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Topologi
al Methods in Representation Theory
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A few years ago Beilinson and Bernstein introduced a localization technique to rep-
resentation theory of semisimple Lie groups. Their method allows one to translate
questions in representation theory to questions in complex algebraic geometry.
Beilinson reported on this work at the Warsaw congress [B]. Consequently, in
[K2], Kashiwara initiated a research program, in the form of a series of conjec-
tures, that expands the Beilinson-Bernstein picture. In this survey we will report
on work inspired by this point of view. The resulting geometry is no longer complex
algebraic; it rather involves real (semi-)algebraic sets. Thus, the methods used will
be largely topological. A crucial technique is supplied by the characteristic cycle
construction of Kashiwara [K1], which amounts to a version of Morse theory. The
majority of the results presented here constitute joint work with Wilfried Schmid.

1. Introduction.

Let GR denote a semisimple Lie group which we assume, for simplicity, to be
linear and connected. For example, one can take GR to be any of the classical
groups: SLn(R), SO(n,R), SO(p, q), . . . . To provide motivation for things to
come, let us consider one of the outstanding problems in representation theory:
the determination of the unitary dual ĜR, i.e., the determination of the set of
isomorphism classes of irreducible unitary representations of GR. Ideally, at least
from the geometric point of view, the solution of the problem would have the
following form. There should exist a manifold X with a GR-action such that ĜR

is in bijection with a certain set of GR-equivariant “objects” on X (they could be
sheaves, for example). Let F be such a GR-equivariant object. Because the group
GR acts both on X and on F , it also acts on the cohomology groups H∗(X,F).
These groups should have a canonical structure of a Hilbert space such that the
group GR acts continuously and via unitary operators on them. At this time there
is not even a precise conjecture as to what the set ĜR ought to be in general.
However, the orbit method of Kirillov-Kostant suggests that we should take as X
the space g∗

R
, the dual of the Lie algebra gR of GR. In other words, we should

be able to associate unitary representations to the coadjoint orbits (the GR-orbits
on g∗

R
), or more precisely, to collections of coadjoint orbits together with some

extra data. Given such a set of data, Kirillov has proposed that there is a specific
formula – a “universal character formula” – for the character of the representation
attached to the data.

1Partially supported by NSF, NSA, and a Guggenheim fellowship
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As we pointed out at the beginning, the above discussion was included only
as motivation. In this survey we will work with the class of admissible (finite
length) representations. They include all irreducible unitary representations. For
this larger class of representations we will:

a) parametrize and exhibit them geometrically
b) give a geometric character formula in the spirit of Kirillov’s formula
c) analyze the nilpotent invariants attached to them

2. Geometric parametrization of representations.

Let G denote the complexification of GR and let X be the flag manifold of G. The
group GR acts on X with finitely many orbits. Let us assume, for the moment,
that GR is compact. Then GR acts transitively on X and there is only one orbit.
All the irreducible representations of GR are finite dimensional. As is well know,
they can be classified and exhibited explicitly as follows. To each λ ∈ H2(X,Z)
corresponds a complex line bundle O(λ) on X. This line bundle is holomorphic
and GR-homogenous, i.e., the action of GR on X lifts to an action of GR on O(λ)
(strictly speaking, this it true only if GR is simply connected; if this is not the
case, then λ must lie in a sublattice of H2(X,Z)). Thus we get a representation of

GR on the vector spaces Hk(X,O(λ)). All irreducible representations of GR arise
in this fashion. Furthermore, if we restrict the parameter λ to lie in the dominant
cone in H2(X,Z) then each irreducible representation occurs exactly once among
the representations H0(X,O(λ)).

When the group GR is not assumed to be compact, the situation is more compli-
cated. First of all, we have to allow the “twisting” parameter λ to lie in H2(X,C),
not just in the lattice H2(X,Z). To each such λ ∈ H2(X,C) we associate the
“twisted” G-equivariant sheaf Oan

X (λ) of holomorphic functions on X. This is an
“ordinary” sheaf on X only if λ is integral. The second complication arises because
the action of GR on X is not transitive. As a first approximation, we can construct
representations Hk(S,Oan

X (λ)) associated to each GR-orbit S and the parameter

λ ∈ H2(X,C). This construction yields all the “standard representations” but not
all the irreducible (admissible) representations of GR.

To get all the representations, we have to allow combinations of GR-orbits and
we have to allow the orbits to “interact” with each other. This can be accomplished
purely topologically: we consider GR-equivariant (complexes of) C-sheaves on X
whose stalks are finite dimensional over C. Note that the category of GR-sheaves
on a GR-orbit S is equivalent to the category of (finite dimensional) complex rep-
resentations of the component group (GR)x/(GR)

0
x of (GR)x. Here (GR)x denotes

the stabilizer group of any particular x ∈ S. A general GR-equivariant sheaf is
“glued” together from such local systems on the various GR-orbits. Technically,
these sheaves should be twisted, with twist −λ, and we should consider them in
the context of derived categories, i.e., we should view them as elements in the
GR-equivariant derived category of C-sheaves with twist −λ. For the purposes of
this survey, this technical point can be ignored and one can think of them just as
sheaves with a GR-action. In particular, one can assume that λ = 0, in which case
O(λ) is the trivial line bundle on X. We define functors

(1.1a) {GR-equivariant sheaves on X} −→ {GR-representations}
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by

(1.1b) F 7−→ Hk(X,F ⊗C O
an
X (λ)) .

In [KSd] it is shown that the cohomology groups Hk(X,F ⊗C Oan
X (λ)) carry a

natural Fréchet topology such that the action of GR is continuous. The topology
is induced from the natural topology on Oan

X (λ). In representation theoretic terms
the choice of the parameter λ amounts to fixing the infinitesimal character of the
representations in (1.1): the space H2(X,C) can be identified2 with the dual of a
Cartan t in g.

The representations produced by the functor (1.1) are admissible. In the rest
of this paper, the term GR-representation stands for an admissible representation
(of finite length). Recall that a GR-representation V is called admissible if, when
viewed as a representation of a maximal compact subgroup KR of GR, each irre-
ducible representation of KR appears in it with finite multiplicity. We consider
admissible representation modulo infinitesimal equivalence. In other words, we
identify representations if they are “the same” except for the topology that we put
on the representation space. When we work up to infinitesimal equivalence the
functor (1.1) is onto. The infinitesimal equivalence class of a GR-representation
V is captured by its Harish-Chandra module. Recall that the Harish-Chandra
module M of the representation V consists of all vectors v ∈ V such that KR · v
generates a finite dimensional subspace of V . Both the the lie algebra gR and
the group KR, and hence their complexifications g and K, act compatibly on
M . Harish-Chandra modules are algebraic objects and are not equipped with a
topology.

Let us continue to consider a particular GR-representation which is associated to
the parameter λ ∈ H2(X,C) and a GR-sheaf F . To construct the Harish-Chandra
module associated to this representation geometrically, we appeal to the work of
Beilinson-Bernstein. Slightly paraphrased, they constructed functors

(1.2a) {K-equivariant sheaves on X} −→ {H-C-modules}

by

(1.2b) F 7−→ Hk(X,F ⊗C O
alg
X (λ)) .

Here, just as in our previous discussion, the sheaf F is properly viewed as an
element in the K-equivariant derived category of C-sheaves with twist −λ. The

symbol Oalg
X (λ) stands for the twisted sheaf of complex algebraic functions on

X. It is a subsheaf of Oan
X (λ). On the other hand, in [MUV] we construct an

equivalence of categories

(1.3) {GR-equivariant sheaves on X}
Γ
−−→ {K-equivariant sheaves on X} .

2Under this identification the value λ = 0 corresponds to the element “ρ = half the sum of

positive roots” in t∗.
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This equivalence is constructed via an averaging procedure. Loosely speaking, we
average a GR-sheaf over the orbits of K/KR. The Harish-Chandra module of the
representation associated to the GR-sheaf F is gotten by applying the Beilinson-
Bernstein functor (1.2) to the sheaf ΓF . The commutative diagram below sum-
marizes our discussion:

(1.4)

{GR-representations} −−−−→ {H-C-modules}

(1.1)

x
x(1.2)

{GR-equivariant sheaves on X}
Γ

−−−−→ {K-equivariant sheaves on X} .

We have have not specified the degree k that we should use for the cohomology
groups in formulas (1.1b) and (1.2b). If we restrict λ to lie in the dominant cone
then there is a natural choice of a subcategory of complexes of GR-sheaves and a
subcategory of complexes ofK-sheaves such that the functors (1.1b) and (1.2b) are
nonzero on these subcategories only for the value k = 0. Furthermore, restricted
to these subcategories the functors (1.1b) and (1.2b) are equivalences, provided
that the parameter λ is regular3. On the K-side the subcategory has a useful
characterization. It consists of K-equivariant perverse sheaves. On the GR-side
no direct characterization is known.

The motivation for the original work of Beilinson-Bernstein was to understand
how standard representations decompose into irreducibles (Kazhdan-Lusztig con-
jectures). Via the functor (1.2) this problem translates into the problem of un-
derstanding how standard perverse sheaves decompose into irreducible perverse
sheaves. This problem, in turn, can be solved by using the theory of mixed sheaves.
For a survey, see Beilinson’s talk at the Warsaw congress [B]. In the same vain
other questions in representation theory can be translated to questions about the
geometry of (closures of) K-orbits. Because K is a complex algebraic group, we
are in the context of (complex) algebraic geometry. The situation on the GR-side
is different. The GR-orbits are only semi-algebraic sets and hence appear to be
more difficult to work with. In the rest of this paper we use topological techniques
that allow one to work on the GR-side. Although the categories of GR-equivariant
sheaves and K-equivariant sheaves are equivalent certain things appear to be eas-
ier to extract from one side than the other. For example, it appears impossible at
this time to give a proof of the Kazhdan-Lusztig conjectures on the GR-side. On
the other hand, the character formula that we explain in the next section crucially
depends on the GR-side.

3. A geometric character formula.

In this section we will explain a character formula which can be viewed as a
generalization of Kirillov’s “universal character formula”, valid for all admissible
representations. Recall that to any representation we can associate its character
which is a conjugation invariant, locally L1-function on the group GR. The func-
tion on gR gotten by pulling back the character under the exponential map (and
multiplied by the square root of the Jacobian) is called the Lie algebra character.

3If we identify H2(X,C) with a Cartan t this amounts to the regularity of λ+ ρ.
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Let us recall the formula proposed by Kirillov:

(2.1)

The Lie algebra character of the representation

associated to the coadjoint orbit OR of g∗R

is the Fourier transform of the canonical measure on OR.

As a coadjoint orbit, OR has a canonical symplectic form and hence a canonical
measure. In [R1] Rossmann gave a proof of Kirillov’s formula for tempered rep-
resentations, i.e., for the irreducible unitary representations that “appear” in the
regular representation L2(GR).

In [R2], Rossmann made the following proposal to obtain a Kirillov type charac-
ter formula in general. Let us fix the parameter λ ∈ H2(X,C) and let us consider
GR-representations associated to this parameter. Recall that the dual t∗ of any
Cartan t ⊂ g can be identified with H2(X,C) (see footnote 1). Hence, the element
λ specifies a coadjoint G-orbit Ωλ ⊂ g∗. If λ is regular, as we will assume from
now on, there is an isomorphism µλ : T ∗X → Ωλ, due to Rossmann, which he calls
the twisted moment map. To have some feel for this map, we describe it loosely.
First of all, it is the twisted version of the moment map µ : T ∗X → g∗ for the
G-action. The moment map µ has its image in the nilpotent cone N ∗ in g∗ ∼= g.
Note that, under the identification g∗ ∼= g, the cotangent space T ∗

xX is identified
with nx, where nx is the nilpotent radical of the Borel subalgebra corresponding
to x. With these identifications the map µ is the identity on T ∗

xX. To describe µλ,
let UR be the compact form of G which is “compatible” with KR and GR. Because
UR acts transitively on X, the flag manifold X can be identified with a canonical
UR-orbit inside Ωλ. The map µλ is obtained by translating the moment map µ by
the UR-embedding of X in Ωλ. On the zero section of T ∗X the map µλ reduces to
the UR-embedding of X in Ωλ. The twisted moment map is UR-equivariant and
only real algebraic, not complex algebraic.

Let us consider the complex vector space spanned by the Lie algebra characters
of all the representations associated to the parameter λ. This is the space of in-
variant eigendistributions (associated to the parameter λ, which we have assumed
to be regular). Rossmann shows that any invariant eigendistribution on gR can be
uniquely written in the following form. We set

T ∗
GR
X =

⋃

S a GR-orbit

T ∗
SX ⊂ T ∗X .

Here T ∗
SX denotes the conormal bundle of the orbit S in X; by definition T ∗

SX is
a subspace of T ∗X. If we let n denote the complex dimension of X, then the space

T ∗
GR
X has real dimension 2n. Let us denote by Hinf2n (T ∗

GR
X,C) the space of 2n-

cycles with closed (possibly infinite dimensional) support in T ∗
GR
X with coefficients

in C. Rossmann shows that for any invariant eigendistribution θ on gR associated

to λ there exists a unique cycle C ∈ Hinf2n (T ∗
GR
X,C) such that

θ(φ) =
1

(2πi)n

∫

µλ(C)

φ̂ σnλ .
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Here φ is any smooth compactly supported function on gR and σλ is the canon-
ical complex algebraic symplectic form on Ωλ. In other words, we can view the
construction of the character as a map

(2.2) {GR-representations} −→ Hinf2n (T ∗
GR
X,C).

To understand the map (2.2) geometrically, the right hand side immediately sug-
gests that we should parametrize the GR-representations, by GR-sheaves (rather
than by K-sheaves). Then, as is shown in [SV2], the map (2.2) coincides with the
characteristic cycle construction of Kashiwara

(2.3) CC : {GR-sheaves on X} −→ Hinf2n (T ∗
GR
X,Z).

We discuss this construction briefly in the next section. Note that (2.3) shows, in

particular, that the map (2.2) factors through Hinf2n (T ∗
GR
X,Z). To summarize:

Theorem. The Lie algebra character of the representation associated to GR-sheaf

F is given by

θ(F)(φ) =
1

(2πi)n

∫

µλ(CC(F))

φ̂ σnλ , (φ ∈ C∞
c (gR)) .

When F gives rise to a discrete series representation or, more generally, to a
tempered representation, our formula reduces to the original formula of Rossmann:
one shows that the cycle µλ(CC(F)) is homologous to the appropriate coadjoint
orbit.

Remark. As we explained in the first section, we can, completely equivalently,
parametrize representations either by K-sheaves or by GR-sheaves. The K-side
seems, at least at the first sight, more appealing and simpler as it allows one to
work entirely in the realm of complex algebraic geometry. However, as the theorem
above shows, from the point of view of understanding characters of representations
the GR-side seems indispensable.

4. The Characteristic Cycle Construction.

Let X be a real algebraic manifold of dimension n which we assume, for
simplicity, to be oriented. We consider constructible sheaves on X, i.e.,
sheaves of C-vector spaces with the following property: there exists a (semi-)al-
gebraic decomposition of X such that the sheaf restricted to any constituent of the
decomposition is constant of finite rank. As before we consider complexes of con-
structible sheaves and we should be working in the context of derived categories.
Given a (complex of) constructible sheaves F on X, Kashiwara in [K1] shows how
to associate to it a Lagrangian, R+-invariant cycle CC(F) in T ∗X. Recall that
T ∗X has a canonical symplectic structure and that conormal bundles of smooth
submanifolds are prototypes of Lagrangian, R+-invariant submanifolds of T ∗X.
The construction of CC(F) is Morse-theoretic. The cycle CC(F) measures how
the local Euler characteristic (=the Euler characteristic of the stalks) of F changes
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as we move to a particular direction from a point on X. From this description it
is apparent that CC satisfies the following properties:

(a) CC(CX) = [X],
(b) CC is additive in short exact sequences,
(c) CC is locally defined on X.

Here the symbol [X] stands for the zero section viewed as a cycle on T ∗X with
its given orientation. The index theorem of Kashiwara [K1] states that the global
Euler characteristic of F coincides with the intersection product of the zero section
[X] and CC(F). By property a) above, this amounts to a generalization to sheaves
of the classical index theorem of Hopf: the Euler characteristic of a compact
manifold X is given by the self intersection number of the zero section in T ∗X.
Kashiwara’s index theorem can be generalized to the relative case: for a proper
map f : X → Y and a sheaf F on X we can describe the characteristic cycle of
the push-forward of F in terms of CC(F) and an intersection product [KSa].

To be able to calculate the the effect of CC under all the operations on sheaves
it is necessary and sufficient to have a formula for the characteristic cycle of a
pushforward under an open embedding. As this is our most important tool, we
will give the statement. To this end, let j : U →֒ X be an open embedding and
let f be a defining equation for the boundary of U . Then, for a sheaf F on U , we
have

(d) CC(Rj∗F) = lim
s→0+

(
CC(F) + s

df

f

)
.

This formula is proved in [SV1]. It is modeled after a similar formula proved
by Ginzburg in the complex analytic case. The properties (a)-(d) completely
determine the operation CC, i.e., they could be taken as axioms. The construction
CC amounts to a (weak) but very workable form of microlocalization.

5. Nilpotent invariants.

In this section, as an application of our techniques, we will identify two rather
different invariants of representations. Both of these invariants involve nilpotent
orbits. Invariants that involve nilpotent orbits are particularly interesting because,
as was explained in §1, it is generally believed that unitary representations are best
parametrized using such data. One of the invariants, due to Vogan, is purely alge-
braic and the other, due to Barbasch-Vogan [BV], is analytic. The statement that
these invariants coincide has become known as the Barbasch-Vogan conjecture.

Let us consider an irreducible representation V of GR. The analytic invariant is
defined as follows. Let θ denote the Lie algebra character of the representation V .
Take the Fourier transform of the leading term of the asymptotic expansion of θ
at the origin. Barbasch and Vogan show that this Fourier transform is a C-linear
combination of canonical measures on nilpotent coadjoint orbits in igR

∗. In other
words, this Fourier transform can be written as

WF(V ) =
∑
aj [OR

j ] ,

where the OR
j are GR-orbits in ig

∗
R
∩ N ∗ and aj ∈ C. Recall that N ∗ denotes the

“nilpotent cone” in g∗ ∼= g. The cycle WF(V ) is called the wave front cycle of V .
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The algebraic invariant is defined via the Harish-Chandra module M of V .
We choose a K-invariant good filtration Mj of M with respect to the canonical
filtration of the universal enveloping algebra U(g). The associated graded gr(M) is
a module over the symmetric algebra S(g). As such, it determines a well defined
algebraic cycle on g∗. The support of this cycle coincides with the support of
the module gr(M). Vogan [V] shows that the algebraic cycle is K-invariant and is
supported on p∗∩N ∗. The space p is given by the Cartan decomposition g = k⊕p.
Hence we have associated to V a cycle

Ass(V ) =
∑
bj [O

K
j ] ,

where the OKj stand for K-orbits in p∗∩N ∗ and bj are non-negative integers. The
cycle Ass(V ) is called the associated cycle of V . In [Se] Sekiguchi constructs a
bijection between GR-orbits on ig

∗
R
∩ N ∗ and K-orbits on p ∩ N ∗. The following

result is proved in [SV3]:

Theorem. The wave front cycle and the associated cycle coincide under the

Kostant-Sekiguchi correspondence. In particular, the constants aj are non-negative
integers.

Let us briefly discuss the general structure of the argument. It can by summa-
rized in the form of the following commutative diagram:

(5.1)

{GR-representations} −−−−→ {H-C-modules}

≀

y
y≀

{GR-equivariant sheaves on X}
Γ

−−−−→ {K-equivariant sheaves on X}

CC

y
yCC

{Lagrangian cycles on T ∗
GR
X}

Ψ
−−−−→ {Lagrangian cycles on T ∗

KX}

µ∗

y
yµ∗

{GR-orbits in N
∗ ∩ ig∗

R
}

ψ
−−−−→ {K-orbits in N ∗ ∩ p∗} .

The vertical arrows from the top to bottom can be identified with the wave front
cycle and the associated cycle constructions, respectively. The crux of the argu-
ment is the explicit computation of the map Ψ induced by Γ. This computation
takes us outside of the realm of semi-algebraic and subanalytic sets. We make
essential use of the geometric categories of [DM]. In particular, we work in the
context of the geometric category associated to the o-minimal structure Ran,exp.
The last step is the identification of the map ψ, induced by Ψ, with the Kostant-
Sekiguchi correspondence.

The fact that the vertical arrows in (5.1) amount to the invariants WF and
Ass shows that they can be extracted from the appropriate characteristic cycles.

Let us phrase this more precisely. Consider the diagram X
π
←− T ∗X

µ
−→ N ∗ of

spaces where π is the projection and µ : T ∗X → N ∗ is the moment map. If F
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is a GR-equivariant sheaf on X then the corresponding wave front cycle is given
by “microlocalizing” F via the CC construction to a cycle on T ∗X and then in-
tegrating this cycle4 over the fibers of µ. The analogous process on the K-side
produces the associated cycle (this fact is due to J.-T. Chang). The characteristic
cycles carry much more information than the wave front cycle and the associated
cycle and it is conceivable that some of this extra information is crucial in under-
standing the unitary representations attached to nilpotent orbits. Furthermore,
the construction CC is a bit too crude at least in one respect. The diagram (5.1)
should be at least extended so that the objects in the last two rows are GR and
K-equivariant, respectively.
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