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1. Introduction

Simple Lie superalgebras were classified in 1977 by V. Kac [6]. These superalgebras
can be divided into three groups

1. Contragredient Lie superalgebras, i.e. Lie superalgebras which can be deter-
mined by a Cartan matrix. These superalgebras have an invariant symmetric
form and Cartan involution. There are two families of such algebras sl (m|n)
(factored by the center when m = n) and osp (m|2n). The Lie superalgebra
osp (4|2) has a one-parameter deformation, called D (α). There are also two
exceptional Lie superalgebras G3 and F4.

2. New “strange” superalgebras Q (n) and P (n), the former consists of opera-
tors commuting with an odd nondegenerate operator, the latter consists of
operators preserving a non-degenerate odd symmetric form.

3. Cartan type superalgebras Wn, Sn, S
′
n and SHn, i.e. superalgebra of vector

fields on a supermanifold of pure odd dimension and its simple subalgebras.

In [7] it was shown that all finite-dimensional irreducible representations of a
simple Lie superalgebra g are enumerated by a highest weight λ ∈ h∗, satisfying
certain conditions of dominance, h being a Cartan subalgebra.

The problem of finding the character of an irreducible highest weight module
Lλ for a general dominant λ appeared to be unexpectedly difficult. It was solved
first for Lie superalgebras Wn and Sn of Cartan type by J. Bernstein and D. Leites
in [1] and for SHn by A. Shapovalov [20]. They considered a module Mλ of tensor
fields on a supermanifold of purely odd dimension and described completely its
Jordan–Hölder series. Since chMλ and the multiplicity [Mλ : Lµ] are known, one
can obtain chLλ by solving a simple system of linear equations.

For contragredient and strange Lie superalgebras the problem was solved in
[7] in the particular case of a generic (typical) highest weight λ. The character is
given by a nice Weyl type formula:

chLλ = D
∑

w∈W

sgnw · ew(λ), D =

∏

α∈∆+
1

(

eα/2 + e−α/2
)

∏

α∈∆+
0

(

eα/2 − e−α/2
) ,(1.1)

where W is the Weyl group of g0.
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This formula can be obtained from the Borel–Weil–Bott theorem for a flag
supermanifold and a typical invertible sheaf Oλ. Geometry of flag supermanifolds
was studied in 1980s by Yu. Manin and his pupils I. Penkov, I. Skornyakov and
A. Voronov. It was shown by Penkov and Skornyakov in [16] that the invertible
sheaf Oλ with a typical dominant weight λ satisfies the Borel–Weil–Bott theorem,
namely H0Oλ = Lλ and HiOλ = 0 for i > 0.

On the other hand, any invertible sheaf Oλ on G/B can be considered as a
sheaf Lλ on the underlying flag manifold G0/B0. Lλ has a filtration by invertible
sheaves Oλ+ν (G0/B0), where ν runs over the set of sums of odd negative roots
∑

αi∈∆−

1
αi. Therefore one can write down the Euler characteristic of Lλ

Eλ =
∑

i

(−1)
i
chHiOλ =

∑

ν

∑

i

(−1)
i
chHi

G0/B0
Oλ+ν ,(1.2)

using additivity of Euler characteristic. It happens to be exactly the Kac character
formula (1.1).

If a highest weight λ is atypical the Borel–Weil–Bott theorem fails. Depending
on the degree of atypicality of λ the g-module structure of HiOλ becomes more
and more complicated. There were several conjectures and partial results about a
character formula for a general dominant weight (see [2, 13, 22, 21, 9, 14, 4]). For
the case g = gl (m|n) two different formulae were conjectured in [17] and in [5].
The first conjecture was proven in [18]. The second one is believed to be equivalent
to the first one.1 For g = Q (n) the problem was solved in [15]. For g = osp (m|2n)
it is solved just recently, we announce the results here.

We use the same method to solve the problem for gl, osp and Q. Namely

we calculate the “Euler-multiplicities” aλ,µ =
∑

(−1)
i
[

Hi
G/BOλ : Lµ

]

(in some

cases we have to use a suitable parabolic subgroup P instead of Borel subgroup
B). Since a lot of numbers aλ,µ vanish, one can find chLλ from the system
∑

µ aλ,µ chLµ = Eλ and (1.2). To calculate the coefficients aλ,µ, we represent B

as the end of a flag of parabolic subgroups G = P (1) ⊃ P (2) ⊃ · · · ⊃ P (n) = B.
Composing push down of sheaves, the coefficients aλ,µ can be expressed in terms

of similar coefficients a
(j)
λ,µ for the supermanifold P (j)/P (j+1).

In fact cohomology of “dominant sheaves” on P (j)/P (j+1) can be completely
described by using a certain analogue of translation and reflection functors. The
space of dominant weights can be stratified by the degree of atypicality. A trans-
lation functor allows us to move inside a stratum (compare Theorem 2.5 ), while a
reflection functor increases the degree of atypicality by one. This together with the
fact that cohomology of irreducible vector bundles on P (j)/P (j+1) are almost semi-
simple P (j)-modules (see Lemma 4.2) helps to write down the crucial recurrence

relations on a
(j)
λ,µ (compare Theorems 4.1 and 4.3 ).

In this paper we outline the schematic of the character formulae for gl and
osp omitting all the details needed for the proof only. We also omit the case of Qn

containing additional complications, since irreducible representations of h are not
1-dimensional.

1Note that in [18] references to [5] and [22] were corrupted.
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Currently the problem of finding irreducible characters remains open for ex-
ceptional Lie superalgebras and P (n). While similar methods should work for
exceptional superalgebras, in the case of P (n) it is unclear how to define transla-
tion and reflection functors: the center of the universal enveloping algebra of P (n)
is too small and central characters do not separate blocks.

2. Dominant weights, central characters and blocks

Throughout this paper g stands for one of the Lie superalgebras gl (m|n),
osp (2m|2n) or osp (2m+ 1|2n). The Lie superalgebra g has a root decomposi-
tion

g = h⊕
⊕

α∈∆

gα.

The roots are called even or odd depending on the parity of the root space gα.
Denote the set of even (correspondingly odd) roots by ∆0 (correspondingly ∆1).
Clearly, ∆ = ∆0 ∪∆1. Many odd roots are isotropic, put ∆is = {α | (α, α) = 0},
where (,) stands for the Killing form.

Describe the set of roots in the standard basis {δ1, . . . , δn, ε1, . . . , εm} of h∗.
Note that (δi, δj) = δi,j , (εi, εj) = −δi,j .

Let g = gl (m|n). Then

∆0 = {εi − εj | i, j = 1, . . . ,m} ∪ {δi − δj | i, j = 1, . . . , n} ,

∆1 = ∆is = {± (εi − δj) | i = 1, . . . ,m, j = 1, . . . , n} .

Let g = osp (2m|2n). Then ∆1 = ∆is is the same as for g = gl (m|n),

∆0 = {εi ± εj | i, j = 1, . . . ,m, i 6= j} ∪ {δi ± δj | i, j = 1, . . . , n} .

Let g = osp (2m+ 1|2n). Then

∆0 = {εi ± εj | i, j = 1, . . . ,m, i 6= j} ∪ {±εi | i = 1, . . . ,m}

∪ {δi ± δj | i, j = 1, . . . , n} ,

∆is = {± (εi − δj) | i = 1, . . . ,m, j = 1, . . . , n} .

∆1 = ∆is ∪ {±δi | i = 1, . . . , n} .

Fix a subdivision ∆ = ∆+∪∆− and a triangular decomposition g = n−⊕h⊕
n+, defined by n± =

⊕

α∈∆± gα. A choice of ∆+ is not unique, here we fix it by
enumerating simple roots in each case.

For g = gl (m|n) choose simple roots σ1 = δ1 − δ2, . . . , σn−1 = δn−1 − δn,
σn = δn − ε1, . . . , σm+n−1 = εm−1 − εm.

For g = osp (2m|2n) choose simple roots σ1 = δ1 − δ2, . . . , σn−1 = δn−1 − δn,
σn = δn − ε1, . . . , σm+n−1 = εm−1 − εm, σm+n = εm−1 + εm.

For g = osp (2m+ 1|2n) choose simple roots σ1 = δ1 − δ2, . . . , σn−1 = δn−1 −
δn, σn = δn − ε1, . . . , σm+n−1 = εm−1 − εm, σm+n = εm.

For an even root α put α∨ = α/ (α, α). We say that λ ∈ h∗ is integral if
(λ, α∨) ∈ Z for any α ∈ ∆0. Denote the set of integral weights by Λ.
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Denote by Lλ an irreducible module generated by highest vector v of weight
λ− ρ, i.e., n+v = 0, hv = 〈λ− ρ, h〉 v for h ∈ h, and

ρ = 1/2
∑

α∈∆+
0

α− 1/2
∑

α∈∆+
1

α.

Call a weight λ ∈ Λ dominant if dimLλ < ∞. Denote the set of dominant
weights by Λ+. The conditions on λ to be dominant were first calculated in [6].
We reproduce them here in our notations.

Proposition 2.1. Let g = gl (m|n), osp (2m|2n) or osp (2m+ 1|2n). Let λ =
a1δ1+ · · ·+anδn+b1ε1+ · · ·+bmεm ∈ Λ. Then λ ∈ Λ+ iff the following conditions

on ai and bj hold:

1. for gl (m|n) : ai − ai+1, bj − bj+1 ∈ Z>0;

2. for osp (2m|2n) : ai, bj ∈ Z, a1 > a2 > · · · > an > −m, b1 > b2 > · · · >
bm−1 > |bm| and for each l ≤ 0, l ≥ an, bm+l = −l;

3. for osp (2m+ 1, 2n), ai ∈ 1/2 + Z, bj ∈ 1/2 + Z or Z, a1 > a2 > · · · >
an ≥ 1/2 − m, b1 > b2 > · · · > bm > 0 and for each l ≤ 0, an ≤ l − 1/2,
bm+l = 1/2− l.

Remark 2.2. For osp type superalgebras one can not choose ∆+ in such a way
that the set of simple roots for ∆+

0 is the subset of simple roots for ∆+. That is
why in this case the conditions on dominance with respect to g0 differ from the
conditions on dominance with respect to g.

Let g = osp (2m|2n) or osp (2m+ 1|2n). By Proposition 2.1 if λ ∈ Λ+ and
ar > 0 ≥ ar+1, one can find odd isotropic roots δr+1 − εi1 , . . . , δn − εis orthogonal
to λ. Call the set of such roots the tail of λ and denote it by Tλ. Call the number
tλ = s = n− r the tail length of λ. For g = gl (m|n) put tλ = 0.

Note also that in the case g = osp (2m|2n) there is a symmetry of Dynkin
diagram which induces an outer automorphism τ such that τ (σm+n−1) = σm+n.
The automorphism τ acts on the set of dominant weights. In what follows we
always assume that bm ≥ 0. If bm < 0 we can obtain all coefficients using the rule
aτ(λ),τ(µ) = aλ,µ, aτ(λ),µ = 0 if τ (µ) < µ, τ (λ) < λ.

Let F = F (g) be the category formed by finite-dimensional g-modules. To
describe the structure of F , consider the center Z (g) of the universal enveloping
algebra U (g). Recall that a central character is a homomorphism χ : Z (g) → C.
We say that a g-module M has a central character χ if for any z ∈ Z (g) , x ∈ M

there is N ∈ Z≥0 such that (z − χ (z) id)
N
· x = 0. Clearly any finite-dimensional

indecomposable g-module has some central character, and any finite-dimensional
g-module decomposes into a direct sum of submodules with central characters.

We use a Harish–Chandra homomorphism HC : Z (g) →֒ Pol (h∗). The con-
struction of this homomorphism is the same as for semi-simple Lie algebras (see
for example [3]). Thus, any λ ∈ h∗ defines a central character χλ by the rule
χλ (z) = HC (z) (λ). Definition of HC immediately implies that an irreducible
module Lλ has a central character χλ. A central character χ is dominant if χ = χλ

at least for one λ ∈ Λ+.
The following statement was first formulated in [8] and proved in [19] and

[12].
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Proposition 2.3. Let λ, µ ∈ Λ, W be the Weyl group of g0. Then χλ = χµ

iff there is a sequence of isotropic roots α1, . . . , αs ∈ ∆is and w ∈ W such that

µ = w (λ+ α1 + · · ·+ αs) and (λ+ α1 + · · ·+ αi−1, αi) = 0 for i = 1, . . . , s.

Let Fχ = Fχ (g) be the full subcategory of F consisting of modules with
central character χ. Obviously, F =

⊕

Fχ, where the summation is taken over all
dominant central characters χ. Different categories Fχ may be equivalent. They
fall into one of 4 series as we will see in Theorem 2.6.

State more constructive condition for χλ = χµ. For λ ∈ Λ+ let Aλ =
{α1, . . . , αk} be a maximal set of mutually orthogonal positive isotropic roots
such that (λ, αi) = 0 for i = 1, . . . , k. If g = gl (m|n), then the set Aλ is uniquely
defined. For osp-type g we choose Aλ in such way that Tλ ⊆ Aλ. The number
k = |Aλ| is called the degree of atypically of λ and is denoted by #λ. A weight
λ ∈ Λ+ is typical if #λ = 0.

Let h̄∗λ be the subspace of h∗ generated by all basis vectors εi, δj orthogonal
to the roots from Aλ. Denote by λ̄ the image of λ under the orthogonal projection
h∗ → h̄∗λ. One can see that if #λ = #µ, then w

(

h̄∗λ
)

= h̄∗µ for some w ∈ W .

Proposition 2.4. Let λ, µ ∈ Λ+. Then χλ = χµ iff #λ = #µ and w
(

λ̄
)

= µ̄ for

some w ∈ W .

By Proposition 2.4 one can correctly define #χ for a dominant central char-

acter χ by putting #χ
def
= #λ for any dominant λ with χλ = χ. Moreover, one can

define χ̄ as a typical central character for Lie superalgebra ḡ, here ḡ is an appro-
priate subalgebra of g isomorphic to gl (m− k|n− k), osp (2 (m− k) |2 (n− k)) or
osp (2 (m− k) + 1|2 (n− k)) depending on the type of g, and k = #χ.

Theorem 2.5. A category Fχ is indecomposable for any dominant central char-

acter χ. If g = gl (m|n) or osp (2m+ 1|2n), then two categories Fχ1
and Fχ2

are

equivalent iff #χ1 = #χ2.

Let g = osp (2m|2n) and τ̄ be the outer automorphism of ḡ induced by the

symmetry of Dynkin diagram. Then two categories Fχ1
and Fχ2

are equivalent iff

#χ1 = #χ2, and for both i = 1, 2 either τ̄ (χ̄i) = χ̄i or τ̄ (χ̄i) 6= χ̄i.

An indecomposable category Fχ is called a block of F .

Theorem 2.6. Let g = gl (m|n), osp (2m+ 1|2n) or osp (2m|2n). A block Fχ

with #χ = k is equivalent to F ′
χρ′

def
= Fχρ′

(g′), where g′ = gl (k|k) if g =

gl (m|n), g′ = osp (2k + 1|2k) if g = osp (2m+ 1|2n), g′ = osp (2k + 2|2k) if

g = osp (2m|2n) and τ̄ (χ̄) = χ̄, g′ = osp (2k|2k) if g = osp (2m|2n) and τ̄ (χ̄) 6= χ̄,
here ρ′ is the analogue of ρ for g′.

Let Φ: Fχ → F ′
χρ′

be a functor establishing equivalence of categories of the-

orem 2.6. Then Φ sends irreducible objects to irreducible objects, describe the
corresponding mapping of highest weights:

Proposition 2.7. Let Lλ ∈ ObFχ and Lλ′ = ΦLλ. Let λ =
∑n

i=1 aiδi +
∑m

j=1 bjεj .

Documenta Mathematica · Extra Volume ICM 1998 · II · 583–593



588 Vera Serganova

1. If g = gl (m|n), Aλ = {α1 = δi1 − εj1 , . . . , αk = δik − εjk}, then

λ′ =
k
∑

p=1

a′p (δp − εk−p+1) , a
′
p = aip + (ρ, αp) ;

2. If g = osp (2m|2n) or osp (2m+ 1|2n), and

Aλ =
{

δi1 + εj1 , . . . , δir + εjr , δir+1
− εjr+1

, . . . , δik − εjk
}

,

then λ′ =
∑k

p=1

(

a′pδp + |a′s(p)|εp

)

, a′p = aip − xp · sgn aip , where

xp = #
{

q, l |
(

λ̄, δq
)

< |aip |, 0 6= −
(

λ̄, εl
)

< |aip |
}

,

and s is a permutation such that |as(1)| > · · · > |as(k)|. In particular tλ = tλ′ .

Example 2.8. Let g = gl (3|3), λ = 5δ1 + 3δ2 − δ3 + 4ε1 + 3ε2 + ε3. Then
Aλ = {δ3 − ε3}, #λ = 1, ḡ ≃ gl (2|2), g′ ≃ gl (1|1), λ̄ = 5δ1 + 3δ2 + 3ε2 + ε3,
λ′ = −3δ1 + 3ε1.

Example 2.9. Let g = osp (8|6), λ = 4δ1 + δ2 − 3δ3 + 3ε1 + 2ε2 + ε3 + 0ε4.
Then Aλ = {δ2 + ε3, δ3 − ε1} , tλ = 1, #λ = 2, ḡ ≃ osp (4|2), g′ ≃ osp (6|4),
λ̄ = 4δ1 + 2ε2 + 0ε4, λ

′ = δ1 − 2δ2 + 2ε1 + ε2 + 0ε3.

3. Borel–Weil–Bott theorem and geometric induction

Let b = h ⊕ n+ be a Borel subalgebra. For a parabolic subalgebra p ⊇ b denote
by ∆p the set of roots α such that g±α ⊆ p. Denote by Lλ (p) an irreducible p-
module with highest weight λ, which of course remains irreducible after restriction
to a reductive subalgebra gp = h⊕

⊕

α∈∆p
gα. Due to the geometric origin of the

following argument we will need representations of the supergroup P corresponding
to p. A flag supermanifold G/P is a compact homogeneous supermanifold with the
underlying manifold G0/P0 (for definitions see [11] or [10]). Any finite-dimensional
P -module M induces a vector bundle O (M) on G/P with the fiber M over P .
Let2

ΓP
i (M) =

[

Hi
G/PO (M∗)

]∗

.

Since G/P is compact, ΓP
i (M) is a finite-dimensional G-module. One can

consider ΓP
i as a derived functor from the category F (P ) of finite dimensional

P -modules to the category F .

Lemma 3.1. Let np be the nilpotent ideal in p such that p = gp ⊕ np. If X ∈
ObF , then coinvariants Xnp

form a P -module, there is a natural inclusion X →֒

H0
G/PO

(

Xnp

)

.

If M ∈ ObFχ, then ΓP
i (Mnp) ∈ ObFχ, and there is a natural projection

ΓP
0 (Mnp) → M . In particular when M = Lλ there is a natural projection

ΓP
0 (Lλ (P )) → Lλ.

2We use doubled duality to avoid a problematic notion of antidominant weight.
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Lemma 3.2. Let M be a P -module and EP (M) =
∑

(−1)
i
chΓP

i (M). Consider

D from (1.1). Then

EP (M) = D
∑

w∈W

sgnw · w

(

eρ chM
∏

α∈∆p∩∆+
1
(1 + e−α)

)

.(3.1)

The following theorem is a generalization of a result by Penkov–Skornyakov.
We say that λ ∈ Λ+ is P -typical if Aλ ⊆ ∆p.

Theorem 3.3. Let λ be a P -typical dominant weight. Then ΓP
0 (Lλ (p)) = Lλ

and ΓP
i (Lλ (p)) = 0 for i > 0.

Generalizing this theorem, denote by [M : Lµ] the multiplicity of an irre-
ducible module Lµ in a g-module M . Define the Kazhdan–Lusztig polynomials

and coefficients by:

KP
λ,µ (q) =

dimG/P
∑

i=0

[

ΓP
i (Lλ (p)) : Lµ

]

qi, aPλ,µ = KP
λ,µ (−1) .

Let EP
λ

def
= EP (Lλ (p)). Clearly

∑

µ

aPλ,µ chLµ = EP
λ .(3.2)

Proposition 3.4. Let p be a parabolic subalgebra, λ ∈ Λ+ and Tλ ⊆ ∆p. Then

KP
λ,λ = 1, and KP

λ,µ 6= 0 implies µ ≤ λ, χλ = χµ.

Let g = gl (m|n), then tλ = 0. Put P = B. By Proposition 3.4 the ma-

trix
(

aBλ,µ

)

is unipotent, thus easy to invert. Let (bλ,µ) =
(

aBλ,µ

)−1

. Then the

equations (3.2) imply chLλ =
∑

µ≤λ bλ,µE
B
µ .

If g is an algebra of osp type then the matrix
(

aBλ,µ

)

is not invertible. Let

Λ+
s = {λ ∈ Λ+ | tλ = s} and p(r) be the parabolic subalgebra such that ∆p(r) is

generated by the simple roots σr, . . . , σn+m. One can see that Tλ ⊆ ∆p(r+1) for any

λ ∈ Λ+
n−r. By Proposition 3.4 the matrix

(

aP
(r+1)

λ,µ

)

λ,µ∈Λ+
n−r

is again unipotent,

thus easy to invert. Since µ ≤ λ implies tµ ≥ tλ, the equation
∑

µ∈Λ+
n−r

aP
(r+1)

λ,µ chLµ = EP (r+1)

λ −
∑

tν>tλ

aP
(r+1)

λ,ν chLν .

This taken together with (3.1) expresses chLλ in terms of chLµ

(

p(r+1)
)

=

chLµ

(

gp(r+1)

)

, aP
(r+1)

µ,ν for r = n − tλ, µ, ν ∈ Λ+ with tµ = tλ, tν ≥ tλ, and
chLν′ for tν′ > tλ. If tλ < n, rk gp(r+1) < rk g, which gives a recurrence relation
for chLλ.

What remains is the case tλ = n. Then Tλ = Aλ, and λ is Q-typical for the
parabolic subalgebra q with ∆q generated by σ1, . . . , σm+n−1. By theorem 3.3

chLλ = EQ
λ = D

∑

w∈W

sgnw · w

(

eρ chLλ (q)

Πα∈∆q∩∆+
1
(1 + e−α)

)

...

Documenta Mathematica · Extra Volume ICM 1998 · II · 583–593



590 Vera Serganova

On the other hand, chLλ (q) = chLλ (gq), and gq is isomorphic to gl (m|n). Since
the case g = gl (m|n) is already covered, we can calculate chLλ.

These arguments reduce the calculation of chLλ to the calculation of the
matrix

(

aPµ,ν
)

. The next statement reduces the latter problem to the case of the
most atypical central character.

Proposition 3.5. Let λ ∈ Λ+, λ′ and g′ be as in theorem 2.6 and proposition 2.7.

Let p = b if g = gl (m|n), p = p(r+1) if g = osp (2m|2n) or osp (2m+ 1|2n) and

tλ = n − r. Let p′ be the analogous parabolic subalgebra in g′ determined by λ′.

Then KP
λ,µ = KP ′

λ′,µ′ .

4. Calculation of coefficients aλ,µ in Fχρ

In this section we concentrate on calculation of coefficients aPλ,µ. By Proposition 3.5
it is sufficient to find these coefficients only for the most atypical block Fχρ

and
g = gl (k|k), osp (2k|2k), osp (2k + 2|2k) or osp (2k + 1|2k).

First, consider the case g = gl (k|k). Here tλ = 0 and P = B. Introduce a
formal operator A in the Grothendieck ring of Fχρ

by the formula

A [Lλ] =
∑

µ∈Λ

aPλ,µ [Lµ] .

Let p(i) be the parabolic subalgebra such that ∆p(i) is generated by the simple

roots σi, . . . , σ2k−i. Consider the flag of parabolic subalgebras g = p(1) ⊃ p(2) ⊃
· · · ⊃ p(k) ⊃ p(k+1) = b. Note that P (i)/P (i+1) is isomorphic to the supermanifold
of (1|1)-dimensional subspaces in C

i|i. As before define derived functors

Γ
(i)
j : F

(

p(i+1)
)

→ F
(

p(i)
)

, Γ
(i)
j (M) =

[

Hj
P (i)/P (i+1)O (M∗)

]∗

,

generating functions K(i) and coefficients a(i) by

K
(i)
λ,µ (q) =

∑

j

[

Γ
(i)
j

(

Lλ

(

p(i+1)
))

: Lµ

(

p(i)
)]

qj , a
(i)
λ,µ = K

(i)
λ,µ (−1) .

Define the operators A(i) [Lλ] =
∑

µ a
(i)
λ,µ [Lµ]. Obviously,

A = A(1) ◦ · · · ◦A(k).(4.1)

Theorem 4.1 below gives recurrence relations for calculating polynomials K
(i)
λ,µ. It

is the most difficult result in the paper. Before stating it let us recall that any λ ∈
Λ+ with χλ = χρ can be written as a1α1+ · · ·+akαk where αi = δi−εk+1−i ∈ Aλ

and a1 > a2 > · · · > ak. For S (q) ∈ Z
[

q, q−1
]

denote the polynomial part of S
by S+.

Theorem 4.1. Let g = gl (k|k). Then the following recurrence relations hold:

1. K
(i)
λ,λ = 1;

2. if ai > ai+1 + 1, then K
(i)
λ,λ−αi

= 1 and K
(i)
λ,µ =

(

q−1K
(i)
λ−αi,µ

)

+
for any

µ 6= λ, λ− α;

3. if ai = ai+1 + 1, then K
(i)
λ,µ = qK

(i+1)
λ−αi,µ

for any µ 6= λ, λ− αi;
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4. K
(k)
λ,λ−αk

= 1 and K
(k)
λ,µ = 0 for any µ 6= λ, λ− αk.

These relations uniquely determine the polynomials K
(i)
λ,µ.

Note that the proof of Theorem 4.1 unravelled the following beautiful geo-
metric

Lemma 4.2. Let λ ∈ Λ+. The cohomology Γ
(i)
j

(

Lλ

(

p(i+1)
))

for j > 0 and the

kernel of the natural projection Γ
(i)
0

(

Lλ

(

p(i+1)
))

→ Lλ

(

p(i)
)

are semisimple p(i)-

modules, and any irreducible component of
⊕

j Γ
(i)
j

(

Lλ

(

p(i+1)
))

occurs with mul-

tiplicity 1.

Consider the case g = osp (2k + l|2k), where l = 0, 1 or 2, and χλ = χµ.

Consider the flag of parabolic subalgebras g = p(1) ⊃ p(2) ⊃ · · · ⊃ p(k+1), where
∆p(i) is generated by the simple roots σi, . . . , σk+[l/2]. Note that P (i)/P (i+1) is

isomorphic to the supermanifold of (1|0)-dimensional subspaces in C
2k−2i|2k+l.

Let r = k − tλ. As it was explained in section 3, we are interested in calculating

aPλ,µ = aP
(r+1)

λ,µ . Using the same notations as for the case g = gl (k|k) one can write

A = A(1) ◦ · · · ◦A(r).
Next, we write recurrence relations for polynomials K

(i)
λ,µ. Write Aλ =

{α1, . . . , αk}, where αi = δi + εji for i ≤ r and αi = δi − εji if i > r. We
assume that bk ≥ 0, see remark 2.2. By Proposition 2.7 λ can be written as
λ = a1α1 + · · · + akαk, where ai ∈ Z+ l/2 and a1 > a2 > · · · > ar > 0 ≥ ar+1 >
· · · > ak.

Theorem 4.3. Let g = osp (2k + l|2k). Then the following recurrence relations

hold:

1. K
(i)
λ,λ = 1;

2. if ai > ai+1 + 1 and ai 6= 1 − aj for any j > r, then K
(i)
λ,λ−αi

= 1 and

K
(i)
λ,µ =

(

q−1K
(i)
λ−αi,µ

)

+
for any µ 6= λ, λ− α;

3. if ai = 1 − aj for some j > r, then K
(i)
λ,λ−δi−δj

= 1 and K
(i)
λ,µ =

(

q−1K
(i)
λ−δi−δj ,µ

)

+
for any µ 6= λ, λ− δi − δj;

4. if ai = ai+1 + 1, then K
(i)
λ,µ = qK

(i+1)
λ−δi,µ+εji

for any µ 6= λ;

5. if l = 1 and ar = 1/2, then K
(r)
λ,λ−δr

= q2s+1 and K
(r)
λ,µ = 0 for any µ 6=

λ, λ− δr;

6. if l = 2 and ar = 1, then K
(r)
λ,λ−2δr

= q2s+1 and K
(r)
λ,µ = 0 for any µ 6=

λ, λ− 2δr;

7. if l = 0, ar = 1 and r 6= k, then K
(r)
λ,λ−δr−δr+1

= q2s and K
(r)
λ,µ = 0 for any

µ 6= λ, λ− δr − δr+1;

8. if l = 0, ak = 1, then K
(k)
λ,λ−δk−εk

= 1 and K
(k)
λ,µ = 0 for any µ 6= λ, λ−δk−εk.

These relations uniquely determine the polynomials K
(i)
λ,µ.
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Note that in the case of gl (m|n) and P = B one can calculate KP
λ,µ basing

on (4.1) and Theorem 4.1, since in this case it happens that KP
λ,µ = aPλ,µ. In the

cases P 6= B or g = osp formulae for KP
λ,µ are not known.
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