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The Geometry of the Seiberg-Witten Invariants

Clifford Henry Taubes

My purpose in this talk is to describe a curious story about a search for symplectic
forms on smooth, compact, 4-dimensional manifolds. However, be aware that at
the time of this writing, the story that I relate below has no conclusion.

1 The start of the story

The story starts with the Seiberg-Witten invariants which were introduced just un-
der four years ago by Witten [W1]. These are invariants of compact, smooth, orien-
ted 4-manifolds. (Here, and below, all 4-manifolds will be connected and oriented.)
After the choice of orientation for the real line det+ = H0 ⊗ det(H1)⊗ det(H2+),
the Seiberg-Witten invariants constitute a map from the set, S, of SpinC structures
on the 4-manifold to the integers. There is also an extension of SW in the case
where the Betti number b1 is positive to a map SW: S → Λ∗H1(X;Z). (Here and
below, Λ∗H1(X;Z) = Z⊕H1 ⊕ Λ2H1 ⊕ · · · ⊕ Λb1H1. Note that the projection of
the image of SW on the summand Z reproduces the original map as defined from S
to Z in [W1].) In either guise, this map, SW, is computed by an algebraic count of
solutions to a certain non-linear system of differential equations on the manifold.
The equation in question is for a pair of unknowns which consist of a section of a
certain C2 bundle and a connection on this same bundle’s determinant line.

The invariant SW and the Seiberg-Witten equations were introduced to the
mathematical community by Witten [W1] after his ground breaking work with
Seiberg in [SW1], [SW2]. See also [KM], [Mor], [KKM] and [T1]. Few would argue
against the assertion that the Seiberg-Witten equations have revolutionized 4-
manifold differential topology.

The Seiberg-Witten invariants have proved so useful for questions about com-
pact 4-manifolds because they are at least as powerful as the Donaldson invariants
(see, e.g. [DK]) and so much easier to compute. In this regard, note that Witten
has conjectured that the two sets of invariants carry the same information about
compact 4-manifolds. But, it remains to be seen whether they are equivalent in
this context, let alone for their other uses. (An argument for Witten’s conjecture
is outlined in [PT] and a series of papers by Feehan and Leness begin to address
the technical details. See, e.g. [FL].)

However, neither the Seiberg-Witten invariants relation with the Donaldson
invariants nor their computability is the subject of this story. Rather, the story I
am relating concerns another property of the Seiberg-Witten invariants which is
the following: These invariants seem to have a direct, geometric interpretation as an
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algebraic count of certain distinguished submanifolds with boundary in the given
4-manifold. Moreover, this geometric interpretation suggests a novel approach to
the existence question for symplectic forms. Here, I have used the verbs ’seem’ and
’suggests’ because, as I said at the outset, the story is not finished. In particular,
the geometric interpretation is not yet completely worked out except in some
special cases. One of these cases consists of symplectic manifolds, and as symplectic
notions are anyway central to this story, they form the subject of the next three
chapters.

2 Symplectic manifolds

A 4-dimensional manifold X is symplectic when it carries a closed, non-degenerate
2-form. That is, there is a 2-form ω with dω = 0 and with ω ∧ ω 6= 0 at all points.
In this regard, the convention will be to orient the manifold in question with
ω ∧ ω. Now, not all 4-manifolds can be symplectic. First of all, the Betti number
b2+, which is the dimension of the maximum subspace of H2(X;Q) on which the
intersection pairing is positive definite, must be positive since ω ∧ ω is positive.
Also, there is a classical, mod 2 obstruction which asserts that an oriented X has
a symplectic form which reproduces the given orientation only if the Betti number
sum b1 + b2+ is odd. For example, this condition rules out the connect sum of an
even number of CP2.

The Seiberg-Witten invariants give additional obstructions [T2], [T3]. For
example, there must be a SpinC structure for which the associated Seiberg-Witten
invariant is ±1. The latter rules out the connect sum of an odd number larger than
1 of CP2.

By the way, it was innocently conjectured that an irreducible, simply connec-
ted 4-manifold was always symplectic with some choice of orientation. However,
Szabo proved this conjecture false [Sz] and subsequently, Fintushel and Stern (who
are speaking in this Congress) found a slew of counter examples as homotopy K3
surfaces [FS]. In both cases, the Seiberg-Witten invariants play a prominent role.

Anyhow, it is important to realize that, at the time of this writing, necessary
and sufficient conditions for the existence of a symplectic form are not known.

(Although not relevant for this story, the reader might be interested to know
that the problem of classifying symplectic manifolds up to diffeomorphism is un-
solved except in some special cases where b2+ = 1. However, Donaldson has made
progress recently towards a classification theory for symplectic 4-manifolds up to
deformation of the symplectic form and symplectomorphisms.)

3 The Seiberg-Witten invariants on a symplectic manifold

As remarked in [T1], a symplectic manifold has a natural orientation as does
the line det+. Furthermore, there is a canonical identification of the set S with
H2(X;Z). Thus, on a symplectic 4-manifold, SW can be viewed as a map from
H2(X;Z) to Z, or, more generally, from H2(X;Z) to Λ∗H1(X;Z).

Meanwhile, a compact symplectic 4-manifold has a second natural map sen-
ding H2(X;Z) to Z, its Gromov invariant, Gr. The map Gr also extends on a
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b1 > 0 symplectic 4-manifold to a map from H2(X;Z) into Λ∗H1(X;Z); the ex-
tension is sometimes called the Gromov-Witten invariant, but it will be denoted
here by Gr as well. In either guise, Gr, assigns to a class e a certain weighted
count of compact, symplectic submanifolds whose fundamental class is Poincare
dual to e. In this regard, a submanifold is symplectic when the restriction of the
symplectic form to its tangent space is non-degenerate. (More is said about the
count for Gr in the next chapter.)

The Gromov invariant was introduced initially by Gromov in [Gr] and then
generalized by Witten [W2] and Ruan [Ru]. See also [T4]. (Note that Gr here does
not count maps from a fixed complex curve. It differs in this fundamental sense
from the Gromov-Witten invariant introduced in [W2].) The precise definition of
Gr is provided in [T4]. Here is the main theorem which relates SW to Gr:

Theorem 1: Let X be a compact, symplectic manifold with b2+ > 1. Use
the symplectic structure to orient X and the line det+; and use the symplectic
structure to define SW as a map from H2(X;Z) to Λ∗H1(X;Z). In addition, use
the symplectic structure to define Gr: H2(X;Z) . Λ∗H1(X;Z). Then SW = Gr.

Thus, according to Theorem 1, on a symplectic manifold with b2+ > 1, the
smooth invariants of Seiberg-Witten can be interpreted geometrically as a certain
count of symplectic submanifolds.

Theorem 1 is proved in [T5]. The equivalence between the Gromov invariant
and the original SW map into Z was announced by the author in [T1]. The proof of
Theorem 1 can be divided into three main parts. The first part explains how a non-
zero Seiberg-Witten invariant implies the existence of symplectic submanifolds.
The second part explains how a symplectic submanifold can be used to construct
a solution to a version of the Seiberg-Witten equations. The final part compares
the counting procedures for the two invariants. The first and second parts of the
proof can be found in [T6] and [T7], respectively and the final part (together with
an overview of the whole strategy) is in [T5]. (Some of the early applications of
Theorem 1 are also described in [Ko].)

A restricted version of Theorem 1 holds in the case when b2+ = 1. Here, a
fundamental complication is that the Seiberg-Witten invariant depends on more
than the differentiable structure. This is to say that there is a dependence on a
so called choice of chamber. However, the symplectic form selects out a unique
chamber, and with this understood, one has:

Theorem 2: Let X be a compact, oriented 4-manifold with b2+ = 1 and with a
symplectic form. Then the symplectic form canonically defines a chamber in which
the equivalence SW = Gr holds for classes e ∈ H2(X;Z) which obey 〈e, s〉 ≥ −1
when ever the two dimensional homology class s ∈ H2(X : Z) is represented by an
embedded, symplectic sphere with self-intersection number -1.

(Here, 〈, 〉 denotes the pairing between cohomology and homology.) Theorem
2 is also proved in [T5].

By the way, when X is a b2+ = 1 symplectic manifold and e in H2(X;Z) is a
class for which the conditions of Theorem 2 do not hold, the Seiberg-Witten inva-
riant SW(e) still counts pseudo-holomorphic subspaces [LL]. However, the Gromov
invariant as defined in [T4] is not the correct symplectic invariant for such e since
the subspaces involved can have singularities. The symplectic invariant in this case
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is given by McDuff in [Mc1] (An overview of Seiberg-Witten story on symplectic
manifolds is also provided in [T8].)

4 Pseudo-holomorphic subvarieties

When calculating Gr, one should follow Gromov [Gr] and introduce an auxilliary
structure on X which consists of an almost complex structure J for TX. By defini-
tion, the latter is an endomorphism J : TX → TX which obeys J2 = −1. Such J’s
exist precisely when the Betti number sum b1 + b2+ is odd. Moreover, given the
symplectic form ω, there exists such J which are compatible with ω in the sense
that the bilinear form ω(·, J(·)) on TX defines a Riemannian metric. (Moreover,
Gromov showed that the space of ω-compatible J’s is contractible.)

With an almost complex structure J chosen, certain dimension 2 submanifolds
are distinguished, namely those for which J preserves their tangent space in TX.
Such submanifolds are called pseudo-holomorphic. Note that if C ⊂ X is a pseudo-
holomorphic submanifold, then J orients TC and thus the homology class of C is
canonically defined. Moreover, if J is ω-compatible, then ω restricts positively to
C and so C is symplectic. Also, the homology class of C is never (rationally) zero
when C is pseudo-holomorpic. (Note that the restriction to TC of J endows C with
the structure of a complex curve, in which case the inclusion map from C to X is
a pseudo-holomorphic map in the original sense defined by Gromov.)

The set of pseudo-holomorphic submanifolds form a geometrically distinguis-
hed subset of symplectic submanifolds. This subset is well behaved in as much as
the deformation theory for a pseudo-holomorphic submanifold is highly constrai-
ned. Indeed, the latter is a Fredholm deformation problem. (Among other things,
this last assertion implies that the space of pseudo-holomorphic submanifolds in a
given homology class has the structure of a finite dimensional variety.) By the way,
there is an important converse to the preceding, which is that every symplectic
submanifold is pseudo-holomorphic for some ω-compatible J. (A good, general re-
ference about pseudo-holomorphic geometry is the book by McDuff and Salamon
[MS].)

With the pseudo-holomorphic submanifolds understood, the first point of this
chapter is simply to remark that the invariant Gr ’counts’ symplectic submanifolds
in a given homology class by actually counting the pseudo-holomorphic representa-
tives with certain weights. Except for tori with zero self-intersection, these weights
are ±1. The weights for the excepted tori are more involved. Note also that Gr
counts disconnected submanifolds. In any event, see [T4] for the full story. By the
way, one consequence of Theorems 1 and 2 is an existence theorem for pseudo-
holomorphic curves in certain homology classes [T6].

The second point of this chapter is to offer, for use in the subsequent chap-
ters, a reasonable definition of pseudo-holomorphic submanifolds and pseudo-
holomorphic varieties inside a non-compact symplectic manifold. Consider:

Definition 3: Let X be a smooth, 4-manifold with symplectic form ω. A
subset C ⊂ X is a pseudo-holomorphic variety when the following conditions are
met:
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• C is closed.

• There is a set Λ ⊂ C with at most countably many elements and no accu-
mulation points in X such that C − Λ is a submanifold of X.

• J maps TC|C−Λ to itself in TX.

•
∫
c
ω < ∞.

In previous articles, I have sometimes distinguished amongst those C ⊂ X
which satisfy the first three conditions above, but not the final condition. When
C also satisfies the final condition, one can say that TC has ’finite energy’.

Note that the singularities of a pseudo-holomorphic variety (the points of Λ)
are essentially those of complex curves in C2. (See, e.g. [Mc2], [PW], [Ye], [Pa],
[MS].)

5 When no symplectic form is handy

Suppose now that X is a compact, oriented 4-manifold which has no known
symplectic form. Here is a suggestion for the next best thing: Put a Rieman-
nian metric on X. Among other things, the latter defines a decomposition of
the bundle of 2-forms into a direct sum of two three dimensional bundles,
Λ+ ⊕ Λ−. These are the bundles of self-dual and anti-self-dual 2-forms. (Fix
an oriented orthonormal frame {ei}1≤i≤4 for T ∗X at a given point, and then
Λ+ = Span {e1 ∧ e2 + e3 ∧ e4, e2 ∧ e3 + e1 ∧ e4, e3 ∧ e1 + e2 ∧ e4}.) More to
the point, when b2+ ≥ 1, then Hodge-DeRham theory provides a self-dual, closed
form ω. That is, ω is a section of Λ+ and dω = 0. In particular, this implies that
ω ∧ ω = |ω|2 dvol and so ω is symplectic where non-zero.

As this story is about the search for symplectic forms, the preceding suggests
an investigation into the zero set of a closed self-dual form. For this purpose, let
ω be such a form. In as much as ω is a section of an R3 bundle, one might expect
the zero set to be 1-dimensional in some generic sense. This turns out to be the
case. Both Honda [Ho] and LeBrun [Le] offer proofs of the following:

Theorem 4: Fix a compact, oriented 4-manifold X with b2+ ≥ 1. If the metric
on X is suitably generic (chosen from a Baire subset of smooth metrics), then there
is a closed, self-dual 2-form ω which vanishes transversally as a section of Λ+. In
particular, the zero set of w is a finite, disjoint union of embedded circles.

With the preceding understood, assume from here on that each given closed,
self-dual 2-form vanishes as a transversal section of Λ+.

Work of Carl Luttinger [Lu] demonstrates that, by themselves, the zero circles
of any given closed, self-dual ω carry very little in the way of information about
the obstruction to finding a symplectic form. In fact, Luttinger shows that there
are closed forms which are self-dual for some metric and have arbitrarily many
zero set components. Conversely, Luttinger showed how to modify any given ω so
that the result is closed and self-dual for some metric, yet has only one component
of its zero set. (In both cases, Luttinger’s arguments are essentially local in nature.
One constructs explicit models in R4 of 1-parameter families of closed, self-dual
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forms for which the topology of the zero set changes either by birth or death of an
isolated circle, or by two components melding to one or one component splitting
into two. One can then argue using appropriate coordinate charts that these local
models can be ’spliced’ into any manifold.)

Note however, that the zero circles of ω do carry one small bit of obstruction
data. Indeed, Gompf [Go] has shown how data near the zero circle can be used to
compute the parity of b1 + b2+. In this regard, it is important to realize that in
some neighborhood of a point where ω is zero, there are coordinates (t, x) ∈ R×R3

so that x = 0 corresponds to ω−1(0) and so that

ω = dt ∧ (xT )A · dx + ∗3(xTA · dx) +O(|x|2).(1)

Here, xT denotes the transpose of the vector x, while A = A(t) is a 3 × 3
symmetric (non-degenerate) matrix. Also, ∗3 denotes the standard Hodge star
operator on R3. Note that the condition dω = 0 requires that A be both symmetric
and traceless.

By changing the sign of the t coordinate, one can then assume that det(A) < 0.
That is, A has one negative eigenvector at each t and two positive eigenvectors.
In particular, as one moves around any given component of ω−1(0), the negative
eigenspaces of A fit together to yield a line bundle over the circle. The latter can
be either oriented or not, and Gompf’s observation is that the parity of b1 + b2+

is the opposite of the parity of the number of components of ω−1(0) for which the
aforementioned negative eigenbundle is oriented. (Note: There is no misprint here
with the use of ’oriented’.)

6 Pseudo-holomorphic subvarieties in X - Z.

As just seen, ω−1(0) carries by itself little information about the existence of
symplectic forms on X. However, this is not to say that ω−1(0) is completely
irrelevant to the story. Indeed, at least some non-trivial data seems to be stored as
configurations of certain kinds of symplectic surfaces in X− ω−1(0) which bound
ω−1(0). A digression is required to be more precise in this regard.

To start the digression, introduce as short hand Z ≡ ω−1(0). By definition, ω
restricts to X - Z as a symplectic form. Moreover, if g : TX → T ∗X denotes the
given metric, then the endomorphism J =

√
2g−1ω/|ω| defines an ω-compatible

almost complex structure for X - Z. Note that the latter is singular along Z. Indeed,
when ω vanishes transversely, then the first Chern class of the associated canonical
bundle has degree 2 on all linking 2-spheres of Z. Even so, one can use J to define
pseudo-holomorphic subvarieties in X - Z. The pseudo-holomorphic subvarieties in
X - Z might be curiosities were it not for the following theorem [T9]:

Theorem 5: Suppose that X is a compact, oriented, Riemannian manifold
with b2+ ≥ 1 and a non-zero Seiberg-Witten invariant. Let ω be a closed, self-
dual 2-form whose zero set, Z, is cut out transversally by ω. Then, there exists
a pseudo-holomorphic subvariety in X − Z which homologically bounds Z in the
sense that it has intersection number 1 with every linking 2-sphere of Z.
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In the preceding, when b2+ = 1, the Seiberg-Witten invariants in the state-
ment of the theorem are from a certain chamber which is specified by ω. By the
way, the statement of the previous theorem can be strengthened in the following
direction: Given a specific SpinC structure on X with non-zero Seiberg-Witten
invariant, there exists a pseudo-holomorphic subvariety in X - Z with homologi-
cal boundary Z whose relative homology class in X - Z can be foretold in terms
of the given SpinC structure. Note that Theorem 5 suggests the following likely
conjecture:

• The Seiberg-Witten invariants of X can be computed via a specific algebraic
count of the pseudo-holomorphic subvarieties in X - Z which bound Z.

Theorem 1 affirms this conjecture in the case where Z = ∅. Moreover, through
work of Hutchings and Lee [HL] and Turaev [Tu], this conjecture has been con-
firmed also in the case where Z = S1 × M where M is a compact, oriented 3-
manifold with b1 > 0. (This last case is discussed further in a subsequent chapter.)

Remark that the pseudo-holomorphic subvarieties which arise in the context
of Theorem 4 have a well defined Fredholm deformation theory; and this last fact
supplies further evidence for the validity of the preceding conjecture.

7 A regularity theorem

Since the almost complex structure J in Theorem 5 is singular along Z, the beha-
vior near Z of a pseudo-holomorphic variety in X - Z is problematic. (As remarked
previously, away from Z, such a variety is no more singular than a complex sub-
variety of C2.) Indeed, as ω near Z vanishes as the distance to Z, it is not apriori
clear that such varieties have finite area. However, it turns out that the fourth con-
dition in Definition 3 is stronger than it looks, and in particular, some (partial)
regularity results can be proved, at least under some restrictive hypothesis about
the form of ω near its zero set. The results are summarized in Theorem 6, below.
However, first comes a digression to explain the restrictions. The restriction on ω
is as follows: Near each point in Z, there should exist coordinates (t, x, y, z) such
that Z coincides with the set x = y = z = 0 and such that in this coordinate patch,

ω = dt ∧ (xdx + ydy − 2zdz) + xdy ∧ dz + ydz ∧ dx− 2zdx ∧ dy,

g = dt2 + dx2 + dy2 + dz2.(2)

Note that this is a rather special version of the general form for ω which is
given by Eq.(1). However, on any b2+ > 0 manifold, there are metrics and self-
dual forms which satisfy these restrictions. In fact, given any metric and closed
self-dual form ω with non-degenerate zeros, both can be modified solely in a given
neighborhood of ω−1(0) so that the resulting form is closed and self-dual for the
resulting metric and has the same zero set as the original and obeys the restrictions
in Eq.(2). The following summarizes what is presently known about regularity near
Z:
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Theorem 6: Let X be a smooth, compact, oriented, Riemannian 4-manifold
and let ω be a closed, self-dual form which is described near Z by Eq.(2). Let C ⊂ X
be a pseudo-holomorphic subvariety. Then, C has finite area. Moreover, except for
possibly a finite subset of points on Z, every point on Z has a ball neighborhood
which intersects C in a finite number of components. And, the closure of each
component in such a ball neighborhood is a real analytically embedded half disk
whose straight edge coincides with Z.

(Note that the behavior of C near each of the singular points can also be
described.) Theorem 6 is proved in [T10]. I expect that a very similar theorem
holds without the special restriction in Eq.(2). Moreover, I expect that the finite
number of singular points are ’removable by perturbation’ in the sense that these
singularities are, in some well defined sense, codimension one phenomena. (Ho-
fer, Wysocki and Zehnder have an alternative approach to studying X - Z as a
symplectic manifold. See, e.g. [HWZ].)

8 An illustrative example

An example with much food for thought has X = S1 ×M where M is a compact,
oriented, 3-manifold with b1 > 0. The set of M for which the corresponding X
is symplectic remains (as of this writing) mysterious. However, it is known that
X is symplectic when M admits a fibering f : M → S1, and for all we know at
present, these are the only 3-manifolds for which S1×M is symplectic. (The latest
results on this question are due to Kronheimer [Kr].) In any event, X = S1 ×M
does have closed, self-dual 2-forms. For example, if one uses a product metric on X
(the Euclidean metric on S1 = R/Z plus a metric on M), then all closed, self-dual
2-forms have the form ω = dt ∧ ν + ∗3ν, where ν is a harmonic 1-form on M and
where ∗3 is the Hodge star operator on Λ∗M . In particular, one can find harmonic
1-forms which equal df where f : M → R/Z is a non-zero cohomology class. This
last case is instructive in as much as one can see that Z = ω−1(0) is given by
Z = S1 × Crit(f), where Crit(f) is the set of critical points of f . Moreover, for a
suitably generic choice of metric on M, the R/Z-valued function f will have only
non-degenerate critical points (see, e.g. [Ho]), and in this case, the corresponding
ω will have a transversal zero set in the sense of Theorem 4.

In this last example, subsets of X given by S1× (gradient flow lines of ∇f)
are pseudo-holomorphic submanifolds. In fact, when the metric on M is suitably
generic, then the pseudo-holomorphic submanifolds promised by Theorem 5 have
the form S1 × Γ where Γ is a finite union of gradient flow lines of ∇f having
the following properties: First, each flow line γ ∈ Γ is complete and has bounded
length. Second, each critical point of f is an end point of one and only one flow
line in Γ. (By the way, Hutchings and Lee [HL] have found an intrinsic count of
such Γ which computes a certain Alexander polynomial of the associated Z-cover
of M. Meanwhile Meng and the author [MT] have a theorem to the effect that
such Alexander polynomials essentially determine the Seiberg-Witten invariants
of X. See also [Tu].) One lesson from the preceding example is the following: In
the S1 invariant context on X = S1 × M , self-dual, symplectic geometry on X
is nothing more than Morse theory with R/Z valued functions on M. This is to
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say that the problem of eliminating component circles of the zero set of an S1

invariant, closed, self-dual 2-form on X is that of eliminating the critical points of
a harmonic function on M.

9 A dictionary?

The previous example suggests that there may exist a dictionary which translates
Morse theoretic notions in 3-manifold topology to notions which involve closed,
self-dual 2-forms on 4-manifolds and their associated pseudo-holomorphic varieties.
(Below, I call the second subject ’self-dual symplectic geometry’.) Some of the
dictionary has already been established, and some is conjectural. This dictionary
is reproduced below. In the dictionary, M is a 3-dimensional Riemannian manifold
with b1 > 0 and X is a 4-dimensional Riemannian manifold with b2+ > 0.

Morse Theory on M Self-dual symplectic geometry

on X

Critical points of an R/Z-valued
harmonic function f

The zero set Z of the closed, self-dual
2- form ω.

Gradient flow lines of ∇f Pseudo-holomorphic varieties in X -
Z with boundary on Z.

Milnor torsion/Alexander polynomial Seiberg-Witten invariants.
Whitney disk Lagrangian disk with a boundary

piece on a pseudo-holomorphic
subvariety.

Self-indexing Morse function ?
Handle sliding ?
Morse-Smale cancellation lemma ?

Here are some comments about the preceding table:

• The appearance of Lagrangian disks as the analog to Whitney disks in 3-
dimensional Morse theory is closely related to observations of Donaldson
about the appearance of Lagrangian 2-spheres in his study of symplectic
Lefschetz pencils. In any event, the point here is that a symplectic subma-
nifold can be symplectically deformed via ’finger moves’ along Lagrangian
disks which have a part of their boundary on the submanifold in question.

• The Morse-Smale cancellation lemma asserts that a pair of critical points of
f can be cancelled (without introducing new critical points or disturbing the
configuration of gradient flow lines) if there is a unique, stable minimal energy
gradient flow line between them. (The energy of a flow line is simply the drop
in f between the start and the finish. A flow line is stable if it persists under
perturbation of the gradient flow or the function f .) On the 4-dimensional
side, the analogous lemma might be something like the following: Let Z0 be
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a component of Z. If the smallest energy, pseudo-holomorphic variety in X
- Z with Z0 as a boundary component is suitably stable, is unique and is a
disk, then the form ω can be altered to produce a new closed form which
is self-dual for some metric on X, has zero set with fewer components, and
has a less complicated set of bounding, pseudo-holomorphic varieties. Note
that the local ’melding’ procedure of Luttinger which joins all components
of Z into one circle appears to increase the genus of the bounding pseudo-
holomorphic varieties unless suitable Lagrangian disks are present.

• In fact, there is a self-dual symplectic analog of handle sliding, but the details
are still somewhat obscure (to the author, anyway).

10 Summary

The following two as yet unanswered questions aim at the heart of the matter:

• How much is self-dual symplectic geometry like 3-dimensional Morse theory?

• More to the point, can self-dual symplectic geometry shed any light on 4-
manifold differential topology?
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