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For the pure mathematician the boundary that Gödel delineated between decidable
and undecidable, recursive and nonrecursive, has an attractive sharpness that
declares itself as a phenomenon of absolutes. In contrast, the complexity classes
of computer science, for example P and NP , require an asymptotic formulation,
and like the subject of “coarse geometry”, demand a bit of patience before their
fundamental character is appreciated.

The heart of the matter is to understand which problems can be solved by
an algorithm whose “running time” grows only polynomially with the size of the
instance. It is interesting to note that in other areas of mathematics things poly-
nomial tend to have excellent limiting behavior: 1. Any polynomial on cardinals:
x 7−→ poly(x) is continuous at the first infinite cardinal, whereas the power set
function x 7−→ 2x is not. 2. In complex analysis, polynomials extend conformally
over infinity to yield a branch point, whereas exp is essentially discontinuous at
infinity. 3. In coarse geometry, groups with polynomial growth, in common with
nilpotent Lie groups, have Carnot manifolds as scaling limits (Gromov [G]) in
the Gromov-Hausdorf topology. These examples, particularly the last, suggest
that polynomial time algorithms might eventually be understood by constructing
a more manageable limiting object as polynomial growth groups are understood
via nilpotent Lie groups.

In order to make the discussion of algorithms precise, it is necessary to de-
fine a computational model. This is more exciting now than it was ten years
ago. The “polynomial Church thesis” is up in the air, and there are two robust
computational models to sink one’s teeth into: the “Turing model” and “Quantum
Computing” (QC). (See http://xxx.lanl.gov/abs/quant-ph and [K] for a suggested
solid state implementation based on the hyperfine coupling between electron spin
and nuclear spin.) Furthermore it is possible that there will be other, perhaps
stronger, computational models based on topological quantum field theory [F1].

The thesis of Alonzo Church, propounded in the mid-1940s, asserts that any
two definitions of “computable function” will agree. The “polynomial version” of
the Church thesis (although I do not know that it was ever endorsed by Church)
says that any two physically reasonable models of computation will agree on the
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class of polynomial time functions (but not necessarily on the degree of the poly-
nomial, which may in fact be model dependent). “Reasonableness” implies limited
accuracy in preparation and measurement of physical states.

It might seem that if one accepts that the universe is fundamentally quan-
tum mechanical (and I am perfectly prepared to neglect the irreversibility of black
hole evaporation) that QC is the ultimate model, and no others need be sought.
This argument is not entirely convincing, since a solid state system (perhaps one
involving global excitation as occurs in the fractional quantum Hall effect) might
be governed to considerable accuracy by an effective field theory whose simulation
through local QC gates involves exponential inefficiencies. (Note that a prelimi-
nary discussion of simulating local Hamiltonians by gates is given in [L].) Topo-
logical field theories, because of their discrete character and their connections to
NP -hard (actually #P -hard) combinatorial problems, e.g., the evaluation of the
Jones polynomials, are the most interesting candidates for further computational
models [F1]. The next section contains definitions, but briefly, the class NP , non-
deterministic polynomial time, consists of those decision problems where the time
to “check” (rather than find) a proposed solution grows only polynomially in the
length of the problem instance.

In pure mathematics, problems of fundamental importance occasionally arrive
on our doorstep from physics. The only other cases (i.e., origin outside of physics)
I can think of are: probability (gambling), crystallographic groups (chemistry),
incompleteness (philosophy), and the P/NP problem (computer science). A proof
that P 6= NP would be extraordinarily strong, as it would foreclose the possibility
of myriad yet-unimagined theories that might connect, say, the colorings of a graph
(which is NP complete) and, say, the cohomology of some associated space (which
might well be in P as cohomology is essentially linear algebra). These speculations
might suggest that the P/NP problem is undecidable. In a platonic world view,
where statements of first order arithmetic, such as “P = NP”, are either true
or false, there are two subcases: the very interesting Case (1): undecidable and
true, in which case the NP problems do admit P -time algorithms, but there is no
documentation proving they work; and the less interesting Case(2): undecidable
and false: there are no P -time algorithms for the NP -complete problems, but
there is no proof of this statement.

The assertion that a problem is important to mathematics is usually supported
by sketching its relations to other problems and fields. The P/NP problem enjoys
a more interesting status. The practice of mathematics is largely the search for
proofs of reasonable length (certainly polynomial in statement length) and so is
inside NP . Setting aside the constraints of any particular computational model,
the creation of a physical device capable of brutally solving NP problems would
have the broadest consequences. Among its minor applications it would supersede
intelligent, even artificially intelligent, proof finding with an omniscience not pos-
sessing or needing understanding. Whether such a device is possible or even in
principle consistent with physical law, is a great problem for the next century.
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§1. Preliminaries.

The Turing model of computation consists in a bare formulation of a bi-infinite
tape, a head which can read/write symbols from a finite alphabet and which is
capable itself of being one of finitely-many internal states. Its “program” is a
finite set of 5-tuples {S, q, S′, q′,M} which say that if it is in state S and reads q,
it will assume state S′, overwrite q with q′, and move right or left according to the
indicated motion M . We can absorb knowledge of the last motion into the state
q′ and so drop the fifth symbol. Without an applicable instruction the machine
halts. The internal state, the head position and the contents of the tape together,
form the machine’s complete state. For convenience, one or more additional tapes
may be added to the machine, generally decreasing computation time, but by no
more than a square root factor. All conventional computers are implementations
of the Turing model.

A next step is to allow probabilistic computation where several 4-tuples may
begin “S, q”, and these will be assigned positive weights pi summing to one and will
be executed with probability pi, so that the machine now evolves stochastically
through a mixture of states. Empirically, it is often easier to find probabilistic
algorithms that almost always work, than to find traditional exact algorithms.

A further, more radical, innovation is to allow the weights above, now written
wαβ , to be complex numbers satisfying

∑

wαβwβγ = δαγ , where wαβ is the tran-
sition amplitude for (S, q) = (S, q)α → (S, q)β = (S′, q′). The resulting evolution
of the computation is now a unitary evolution U(t) in a vector space of complete
states. This, briefly, is the model called quantum computation or QC. It is an
important consequence of this description that the evolution is local at any time t:
The tth step, or gate, in the time evolution U(t) is the identity except on a tensor
factor of bounded dimension (typically C

4 or C8 in detailed specifications).
In the Turing model P represents the class of decision problems {D} (answer ∈

{yes, no}) so that there is a program FD and a polynomial PD with FD yielding
the answer to each instance I of D in time ≤ PD(length I), where length I is the
number of bits required to express I. One says D lies in NP (nondeterministic
polynomial time) if there is an existential program operating on I plus a number of
guess bits which correctly answer all instances in polynomial time. The existential
program is deemed to answer “yes”, if for some setting of the guess bits the machine
halts on the symbol 1. The fundamental question of computer science is to show
that P 6= NP , essentially that it is harder to find a solution than to check a guess.

The problem of the existence of a satisfying assignment for a Boolean formula
is the canonical NP -complete problem, meaning1 it lies in NP and if a Turing
machine were augmented by an oracle capable of (quickly) answering that one
problem, then all problems in NP could be solved in polynomial time. (A problem
is called “hard” rather than complete if only the second assertion is being made.)
The class #P is the counting analog of NP ; computing the number of satisfying
assignments of a Boolean formula is the canonical #P -complete problem. In oracle
notation PNP ⊂ P#P , meaning a poly-time machine with access to an #P oracle
is at least as powerful as one with access to an NP oracle.

1according to Cook [C]
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The model QC is not strictly comparable with Turing, since in QC the output,
a measurement of a final stationary state, is only probabilistic. However it is
believed, because of Shor’s QC algorithm [Sh] for factoring integers in polytime,
that QC is substantially more powerful than P but perhaps not powerful enough
to solve NP -complete problems in polynomial time. Computational models that
are allowed to handle continuous quantities are almost always absurdly strong
(e.g., contain NP ), if accuracy is not restricted to poly(log) number of bits. ([Sc],
[ADH])

On the topological side, the notion of a topological quantum field theory
has emerged through Witten’s work. A TQFT is usually understood to be a
functor Z from (oriented marked surface, a bounding oriented 3-manifold with
link; diffeomorphisms)2 to (finite-dimensional Hilbert spaces over C, vector; linear
maps) which satisfies Z(Σ1 ∪ Σ2) = Z(Σ1) ⊗ Z(Σ2), Z(Σ) = Z(Σ)∗, a gluing
axiom (gluing bordism corresponds to composing linear maps), and a unitarity
axiom. (See [At] for details.) In particular such a theory assigns scalars to closed
three-manifolds containing a link L, and Witten identified one such theory Wk,
SU(2)-Chern-Simons theory at level k, as a value of the Jones [Jo] polynomial V ,

Wk(L) = VL(ζ) , ζ = e
2πi
k+2 . (1)

Since we will be discussing the utility of this TQFT for solving combinatorial
problems such as Boolean satisfiability, it is relevant to observe that counting
satisfactions, colorings, and many other combinatorial problems provide by far
the simplest examples of systems obeying the TQFT axioms; only the source
category must be redefined. (It is tempting to look for the corresponding path-
integral interpretations.) To see, for example, how the gluing axiom works for the
problem of counting vertex colorings of a graph, let (G1;H1, H2) and (G2;H2, H3)
be disjoint finite graphs, each with two preferred disjoint subgraphs whereH2 ⊂ G1

and H2 ⊂ G2 are identified by a fixed isomorphism. Let G = G1 ∪H2
G2. Let i,

j and k index the possible legal colorings of H1, H2 and H3 respectively and let
mi,j (nj,k) be the number of colorings of G1 restricting i on H1 and j on H2 (j on
H2 and k on H3). Then the number of colorings gi,k of G which restrict to i on
H1 and to k on H3 satisfies the composition rule:

gik =
∑

j

mi,jnj,k

§2. What a topologist might think about formal systems.

A. Understanding the class P :

Conjecture: The class of P -time algorithms can be elucidated by constructing
some scaling limit as discussed in the introduction. (Also see [F2])

B. General position in formal systems:

There is an empirical connection between computational complexity of a finite
decision problem and the undecidability of an infinitary version [F3]. Although

2perhaps with additional structures or labelings
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oracle separation results [BGS] show that detailed properties of P must enter the
proof, P might be distinguished from NP by finding a translation which carries
P into decidable statements. Thus it is natural to ask how common decidable
statements are. LetX be a formal system subject to Gödel’s second incompleteness
theorem, such as Peano arithmetic or ZFC. Let {Si | i ∈ Z+} be the sentences of X
enumerated in some syntactically natural way, e.g., alphabetical order. Consider
those sentences which are provable (in X or some fixed finite extension X+ of X)
and let pi denote the number of these with index ≤ i which are provable.

Conjecture: “Ubiquity of undecidability” limsup(pi /
√
i) = 0. That is, the

“number” of provable statements is less than the square root of the number of
statements.

According to Kolmogorov and later Chaitin [Ch] at least half of integers fail
to admit short descriptions, but particular true instances of the statement “n has
no short description” are always undecidable. This provides a fairly large natural
family of undecidable statements, but not the conjectured ubiquity of undecidable
statements.

Rationale for conjecture: The single most useful principle in geometric
topology is that submanifolds P p, Qq ⊂ Mn contained in a manifold, generically
satisfy dim(P ∩ Q) = p + q − n. For finite sets, if P and Q are drawn randomly
from M , the same formula holds:

expected value of log card(P ∩Q) = log card(P ) + log card(Q)− log card(M).
(2)

In particular two disjoint subsets P and P ′ of equal cardinality should satisfy:

card(P ) = card(P ′) <
√
cardM (3)

if their disjointness is simply a matter of chance.
If X is consistent, then provable statements Q and their negations Q′ are

disjoint. We believe that in a system complex enough to be incomplete, the global
structure of Q inside all statements is essentially random and so expect Q to be
asymptotically of less than square root size. This is analogous to thinking that the
primes are “randomly” distributed in the integers according to the density 1

logn ,

a model with considerable predictive power.3

C. P 6= NP has predictive power in link theory:

In computer science the notions of width arise in identifying subclasses of NP -
hard problems which are actually solvable in P -time. Among these are problems
of constant width, or even polylog width problems. (Compare page 95 [We].) For
the present purpose define the width of a link L to be the inf

π
sup
r

∣

∣ L ∩ π−1r
∣

∣,

where π is a smooth product projection R
3 → R, r ∈ R. Let L be the set of finite

links. Call a mapping i : L → L information preserving, if some #P -hard data

3For example, the density of double primes seems to be correctly predicted, up to a small
multiplicative constant, from this assumption.
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about L ∈ L can be quickly computed from data about i(L), e.g., if VL(e
2πi/5) is

quickly (P -time) calculable from Vi(L)(e
2πi/5).

Conjecture: The image of an information-preserving map i, {i(L)}, cannot have
constant width (or even width ≤ poly (log crossing #(L)).

This conjecture is implied by the conjecture P 6= NP if we also make the
modest assumptions that i can be computed on a link L in time ≤ poly(#crossing)
and that the crossing number obeys: #crossing(i(L)) < poly(#crossing(L)).

The Jones polynomial at e2πi/5, according to Witten [W], Reshetikhin and
Turaev [RT], is the scalar output of a TQFT. Bounded width implies a fixed
bound on the dimension of the Hilbert spaces which arises as the link is sliced into
elementary bordisms.

Thus the calculation time for the composition of the elementary bordisms in
TQFT is linear in the number of compositions. Since the dimension of Witten’s
Hilbert space grows (only) exponentially with width, poly log width is an adequate
assumption for the entire calculation to grow at a polynomial rate.

D. “Finite type invariants” in combinatorics:

Vassiliev’s book [V] contained implicitly a notion of “finite type” link invari-
ant, clarified by Birman-Lin [BL] and Bar Natan [BN1], who showed that the
perturbative invariants associated to the Witten-Chern-Simons theory are finite
type. The fundamental idea of a finite-type invariant can be reproducted in any
combinatorial setting where a notion of an (oriented) elementary difference can be
defined. In oriented link theory the formal difference between two link diagrams,
where a positive crossing in the first has been replaced by a negative crossing in
the second, is the notion of elementary difference.

We give two examples in graph theory. In both cases the fundamental theorem
[BN2] that the finite-type invariants of link theory can be computed in polynomial
time continues to hold. One finds for invariants of type = n, a bound on compu-
tation time ≤ O(#n), where # is the number of edges in the graph. Analogous
to the Witten-Chern-Simon theory where the l.h.s. is a #P -hard nonperturbative
invariant and the r.h.s. is an asymptotic expansion with finite-type coefficients,
we find that (in the two cases respectively) after suitable change of variables, the
chromatic and flow polynomials of a graph, which in their totality are #P -hard to
calculate, can be expressed as a polynomial whose kth coefficient is of type = k.

Example 1: Define an elementary difference on finite graphs modulo isomor-
phism to be an ordered pair consisting of a finite graph followed by the graph
with one edge deleted, (G,G r e). A (real valued) invariant on finite graphs
f : {graphs} → R is type n, if given any collection of n+ 1 edges {e1, . . . en+1} of
G, all (n+ 1)st order differences given by a sum over subsets vanishes:

∑

S⊂2{e1,...,en+1}

(−1)|S|f(Gr S) = 0 (4)

The chromatic polynomial of a finite graph, PG(λ), has degree = V , the number
of vertices, and satisfies the “contraction-deletion” recursion relation:

PG(λ)− PGre(λ) = −PG/e(λ), (5)
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where Gr e is G with e deleted, and G/e is G with e contracted. Let PG be the
polynomial with “reversed” coefficients, PG = λV PG(λ

−1). The recursion relation
on P becomes:

PG(λ)− PGre(λ) = −λPG/e(λ). (6)

Line (6) implies the constant term of P (λ) applied to an elementary difference
(l.h.s. (6)) is zero. Inductively it is easy to see that the coefficient of a degree = n
term of P will vanish any formal differences of order = n + 1. Comparing with
line (4) we have:

Observation 1: The coefficient of degree n in P is a type = n invariant w.r.t.
deletion of finite graphs.

Example 2: Dual to the chromatic polynomial is the flow polynomial FG(θ).
It has degree = E, the number of edges of G, and satisfies the recursion relation

FG(θ)− FG/e(θ) = −FGre(θ) (7)

Let FG(θ) = θEFG(θ
−1) so that

FG(θ)− FG/e(θ) = −θFGre(θ) (8)

Now if we define the ordered pair (G,G/e) to be the elementary difference,
then we obtain a dual notion finite-type graph invariant and have the:

Observation 2: The coefficient of degree n in F is a type = n invariant (w.r.t.
contraction) of finite graphs.

A general principle seems to be that if the associated graded objects to the
finite type invariants (dual cord diagrams in Vassiliev’s theory) span a finite-
dimensional space, then calculating finite-type invariants should be polynomial
time in the complexity of the instance (eg., link, graph, etc., . . . ). (Compare with
[BN2].)

In the case of graphs, for either of the two preceding notions of elementary
difference, the graded object at level n is only 1-dimensional, being spanned by
the general “n-singular” graph. In the two cases, the general n-singular graph is a

formal signed difference
∑

S⊂G0

(−1)|S|(GrG0) or
∑

S⊂G0

(−1)|S|G/components G0 ,

respectively, where G0 ⊂ G is a subgraph of n edges. Thus the only finite-type
invariants are polynomials in the coefficients of P and F respectively.

Observation 3: For type = n invariants, w.r.t. deletion (or contraction), the
time to compute is bounded by O(En).

Proof. Consider deletion; the contraction case is similar. If f is type = n, f
is zero on graphs with k + 1− singular graph edges and therefore constant on
k-singular graphs with isomorphic singular sets. Given, as in the Vassiliev theory,
a system of “integration” constants, it takes no more than E steps to evaluate the
function f on graphs once f is known on 1-singular graphs. Each of these steps
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requires at most E preliminary steps to integrate a function on 2-singular graphs
to obtain the evaluation of f on 1-singular graphs. Proceeding in this way, the
result follows by induction.

For the chromatic polynomial, there is a subgraph sum formula for the coef-
ficients, which gives the same growth in complexity we just obtained. It is also
known that the linear coefficient of P is #P hard to compute. I presume the same
is true for the flow polynomial. It is intriguing that there is a general approach to
filtering #P -hard information by polytime “approximations” of increasing degree.
The art to finding useful approximations, less trivial than the two examples pre-
sented here, seems to be in choosing the “elementary differences”. The situation
is parallel to the Witten-Chern-Simon theory where there is a #P -hard nonper-
turbative l.h.s. and an asymptotic expansion on the r.h.s. where the individual
coefficients are finite type, and therefore polynomial time invariants.

From group theory we give a final example of an unoriented difference moti-
vated by the formal structure of Wertinger presentations.

Example 3: An elementary difference (G,G′) is defined to be an unordered
pair of groups where G and G′ admit presentations which agree except for a single
relation in which the literals (generators and generator inverses) read backwards in
G′ as compared to G. The consequence of the difference being unordered is that
all finite type invariants defined from it are ambiguous up to sign. I have not yet
made any investigation of this algebraic version of the “crossing change” in link
theory.

§3. The physics of computational models.

We should generally be interested in physical systems–even rather hypothetical
ones—whose preparation may specify an instance of a problem and whose mea-
surement can be (quickly) deconvolved to give the answer to that instance. A
standard pitfall is to expect to make measurements to too great an accuracy, or at
too low a temperature, or in some similar way to disregard the presence of some
exponentially growing difficulty. At a fundamental level, any device is “analog”.
The distinction between analog and digital can be expressed as whether the coarse
graining occurs later (analog) or earlier (digital). The success of digital over ana-
log in the first 50 years of computers can be explained by realizing that the usual
analog representations of a number, e.g., as a voltage, amounts to storing the
number in unary and therefore exponentially less efficient than binary notation.
On the other hand, it has been known for some time, that physically measurable
quantities of some idealized systems are #P -hard to compute. This makes one
wonder if it is not worth the price of working in analog long enough to allow nature
to make a truly difficult computation, rather than simply executing a gate, before
measuring.

The Ising model for vertex spins on a graph with edge interactions has, in

the ferromagnetic case, a Hamiltonian H = −
∑

edges eij

σiσj , σi ∈ {−1, 1}. The

partition function Z(β) =
∑

spin states σ

e−βH(σ) , β = 1
kT , when written in a high-
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temperature expansion, becomes:

Z = eβ|E|P
(

(e2)−β
)

where (9)

P (x) is the generating function

|E|
∑

k=0

bkx
k with bk = # (bipartite subgraphs of

k-edges). (See, e.g., [JS].)
For the purposes of this article let us pretend that Z(β) is a measurable

quantity. To be more realistic one might consider specific heat = ∂2 logZ
∂β2 , or

some correlation function such as

(

∑

σ

σiσje
−βH(σ)

)/

Z(β), but to illustrate

our point we take the partition function as our measurable quantity, since the tie
in to the graph theory is most convenient. The following analysis owes much to
conversations with Christian Borgs and Jennifer Chayes.

Using the standard methods, the coefficients bk take time ≤ O(Ek) to com-
pute, so the low coefficients are easy; and it is further known [JS] that the highest
non-zero bk is #P -hard. Our goal in building a “statistical mechanical computer”
would therefore be to input a graph G and then tease out the leading coefficient
bmax from measurements of Z(β) at various temperatures. The problem is essen-
tially to recover the coefficients of a polynomial from measurements of its values
at {e−2βi} for some collection of positive values of temperature T . This is done
by inverting the linear system (e−2jβi). Since the coefficients are a priori integers,
only some threshold accuracy is needed for an exact determination. Unfortunately
numerical instabilities are encountered in the inversion. The essential point is that
to determine the leading coefficient of a polynomial P , most information is gained
by evaluating P at a large number (so that the low-order contribution is neg-
ligible). Unfortunately the physical requirement that temperatures be positive
restricts βi > 0 and therefore 0 < e−2βi < 1; this forces P to be evaluated only at
small values.

One way out of this numerical problem is to study an anti-ferromagnet on

graphs with Hamiltonian H =
∑

edges

σiσj ; this allows P to be sampled in the range

1 < x < ∞ where very low (positive) temperatures will be most revealing of
bmax. This resolves the numerical instability but ushers in a different problem:
An antiferromagnet is a highly frustrated system and only approaches its Gibbs
measure with exponential slowness: time to equilibrium ≈ O(e

1
kT ) as temperature

approaches zero. So the “antiferromagnet computer” would take exponentially
long to be initialized to the graph G whose Gmax it was computing. Essentially,
the antiferromagnet is not qualitatively more efficient at finding its equilibrium
than the presently available numerical algorithm, the Metropolis method (see page
124 [We]), and might in fact be rather close to a highly parallel implementation
of that algorithm.

The joint failure of the ferro- and anti-ferromagnet to lead (even in principle)
to an analog computer for #P problems, suggests a generic weakness of classical
statistical mechanical systems for computation. They sample states sequentially
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in time and hence have limited information-processing capacity. While a classical
system, such as an Ising magnet, explores its state space sequentially in time,
quantum mechanics offers another possibility.

The Feynman path integral computes the evolution operator as a coherent
superposition of (infinitely many) states. The resulting evolution incorporates a
vast amount of information very quickly; to be useful for computing, this evolution
must be guided to answer discrete combinatorial problems. The discrete character
of topological quantum field theories and their interpretation in terms of the #P -
hard Jones polynomial make these an attractive candidate for a new computational
model [F1]. In the physics literature the Abelian Chern-Simons functional occurs
in the Lagrangian for certain nonclassical surface layer conductivities governed by
the integral quantum Hall effect [Ko]. The Abelian CS functional is known to
compute linking number [S].

The SU(2)-Chern-Simons functional appears to enter into solid state physics
via the fractional quantum Hall effect, a phenomenon of “quasi-particle” conduc-
tivity [Wi], [TL]. More abstractly, the TQFT with that functional as Lagrangian
is known to compute #P -hard values of the Jones polynomial [W].

Here is a notional sketch of how SU(2)-Chern-Simons theory might be im-
plemented as a general computational model. A logical problem X, such as sat-
isfiability of a Boolean formula, would be coded as a link L = code(X). (See [J]
and [JVW] for one way in which this may be done). The link would be described
as a braid and implemented in a (2 + 1)-dimensional space time by forcing the
motion of charge defects, i.e., “quasi particles”, in a very cold surface layer of
silicon. This is the preparation or “input” phase. If SU(2)-Witten-Chern-Simons
is really physically important in this situation, one should expect some detectable
“observable” consequence of the particular input braid, containing information on
its Jones polynomial, as “output”. A key point is whether the observable is a
real number, e.g., a measured conductivity, in which case it is the analog version
of a number expressed in unary. In contrast, if the observable can itself be some
configuration or state of an ancillary collection of quasi-particles, then this is the
analog version of a binary number, with addressable information, and much more
efficient.

The choice of the translation to links raises a topological issue. For a link
L of n crossings, an elementary estimate from the skein relations is that if c is a
coefficient of the Jones polynomial VL, then |c| < (2

√
2)n. Very crude statistical

considerations—thinking of the coefficient as the result of a random walk as the
contributions of various signs accumulate—suggest typically |c| < (2

√
2)n/2. On

the other hand, in many cases these are overestimates, for torus links |c| = 0 or 1. If
the observables, say VL(e

2πi/p), must be read in “unary”, it may be essential, given
limited accuracy, to have the ensemble of links, image(code), more like the torus
links than the generic link. Is it possible to encode the general Boolean formula
into links in such a way that (1) from the evaluation of Vcode(X), sat(X) may be
quickly determined, and (2) so that |c| ≤ poly(length X) for the coefficients c of
Vcode(X)? Here is a separate question, but with the same motivation: Are there
TQFTs which yield information about V(p)L, the Jones polynomial ∈ Zp[C] with
coefficients reduced modulo a prime p? Positive answers to either question would
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ease the problem of identifying VL from observations of limited accuracy, and allow
a Chern-Simons theory even with an essentially unary output, to form the basis
of a powerful, if still theoretical, model of computation.

Computer science is driving an interaction between logic, physics, and mathe-
matics, which will explore the ability of the physical world to process information.
I have tried to convey the excitement and scope of this endeavor and to point to
paths that mathematicians, particularly topologists, might penetrate.
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