×MK \ Tm ×D2)

where the two pieces are glued together so as to preserve the homology class
[pt × ∂D2]. This latter condition does not, in general, completely determine the
isotopy type of the gluing, and XK is taken to be any manifold constructed in this
fashion.

Because S1× (S3 \K) has the same homology as a tubular neighborhood of T
in X (and because the gluing preserves [pt× ∂D2]) the homology and intersection
form of XK will agree with that of X. If it is also assumed that X \ T is simply
connected, then π1(XK) = 1; so XK will be homeomorphic to X.

In order to distinguish the diffeomorphism types of the XK , we rely on
Seiberg-Witten invariants. We view the Seiberg-Witten invariant of a smooth
4-manifold as a multivariable (Laurent) polynomial. To do this, recall that the
Seiberg-Witten invariant of a smooth closed oriented 4-manifoldX with b+2 (X) > 1
is an integer-valued function which is defined on the set of spin c structures over
X (cf. [28]). In case H1(X,Z) has no 2-torsion (for example, as here where X
is simply connected) there is a natural identification of the spin c structures of X
with the characteristic elements of H2(X,Z) (i.e. those elements k whose Poincaré

duals k̂ reduce mod 2 to w2(X)). In this case we view the Seiberg-Witten invariant
as

SWX : {k ∈ H2(X,Z)|k̂ ≡ w2(TX) (mod 2))} → Z.
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The sign of SWX depends on an orientation of H0(X,R) ⊗ detH2
+(X,R) ⊗

detH1(X,R). If SWX(β) 6= 0, then β is called a basic class of X. It is a fun-
damental fact that the set of basic classes is finite. Furthermore, if β is a basic
class, then so is −β with SWX(−β) = (−1)(e+sign)(X)/4 SWX(β) where e(X) is
the Euler number and sign(X) is the signature of X.

Now let {±β1, . . . ,±βn} be the set of nonzero basic classes for X. Con-
sider variables tβ = exp(β) for each β ∈ H2(X;Z) which satisfy the relations
tα+β = tαtβ . We may then view the Seiberg-Witten invariant of X as the Laurent
polynomial

SWX = SWX(0) +

n
∑

j=1

SWX(βj) · (tβj
+ (−1)(e+sign)(X)/4 t−1

βj
).

As an example of this notational device, consider the simply connected mini-
mally elliptic surface E(n) with holomorphic Euler characteristic n and no multi-
ple fibers. Its Seiberg-Witten invariant is SWE(n) = (t− t−1)n−2 where t = tF for

F the fiber class. Thus, SWE(n)((n−2m)F ) = (−1)m−1
(

n−2
m−1

)

for m = 1, . . . , n−1

and SWE(n)(α) = 0 for any other α. When b+(X) > 1, the Laurent polynomial
SWX is a diffeomorphism invariant of X.

For our theorem, we need to place a mild hypothesis on the embedded torus T .
We say that a smoothly embedded torus representing a nontrivial homology class
[T ] is c-embedded if there is a neighborhood N of T in X and a diffeomorphism
ϕ : N → U where U is a neighborhood of a cusp fiber in an elliptic surface and
ϕ(T ) is a smooth elliptic fiber in U . Equivalently, T is c-embedded if it contains
two simple closed curves which generate π1(T ) and which bound vanishing cycles
in X. Note that a c-embedded torus has self-intersection 0.

Theorem 2.1 ([6]). Let X be a simply connected oriented smooth 4-manifold with

b+ > 1. Suppose that X contains a c-embedded torus T with π1(X \ T ) = 1, and
let K be any knot in S3. Then the knot surgery manifold XK is homeomorphic to

X and has Seiberg-Witten invariant

SWXK
= SWX ·∆K(t)

where ∆K(t) is the symmetrized Alexander polynomial of K and t = exp(2[T ]).

For example, the theorem applies to the K3-surface E(2) where T is a smooth
elliptic fiber, and since SWE(2) = 1, we have SWE(2)K = ∆K(t). It is a theorem

of Seifert that any Laurent polynomial of the form P (t) = a0 +
n
∑

j=1

aj(t
j + t−j)

with coefficient sum P (1) = ±1 is the Alexander polynomial of some knot in S3.
Call such a Laurent polynomial an A-polynomial. It follows that if (X,T ) satisfies
the hypothesis of Theorem 2.1, then for any A-polynomial P (t), there is a smooth
simply connected 4-manifold XP which is homeomorphic to X and has Seiberg-
Witten invariant SWXP

= SWX · P (t) where t = exp(2[T ]). In particular, for
each A-polynomial P (t), there is a manifold homeomorphic to the K3-surface with
SW = P (t).
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The relationship between Seiberg-Witten type invariants and the Alexander
polynomial was first discovered by Meng and Taubes. In [17] they showed that
the 3-manifold Seiberg-Witten invariant is related to Milnor torsion.

If one starts with a fibered knot K, then S1 × MK is a surface bundle over
a torus and thus carries a symplectic structure [27] for which Tm is a symplec-
tic submanifold. Thus if X is a symplectic 4-manifold containing a c-embedded
symplectic torus T , then XK = X#T=Tm

S1 ×MK is also symplectic [11, 16]. In
a fashion similar to the treatment of the Seiberg-Witten invariant as a Laurent
polynomial, one can view the Gromov invariant of a symplectic 4-manifold X as a
polynomial GrX =

∑

GrX(β) tβ where GrX(β) is the usual Gromov invariant of
β. Let AK(t) = td∆K(t) denote the normalized Alexander polynomial, where d is
the degree of ∆K(t). As a corollary to Theorem 2.1 and the theorems of Taubes
relating the Seiberg-Witten and Gromov invariants of a symplectic 4−manifold
[25, 26] we have:

Corollary 2.2 ([6]). Let X be a symplectic 4-manifold with b+ > 1 containing

a symplectic c-embedded torus T . If K is a fibered knot, then XK is a symplectic

4-manifold whose Gromov invariant is GrXK
= GrX ·AK(τ) where τ = exp([T ]).

This last calculation can also be made purely within the realm of symplectic
topology [12, 15]. Our interest is directed more to the opposite situation. The
Alexander polynomial of a fibered knot is monic; i.e. its top coefficient is ±1. On
the other hand:

Corollary 2.3 ([6]). If ∆K(t) is not monic, then XK does not admit a symplec-

tic structure. Furthermore, if X contains a homologically nontrivial surface Σg of

genus g disjoint from T with [Σg]
2 < 2 − 2g if g > 0 or [Σg]

2 < 0 if g = 0, then
XK with the opposite orientation does not admit a symplectic structure.

Until the summer of 1996, it was still a plausible conjecture (sometimes called
the ‘minimal conjecture’) that each irreducible simply connected 4-manifold should
admit a symplectic structure with one of its orientations. The first counterex-
amples to this conjecture were constructed by Z. Szabo [22]. The knot surgery
construction gives a multitude of examples of simply connected irreducible ‘non-
symplectic’ 4-manifolds. In fact, if X is simply connected with SWX 6= 0 and
if X contains a c-embedded torus T with π1(X \ T ) = 1, then Theorem 2.1 and
Corollary 2.3 imply that there are infinitely many distinct nonsymplectic smooth
4-manifolds XK homeomorphic to X.

If K1 and K2 have the same Alexander polynomial, Seiberg-Witten invariants
are not able to distinguish XK1

fromXK2
. For example, take X = E(2). ThenXK

has a self-intersection 0 homology class σ satisfying σ · [T ] = 1 which is represented
by an embedded surface of genus g(K) + 1 where g(K) is the genus of K. One
might hope that these classes could be used to distinguish XK1

from XK2
when

g(K1) 6= g(K2).

Conjecture . For X = E(2), the manifolds XK1
and XK2

are diffeomorphic if

and only if K1 and K2 are equivalent knots.

The proof of Theorem 2.1 proceeds by successively simplifying the manifold
XK in a fashion which mimics the calculation of the Alexander polynomial of K
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via skein relations. Recall that ∆K(t) can be calculated via the relation

∆K+
(t) = ∆K−

(t) + (t1/2 − t−1/2) ·∆K0
(t)(1)

where K+ is an oriented knot or link, K− is the result of changing a single oriented
positive (right-handed) crossing in K+ to a negative (left-handed) crossing, and
K0 is the result of resolving the crossing as shown in Figure 1.
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Figure 1

The point of using (1) to calculate ∆K is that K can be simplified to an
unknot via a sequence of crossing changes. One builds a ‘resolution tree’ starting
from K and at each stage adding the bifurcation of Figure 2, where each K+, K−,
K0 is a knot or 2-component link, and so that at the bottom of the tree, there
are only unknots, and split links. Then, because the Alexander polynomial of an
unknot is 1, and is 0 for a split link (of more than one component) one can can
work backwards using (1) to calculate ∆K(t).

✓
✓

✓

❙
❙
❙

K+

K− K0

Figure 2

The manifold XK+
can be obtained from XK−

by means of a (+1)-log trans-
form on a nullhomologous torus in XK−

, and then the gluing theorems of [18]
show that SWXK+

can be computed in terms of the Seiberg-Witten invariants of

XK−
and a manifold XK−,0 obtained by a 0-log transform on XK−

. With some
work, this leads to a related resolution diagram of 4-manifolds where each knot
K ′ corresponds to XK′ , and this diagram can be used to prove Theorem 2.1.

We conclude this section by pointing out that the knot surgery construction
can be generalized to manifolds with b+ = 1 and to links in S3 of more than
one component in a more-or-less obvious way. One glues the complements of c-
embedded tori in 4-manifolds to the product of S1 with the link complement. See
[6] for details. For example, if to each boundary component of S1×(S3 \N(L)) we
glue E(1) minus the neighborhood of a smooth elliptic fiber, we obtain a manifold
with SW = ∆L(t1, . . . , tn), the multivariable Alexander polynomial of the link.
Szabo’s examples in [22] can be obtained from this construction.

3. Embeddings of surfaces in 4-manifolds

Knot surgery can also be used to change the embedding of a surface in a fixed
4-manifold. To motivate the construction, note that one can tie a knot in the core
{0}×I of a cylinderD2×I by removing a tubular neighborhood of a meridian circle
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and replacing it with a knot complement S3 \K. We shall perform a parametrized
version of this construction in the 4-manifold setting. Consider an oriented surface
Σ of genus g > 0 which is smoothly embedded in a simply connected 4-manifold
X. Let α be a simple closed curve on Σ which is part of a symplectic basis, and
let α × I be an annular neighborhood of α in Σ. In X we see the neighborhood
D2×α× I. For a fixed knot K in S3, we parametrize the above construction so as
to perform it on each of the cylinders D2×{y}× I, y ∈ α, to obtain an embedded
surface ΣK . This is equivalent to performing knot surgery on the (nullhomologous)
rim torus R = ∂D2 × α. We call this operation rim surgery.

Theorem 3.1 ([7]). Let X be a simply connected smooth 4-manifold with an em-

bedded surface Σ of positive genus. Suppose that π1(X \ Σ) = 1. Then for each

knot K in S3, rim surgery produces a surface ΣK , and there is a homeomorphism

(X,Σ) ∼= (X,ΣK).

The Seiberg-Witten invariant can be used to study these embeddings, but
first, an auxilliary construction is needed. For each positive integer g, let Yg be
the union of the Milnor fiber of the (2, 2g + 1, 4g + 1) Brieskorn singularity and
a generalized nucleus consisting of the 4-manifold obtained as the trace of the 0-
framed surgery on (2, 2g + 1) torus knot in ∂B4 and a −1 surgery on a meridian.
Then Yg is a Kahler surface and admits a holomorphic fibration over CP

1 with
generic fiber a surface Sg of genus g.

Let (X,Σ) be as in Theorem 3.1, and suppose that the self-intersection Σ2 = 0.
We call (X,Σ) an SW-pair if satisfies the property that SWX#Σ=SgYg

6= 0. (In

general, if Σ2 = n > 0, one makes this definition by first blowing up n times.) For
example, if X is symplectic and Σ is a symplectic submanifold (of square 0), then
X#Σ=Sg

Yg is symplectic, and it follows that (X,Σ) is an SW-pair. In X#Σ=Sg
Yg,

the rim torus R becomes homologically essential and is c-embedded. We can use
Theorem 2.1 to calculate Seiberg-Witten invariants:

SWX#ΣK=SgYg
= SW(X#Σ=SgYg)K = SWX#Σ=SgYg

·∆K(r)

where r = exp(2[R]), viewing [R] as a class in the fiber sum. We have:

Theorem 3.2 ([7]). Consider any SW-pair (X,Σ) with Σ2 ≥ 0. If K1 and K2

are two knots in S3 and if there is a diffeomorphism of pairs (X,ΣK1
) ∼= (X,ΣK2

),
then ∆K1

(t) = ∆K2
(t).

As a special case:

Theorem 3.3 ([7]). Let X be a simply connected symplectic 4-manifold and Σ a

symplectically embedded surface of positive genus and nonnegative self-intersection.

Assume also that π1(X \Σ) = 1. If K1 and K2 are knots in S3 and if (X,ΣK1
) ∼=

(X,ΣK2
), then ∆K1

(t) = ∆K2
(t). Furthermore, if ∆K(t) 6= 1, then ΣK is not

smoothly ambient isotopic to a symplectic submanifold of X.

The second part of the theorem holds because if ΣK were symplectic,
X#ΣK=Sg

Yg would be a symplectic manifold. The symplectic form ω on this
manifold is inherited from the forms on X and Yg; so 〈ω,R〉 = 0. But
SWX#ΣK=SgYg

= SWX#Σ=SgYg
·∆K(r), and it follows that the among the basic
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classes k of X#ΣK=Sg
Yg, more than one has 〈ω, k〉 maximal. This contradicts the

fact that, for a symplectic manifold, the maximality of 〈ω,K〉 characterizes the
canonical class among all basic classes [24].

4. Fiber sums of holomorphic Lefschetz fibrations

In this section we shall construct for every integer g ≥ 3 a pair (Xg, X
′

g) of simply
connected complex surfaces carrying holomorphic genus g Lefschetz fibrations with
the property that their fiber sum (along a regular fiber) is a symplectic 4-manifold
Zg which supports no complex structure; in fact Zg is not even homeomorphic to
a complex manifold.

Let T (p, q) denote the (p, q) torus knot in S3 and let N(p, q) denote the
4-manifold obtained by attaching a 2-handle to the 4-ball along T (p, q) with 0-
framing. It is well known that N(p, q) is a Lefschetz fibration over D2 with generic
fiber a Riemann surface of genus g(p, q) = (p − 1)(q − 1)/2. Let W (p, q) denote
the canonical resolution of the Brieskorn singularity Σ(p, q, pq), the Seifert-fibered
3-manifold with three exceptional fibers of order p, q, and pq, and with H1 = Z.
It is known that W (p, q) also supports the structure of a genus g(p, q) Lefschetz
fibration over D2 with a singular fiber over 0 which is a sequence of 2-spheres
plumbed according to the resolution diagram of Σ(p, q, pq). Finally, let

Z(p, q) = W (p, q) ∪N(p, q).

The manifold Z(p, q) is a rational surface which is diffeomorphic to the con-
nected sum of CP

2 and r(p, q) copies of CP
2 for some computable integer r(p, q).

Furthermore, Z(p, q) supports the structure of a holomorphic Lefschetz fibration
whose fiber has genus g(p, q).

Now consider nontrivial torus knots T (p, q) and T (p′, q′) with the property
that g(p, q) = g(p′, q′). (This is possible for every g(p, q) ≥ 3.) Let F (p, q; p′, q′) de-
note the fiber sum along a regular fiber of Z(p, q) with Z(p′, q′). Then F (p, q; p′, q′)
is a simply connected symplectic 4-manifold with

c21 = 10 + 8g(p, q)− r(p, q)− r(p′, q′), χ = (b+ + 1)/2 = 1 + g(p, q).

Furthermore, F (p, q; p′, q′) supports the structure of a Lefschetz fibration
with fiber of genus g(p, q). A computation of the Seiberg-Witten invariants of
F (p, q; p′, q′) shows that, up to sign, there is a unique Seiberg-Witten basic class.
It follows that F (p, q; p′, q′) is minimal.

Conjecture . F (p, q; p′, q′) supports the structure of a complex 4-manifold if and

only if {p, q} = {p′, q′}.

As evidence, consider the pairs (2, 2n + 1) and (3, n + 1), n 6≡ 2 mod 3. For
F (2, 2n+1; 3, n) one can show that r(2, 2n+1) = 4n+4 and r(3, n+1) = 3n+7
so that

c21 = n− 2, χ = n+ 1.

Thus, c21 = χ − 3, which violates the Noether inequality c21 ≥ 2χ − 6. This
means that F (2, 2n + 1; 3, n) is a minimal symplectic 4-manifold that is not even
homotopy equivalent to a complex manifold. In fact, it can be shown that the
fiber sum of Z(2, 2n + 1) with itself is the elliptic surface E(n + 1) and that
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the fiber sum of Z(3, n + 1) with itself is a Horikawa surface with χ = n + 1.
Furthermore F (2, 2n + 1; 3, n) can be obtained from E(n + 1) by removing from
Z(2, 2n + 1) \ F ⊂ E(n + 1), F a regular fiber, the regular neighborhood of the
configuration of (n− 2) 2-spheres:

• • . . . •
−(n+ 1) −2 −2

whose boundary is the lens space L((n−1)2,−n) and replacing it with the rational
ball that this lens space bounds. (See [3] for all the details concerning this rational
blowdown procedure.) Thus F (2, 2n+1; 3, n) is the manifold Y (n) constructed in
Lemma 7.5 of [3].

5. Homeomorphic but non-diffeomorphic 4-manifolds with the same

Seiberg-Witten invariants

In this section we construct examples of a pair (X1, X2) of symplectic 4-
manifolds with X1 homeomorphic to X2, SWX1

= SWX2
, but X1 is not diffeo-

morphic to X2. To do this choose a pair of fibered 2-bridge knots K(α, β1) and
K(α, β2) with the same Alexander polynomials; for example K1 = K(105, 64) and
K2 = K(105, 76) with Alexander polynomial

∆K(t) = t−4 − 5t−3 + 13t−2 − 21t−1 + 25− 21t+ 13t2 − 5t3 + t4.

Although these knots have the same Alexander polynomial, they can be distin-
guished by the fact that their branch covers are the lens spaces L(α, β1) and
L(α, β2) which are distinct; in our specific case L(105, 64) is not diffeomorphic to
L(105, 76). These knots are also distinguished by their dihedral linking numbers;
let SK1

and SK2
denote the 2-fold covers of S3 branched overK1 andK2, with lifted

branched loci K̃1 and K̃2, respectively. Thus we have knots K̃i in SKi
= L(α, βi).

Take the α-fold covers of these lens spaces to obtain links Li = {K
(i)
1 , . . . ,K

(i)
α }

which are the lifts of the branch loci K̃i. The linking numbers of the links L1 and
L2 are known as the ‘dihedral linking numbers’ of the 2-bridge knot K(α, β).

Now perform the knot surgery construction of §2 on the K3 surface, replacing
T 2 × D2 with S1 × (SKj

\ K̃j). The resulting 4-manifolds are the manifolds Xi.
Either by adapting the arguments of [6] or by using [12] or [15], it can be shown
that SWX = SWY = ∆K(t) · ∆K(−t). Unfortunately, the Xi are not simply
connected (but are homeomorphic). In particular, π1(X1) = π1(X2) = Zα, and

the α-fold covers X̃1 and X̃2 of X1 and X2 are not diffeomorphic. To see this,
observe that X̃i is obtained as our link construction in [6] (cf. § 2) by gluing one
copy of E(2) minus a neighborhood of a smooth elliptic fiber to every boundary
component of S1 × (S3 \ Li). It follows from [6] that

SWX̃i
= ∆Li

(t1, . . . , tα) ·

α
∏

j=1

(t
1/2
j − t

−1/2
j )

Since the linking numbers of the links L1 and L2 are different, it can be shown the
Hosokawa polynomials of the links L1 and L2, when evaluated at 1 are distinct
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[9]. Thus their Alexander polynomials are different and X̃1 is not diffeomorphic

to X̃2.
There is a lesson to be learned from these examples. One must consider the

Seiberg-Witten invariants of a 4-manifold X together with those of all of its covers
as the appropriate invariant for X.

6. Nonsymplectic 4-manifolds with one basic class

Recall from § 2, that if k is a basic class of X, so is −k. Because of this, we
say that X has n basic classes if the set {k | SWX(k) 6= 0}/{±1} consists of n ele-
ments. There are abundant examples of 4-manifolds with one basic class. Minimal
nonsingular algebraic surfaces of general type have one basic class (the canonical
class) [28]. The authors and others have constructed many examples of minimal
symplectic manifolds with one basic class and χ− 3 ≤ c1

2 < 2χ− 6. (These mani-
folds cannot admit complex structures due to the geography of complex surfaces.)
However, the examples described here are the first nonsymplectic manifolds with
one basic class.

Let X = E(2) and T a smooth elliptic fiber. For a knot K of genus g form
the knot surgery construction to obtain XK . In XK there is a surface Σ of genus
g + 1 with [Σ]2 = 0 and [Σ] · [T ] = 1. Let M be the 3-manifold obtained from
0-surgery on the trefoil knot. Then S1 × M is a T 2-fiber bundle over T 2. The
fiber sum of g + 1 copies of the fiber bundle gives a 4-manifold Y which is an
F = T 2-bundle over a surface of genus g + 1, and it is easily seen that there is a
section C. Furthermore, Y is a symplectic 4-manifold with c1(Y ) = −2g[F ]. Our
example, corresponding to the genus g knot K is ZK = XK#Σ=CY . We perform
this fiber sum so that ZK is a spin 4-manifold [11]. It can be seen to be simply
connected.

Write the symmetrized Alexander polynomial of K as ∆K(t) = a0 +
d
∑

n=1
an(t

n + t−n), and call d the degree of ∆K(t). Since the genus of K is g,

we have d ≤ g. If K is an alternating knot, for example, then d = g. Say that the
Alexander polynomial of K has maximal degree if d = g. Using techniques of [20]
we calculate:

Theorem 6.1 ([8]). Let K be a knot in S3 whose Alexander polynomial has max-

imal degree. Then ZK has one basic class, k, with |SWZK
(k)| = ad, the top

coefficient of ∆K(t). When |ad| > 1, ZK is nonsymplectic.

References

[1] S. Donaldson, Polynomial invariants for smooth 4-manifolds, Topology 29 (1990), 257–315.

[2] R. Fintushel and R. Stern, The blowup formula for Donaldson invariants, Ann. of Math. 143
(1996), 529–546.

[3] R. Fintushel and R. Stern, Rational blowdowns of smooth 4-manifolds, Jour. Diff. Geom., 46
(1997), 181–235.

[4] R. Fintushel and R. Stern, Donaldson invariants of 4-manifolds with simple type, J. Diff.
Geom. 42 (1995), 577–633.

[5] R. Fintushel and R. Stern, Immersed spheres in 4-manifolds and the immersed Thom con-

jecture, Turkish J. Math. 19 (1995), 145–157.
[6] R. Fintushel and R. Stern, Knots, links, and 4-manifolds, to appear in Invent. Math.

Documenta Mathematica · Extra Volume ICM 1998 · II · 443–452



452 R. Fintushel and R. J. Stern

[7] R. Fintushel and R. Stern, Surfaces in 4-manifolds, Math. Res. Letters 4 (1997), 907–914.

[8] R. Fintushel and R. Stern, Nonsymplectic 4-manifolds with one basic class, preprint.
[9] R. Fintushel and R. Stern, Nondiffeomorphic symplectic 4-manifolds with the same Seiberg-

Witten invariants, preprint.

[10] M. Freedman, The topology of four-dimensional manifolds, Jour. Diff. Geom. 17 (1982),
357–454.

[11] R. Gompf, A new construction of symplectic manifolds, Ann. Math. 142 (1995), 527–595.
[12] E. Ionel and T. Parker, Gromov invariants and symplectic maps, preprint.

[13] P. Kronheimer and T. Mrowka, Embedded surfaces and the structure of Donaldson’s poly-

nomial invariants, J. Diff. Geom. 41 (1995), 573–734.
[14] P. Kronheimer and T. Mrowka, The genus of embedded surfaces in the projective plane,

Math. Research Letters 1 (1994), 797–808.

[15] W. Lorek, Lefschetz zeta function and Gromov invariants, preprint.
[16] J. McCarthy and J. Wolfson, Symplectic normal connect sum, Topology 33 (1994), 729–764.
[17] G. Meng and C. Taubes, SW = Milnor Torsion, Math. Research Letters 3 (1996), 661–674.

[18] J. Morgan, T. Mrowka and Z. Szabo, Product formulas along T 3 for Seiberg-Witten invari-

ants, Math. Res. Letters 4 (1997), 915–930.
[19] J. Morgan, T. Mrowka, Z. Szabo, and C. Taubes, in preparation.
[20] J. Morgan, Z. Szabo and C. Taubes, A product formula for the Seiberg-Witten invariants

and the generalized Thom conjecture, J. Diff. Geom. 44 (1996), 706-788.
[21] P. Oszvath and Z. Szabo, The symplectic Thom conjecture, preprint.
[22] Z. Szabo, Simply-connected irreducible 4-manifolds with no symplectic structures, Invent.

Math. 132 (1998) 3, 457-466.
[23] C. Taubes, The Seiberg-Witten invariants and symplectic forms, Math. Res. Letters 1

(1994), 809–822.
[24] C. Taubes, More constraints on symplectic manifolds from Seiberg-Witten invariants, Math.

Res. Letters 2 (1995), 9–14.
[25] C. Taubes, SW ⇒ Gr, From the Seiberg-Witten equations to pseudo-holomorphic curves,

Jour. Amer. Math. Soc. 9 (1996), 845–918.
[26] C. Taubes, Counting pseudo-holomorphic submanifolds in dimension 4, preprint, 1995.

[27] W. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55
(1976), 467–468.

[28] E. Witten, Monopoles and four-manifolds, Math. Res. Letters 1 (1994), 769–796.

Ronald Fintushel
Department of Mathematics
Michigan State University
East Lansing, Michigan 48824
U.S.A.
ronfint@math.msu.edu

Ronald J. Stern
Department of Mathematics
University of California
Irvine, California 92697
U.S.A.
rstern@uci.edu

Documenta Mathematica · Extra Volume ICM 1998 · II · 443–452


