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Abstract. We discuss recent advances in quasiconformal mappings.
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1. Quasiconformal mappings

Quasiconformal mappings are homeomorphisms which on the infinitesimal scale
preserve, up to uniform bounds, relative sizes and shapes of nearby objects. These
local bounds then lead to strong global constraints. The need to understand such
quantities arises in a variety of different areas of geometric analysis such as hyper-
bolic geometry, complex dynamics, differential equations, analysis on manifolds,
Gromov hyperbolic groups and so on. Hence in many respects these mappings live
naturally in geometric settings.

On the other hand, the development of basic properties of quasiconformal map-
pings themselves usually requires considerations that are analytic in nature. In
this talk we shall discuss recent advances in understanding of the fundamentals of
quasiconformal mappings. In particular, we shall see how these reflect and yield
new information on other topics in analysis.

There are several possible ways to give a precise meaning to the intuitive notion
of quasiconformality, i.e. that infinitesimal distortion is uniform in all directions.
The most “elementary” is the metric definition: We say that a homeomorphism
f : D 7→ D′, where D,D′ are domains in R

n, is quasiconformal if there exists a
constant H <∞ such that

(1) Hf (x) ≡ lim sup
r→0

max{|f(x)− f(y)| : |x− y| = r}

min{|f(x)− f(z)| : |x− z| = r}
≤ H, x ∈ D.

According to the analytic definition, the homeomorphism f is quasiconformal if
f ∈W 1,n

loc (D) and the directional derivatives satisfy

(2) maxα|∂αf(x)| ≤ Kminα|∂αf(x)| a.e. x ∈ D

for a constantK <∞. Quantifying this we speak ofK-quasiconformalmappings if
(2) holds. The equivalence of the analytic and metric definitions follows essentially
from the Rademacher-Stepanoff theorem; for details in n dimensions see the work
of Gehring [G1].
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The essential feature of quasiconformality is that the infinitesimally bounded
distortions (1), (2) give strong global constraints. This leads to the notion of
quasisymmetry: a mapping f : A→ B, A,B ⊂ R

n, is called quasisymmetric if

(3)
|f(x)− f(y)|

|f(x)− f(z)|
≤ η(

|x− y|

|x− z|
)

for all points x, y, z ∈ A and for some continuous strictly increasing function
η : R+ → R+ with η(0) = 0. It is clear that (3) implies (1); for mappings of the
whole R

n (and in general locally) the converse is also true [G1], [TV].
A recent surprising result of Heinonen and Koskela shows that in fact the as-

sumption (1) can be considerably weakened

Theorem 1.1. [HK1] Suppose H < ∞ and f : Rn 7→ R
n is a homeomorphism

for which

lim inf
r→0

max{|f(x)− f(y)| : |x− y| = r}

min{|f(x)− f(z)| : |x− z| = r}
≤ H, x ∈ R

n.

Then f is quasisymmetric. In particular f is quasiconformal.

The fact that one can replace lim sup by lim inf is very useful; the result has
immediate applications e.g. in rigidity questions in holomorphic dynamics [PR].
Furthermore, the notions (1), (3) are well defined in all metric spaces and the
argument of Theorem 1.1 is based on the notion of discrete modulus combined
with considerations of a general nature. Consequently, a version of the result
extends to a large family of spaces, such as the length metric spaces that for some
q > 1 satisfy a general (1, q) Poincare-inequality and posses a q-regular measure,
see [HK1], [HK2], [BK].

In the Euclidean two dimensional situation, a special flavour is added by Bel-
trami differential equation

(4) ∂f(x) = µ(x) ∂f(x), a.e. x ∈ D

which in R
2 is equivalent to the inequality (2). Here µ is the complex dilatation

with |µ(x)| ≤ K−1
K+1 < 1 a.e. x ∈ D. In particular, in two dimensions quasiconfor-

mal considerations interact strongly with the theory of linear elliptic PDE’s.

Naturally one can consider also non-homeomorphic functions satisfying (2):

We say that a function f is K-quasiregular if firstly f ∈ W 1,n
loc (D) and secondly

the condition (2) holds at a.e. x ∈ D. In particular, the n-integrability of the
derivatives guarantees that the Jacobian determinant Jf is locally integrable.

According to the fundamental theorems of Reshetnyak [Re], all quasiregular
mappings are open and discrete. In many respects quasiregular mappings form
in R

n the natural geometric counterpart of the theory of analytic functions, c.f.
[Ri1].

Note also that in dimension two each quasiregular mapping factors as a com-
position of an analytic function and a quasiconformal homeomorphism.
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2. Regularity

One of the cornerstones in the quasiconformal theory is that from the weak assump-
tions (1), (2) one gains improved regularity, i.e. improved integrability properties
of the derivatives. In plane this fact was shown by Bojarski [Bj] and in higher
dimension by Gehring [G2].

It is natural to search here for the best possible degrees of regularity. This is
particularly rewarding since such bounds will lead for instance to optimal results
on metric distortion properties. It turns out that they will also have consequences
on different topics outside the field.

Conversely, in a dual manner one is led to ask how much can the regularity as-
sumption f ∈W 1,n

loc be weakened. For quasiconformal mappings it is in fact enough

to assume f ∈ W 1,1
loc , see [LV], [IKM]. However, for the noninjective quasiregular

mappings one needs certain degrees of higher integrability. To state the problem
more precisely, let us call a mapping f ∈ W 1,q

loc (D) weakly K-quasiregular if (2) is
satisfied at a.e. x ∈ D. The question is then to decide how small can we take q in
order to still deduce that f is (strongly) quasiregular, in particular open and dis-
crete. Optimal bounds for the q’s yield then e.g. sharp quasiregular removability
results.

In the case of two dimensions one has now an essentially complete understanding
of these topics. To a large degree such properties are reduced to the following recent
work of Astala on the distortion of area.

Theorem 2.1. [As2] For each K−quasiconformal mapping f of R2 fixing 0, 1 and
∞, we have

(5) |f(E)| ≤MK |E|1/K , E ⊂ R
2,

where MK depends only on K.

The implications to the regularity of quasiconformal mappings are then as follows.

Corollary 2.2. If f is a K−quasiconformal mapping in a domain D ⊂ R
2 then

f ∈W 1,p
loc (D) for all p < 2K

K−1 .

In fact, since |∂αf |
2 ≤ KJf a.e, the bound of Theorem 2.1 is equivalent to Jf ∈

L
K/(K−1)
weak . Locally we have also the reverse Hölder estimates

(6) (
1

|B|

∫

B

Jp
f dx)

1/p ≤ C (
1

|B|

∫

B

Jfdx), p <
K

K − 1
,

for the Jacobian of a quasiconformal mapping f in a domain D ⊂ R
2. The

constant C depends only on p, K and dist(B, ∂D)/diam(B).

As an example, the radial mapping

(7) f0(x) = x|x|
1

K −1
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isK−quasiconformal in R
2 but f0 /∈W 1,po

loc for po = 2K
K−1 . Therefore the regularity

given by Corollary 2.2 is the best possible.

As mentioned above, the optimal regularity results yield also quantitative
bounds on metric distortion properties. According to Ahlfors [Ah2] and Mori
[Mo] K−quasiconformal mappings are 1/K-Hölder continuous. This follows from
(5) and (3) when one chooses E = B(x, |x−y|). More importantly, we can control
the distortion of Hausdorff-dimension under quasiconformal deformations.

Corollary 2.3. [As2] If f is K-quasiconformal in R
2, then for any set E ⊂ R

2

(8)
1

K

( 1

dim(E)
−

1

2

)

≤
1

dim(fE)
−

1

2
≤ K

( 1

dim(E)
−

1

2

)

.

Moreover, for any 0 < t < 2 and any K ≥ 1, there are sets E with dim(E) = t
and K-quasiconformal mappings f such that the equality holds in the above left
(or respectively, right) estimate.

Let us then consider the regularity properties of weakly quasiregular mappings.
In the plane the case of weakly 1-quasiregular mappings is simple; for higher
dimensions the problem is more subtle and we return to it later. In two dimensions
each such mapping is a weak solution of ∂f = 0 and if f ∈ W 1,1

loc then by Weyl’s

lemma f is holomorphic. However, for K > 1 the W 1,1
loc -regularity is not enough

[IM]. Such examples combined with Corollary 2.2 and the measurable Riemann
mapping theorem give

Corollary 2.4. Let 1 < K < ∞ and D ⊂ R
2. Then every weakly K-

quasiregular mapping, contained in a Sobolev space W 1,q
loc (D) with 2K

K+1 < q ≤ 2,
is quasiregular in D.

For each q < 2K
K+1 there are weakly K-quasiregular mappings f ∈ W 1,q

loc (R
2)

which are not quasiregular.

Thus only the borderline case q = 2K
K+1 remains open; it is conjectured that

we obtain the strong quasiregularity also in this situation. See [AIS] where the
conjecture is reduced to open questions on the Beurling transform.

By the factorization properties in R
2, the higher integrability estimates of qua-

siconformal mappings are also the basis for the removability results of bounded
quasiregular functions. A refinement of Corollary 2.3 gives the following counter-
part of the classical Painlevé-theorem.

Theorem 2.5. [As3] If E ⊂ R
2 has Hausdorff 2

K+1 -measure zero, then the set E
is removable for all bounded K−quasiregular functions.

Moreover, for each t > 2
K+1 there are sets E of dimension dimH(E) = t not

removable for some bounded K−quasiregular functions.

3. Elliptic equations

Quasiconformal mappings are well-known to be closely connected, in many dif-
ferent ways, to elliptic differential equations. In two dimensions this connection
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is especially effective since the governing equations (4) are linear. Indeed, the
measurable Riemann mapping theorem, providing homeomorphic solutions to all
Beltrami equations (4) with ‖µ‖∞ < 1, is the basis of the theory of two-dimensional
quasiconformal mappings.

Similarly the results of the previous sections have consequences on elliptic equa-
tions. For instance, by results of Bers, Lavrentiev and others, the solutions to
∇ · σ∇u = 0 can be interpreted as components of quasiregular mappings, yield-
ing sharp smoothness and removability estimates. Furthermore, let us consider in
more details another example, the nonlinear systems in R

2. Identifying R
2 with

C, take a measurable function H : CxC → C such that for all z, a, b

(9) H(z, 0) ≡ 0 and |H(z, a)−H(z, b)| ≤ k|a− b|

with a constant 0 ≤ k < 1. Then the equation

(10) ∂w(z) = H(z, ∂w(z)) + h(z), z ∈ D,

covers all uniformly elliptic linear first order systems for w = u + iv as well as
general nonlinear systems Φ(z, ∂w(z), ∂w(z)) = 0 that are elliptic in the sense of
Lavrentiev; c.f. [BI1].

Assuming in (10) that h ∈ Lp(C), let us study the existence and uniqueness
of solutions w such that ∇w ∈ Lp(C). Here we need the Beurling transform
S : Lp(C) → Lp(C), 1 < p <∞,

(11) (Sf)(z) = −
1

2πi

∫

C

f(w)dw ∧ dw

(z − w)2

which intertwines the ∂ and ∂ derivatives, S(∂w) = ∂w for ∇w ∈ Lp(C).
The recent work of Astala, Iwaniec and Saksman, which applies quasiconformal

coordinate changes and the reverse Hölder inequalities (6) shows

Theorem 3.1. [AIS] Under the assumption (9) the nonlinear singular integral
operator B : Lp(C) → Lp(C), Bg = g − H( · , Sg), is invertible, and in fact a
bi-Lipschitz homeomorphism on Lp(C), whenever 1 + k < p < 1 + 1

k .

These bound on p are optimal, even for smooth linear equations. For instance,
for each p ≥ 1 + 1/k there are h ∈ Lp(C) and µ ∈ C∞(C) with ‖µ‖∞ = k which
oscillate at ∞ so that the non-homogeneous Beltrami equation ∂w − µ∂w = h
admits no solutions with ∇w ∈ Lp(C).

Another application to elliptic equations of a completely different nature was
established by Nesi [N] who proved that the quasiconformal area distortion can be
used to determine the optimal bounds in certain G-closure problems.

4. holomorphic motions

A picture of planar quasiconformal mappings would not be complete without men-
tioning the holomorphic motions. In studying the stability phenomena in complex
dynamics Mañé, Sad and Sullivan coined the following effective and elegant notion.
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Definition 4.1. Let ∆ = {z ∈ C : |z| < 1}. A function Φ : ∆×A→ C is called
a holomorphic motion of a set A ⊂ C if

(i) for any fixed z ∈ A, the map λ 7→ Φ(λ, z) is holomorphic in ∆,
(ii) for any fixed λ ∈ ∆, the map z 7→ Φλ(z) = Φ(λ, z) is injective and
(iii) the mapping Φ0 is the identity on A.

Typical examples of holomorphic motions arise in deformations of Kleinian
groups and dynamical systems of rational functions. The “λ−lemmas” of Mañé,
Sad and Sullivan [MSS] and Slodkowski [Sl] give them strong and unexpected
rigidity properties. In fact, any holomorphic motion is of the form

(12) Φ(λ, z) = fµλ(z), z ∈ A.

where fµλ is a homeomorphic solution of the equation ∂f = µλ ∂f in C and the
coefficient µ = µλ ∈ L∞ depends holomorphically on the parameter λ.

The converse is also true, as solutions to (4) depend holomorphically on µ, c.f.
(14). We see that general holomorphic motions are precisely the same as (holomor-
phic families of) quasiconformal mappings, one is just a different representation of
the other. As an immediate application this relation note that [MSS], [Sl] and (8)
give

Corollary 4.2. . Given a holomorphic motion Φ : ∆ × E → C of a subset
E ⊂ C write Eλ = Φλ(E). Then

(13)
1− |λ|

1 + |λ|

( 1

dimH(E)
−

1

2

)

≤
1

dimH(Eλ)
−

1

2
≤

1 + |λ|

1− |λ|

( 1

dimH(E)
−

1

2

)

.

For some sets E and motions Φ either one of the bounds holds as an equality.

5. Singular integrals and higher dimensional regularity

Beltrami equation ∂f = µ∂f connects quasiconformal mappings to the singular
integrals and, in particular, to the Beurling transform (11). If µ has compact
support and the quasiconformal mapping f is properly normalized, then we have

(14) ∂f = (I − µS)−1µ, ∂f(z) = 1 + (I − Sµ)−1S(µ).

The expressions are well defined since S is an isometry on L2(C) and ‖µ‖∞ < 1.
Consequently, quasiconformal distortion properties are equivalent to bounds on

the Beurling transform. For instance, an approach to Theorem 2.1 by Eremenko
and Hamilton [EH] yields the following optimal estimate: Let B be a disk in R

2

and suppose E ⊂ B. Then

(15)

∫

B\E

|S(χE)|dx ≤ |E| log(
|B|

|E|
)

The equality holds here when E is a subdisk with the same center as B. Duality
gives also sharp exponential integrability for the Beurling transform of bounded
functions. If |ω(z)| ≤ χ

B
(z) a.e. then |{z ∈ B : |ℜSω(z)| > t}| ≤ Ce−t.
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However, the important question of the precise value of the Lp-norm of the Beurling
transform remains still open; the best estimate so far is due to Banuelos and
Wang [BW], based on probabilistic methods. It has been conjectured that ‖S‖p =
max{p − 1, 1/(p − 1)}. Combined with (14) this would give a new proof the
regularity results 2.2-2.5.

Recently Iwaniec and Martin [IM] achieved a breakthrough in applying the
theory of singular integrals in higher dimensional quasiconformality. The approach
applies and developes the work of Donaldson and Sullivan [DS] on quasiconformal
structures on 4-manifolds.

The starting point here is to use the differential forms. Let Λl = Λl(Rn) be
the l’th exterior power of Rn. Then the Hodge star operator ∗ : Λl → Λn−l with
respect to the standard innerproduct of Rn is given by α ∧ ∗β = (α, β). Let d be
the exterior derivative d : C∞(Λl) → C∞(Λl+1) on (smooth) l-forms of Rn. Its
formal adjoint d∗ is given by d∗ = (−1)nl+n+1 ∗ d∗ : C∞(Λl) → C∞(Λl−1).

Next, each linear operator A on R
n extends naturally to an operator A# : Λl →

Λl. In particular, this is true for the (formal) derivative Df(x) at a.e. x ∈ R
n

of a weakly quasiregular mapping f . If Gf (x) = Df(x)tDf(x)Jf (x)
−n/2 is the

dilatation matrix of f at x, linear algebraic considerations show that

(16)
(

Gf (x)
)

#
∗Df(x)t# = Jf (x)

(2l−n)/nDf(x)t# ∗ .

Furthermore, [IM] proves that if α ∈ C∞(Λl−1) has linear coefficients and f ∈

W 1,lp
loc , p ≥ 1, then as distributions

(17) d(f∗α) = f∗(dα).

As a first consequence let us see how this machinery can be applied to the
regularity theory in even dimensions. For weakly 1-quasiregular mappings Iwaniec
and Martin prove the following precise form of the Liouville theorem.

Theorem 5.1. [IM] Suppose n > 2 is even. Let f ∈ W
1,n/2
loc (D), D ⊂ R

n, be
weakly 1-quasiregular. Then f is the restriction of a Möbius transformation.

Moreover, for all p < n/2 there are non-continuous weakly 1-quasiregular map-

pings in f ∈W 1,p
loc (R

n).

Indeed, for f in Theorem 5.1 the matrix dilatation G ≡ Id. If l = n/2 and
α ∈ C∞(Λl−1) has linear coefficients, then f∗dα = Df(x)t#dα and from (16),

(17) we deduce that f∗dα has vanishing d and d∗ derivatives. The assumption

f ∈W
1,n/2
loc (D) justifies the use of Weyl’s lemma and hence as a harmonic function

f∗dα is C∞-smooth. It follows that the same is true for the Jacobian derivative
Jf . Earlier proofs of the Liouville theorem [BI2] complete then the argument.

The connection to singular integrals comes from the Hodge theory. Denote by
Lp(Rn,Λl) the space of l forms with p-integrable coefficients. Each such form w
admits the decomposition w = dα + d∗β where d∗α = dβ = 0. Therefore we can
define

(18) S : Lp(Rn,Λl) → Lp(Rn,Λl), S(w) = dα− d∗β.
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It turns out that (18) defines a singular integral operator resembling in many ways
the two dimensional Beurling transform, for details see [IM]. In particular, S is an
isometry on L2 and bounded on Lp, 1 < p <∞. In fact, if f is weakly quasiregular
and Gf (x) is its dilatation matrix as above, one may define also the counterpart
of the complex dilatation µ : Lp(Rn,Λl) → Lp(Rn,Λl) by

µf =
(Gf )# − Id

(Gf )# + Id

If α is an l-form with linear coefficients, l = n/2, multiply f∗α by a test function
φ ∈ C∞

0 (Rn). Then for forms α such that the ”conformal part” d+α ≡ 1
2 (Id +

(−i)l∗)da = 0, one obtains [IM] a representation similar to (14),

(19) d(φf∗α) = (Id+ S)(Id− µS)−1ω,

where one can control the Lp-properties of ω. In consequence, a following estimate
of Caccioppoli type is obtained; crucial here is that the integrability exponent r
can be also be below n.

Theorem 5.1. [IM] Suppose n is even and D ⊂ R
n. Then there are exponents

p0 < n < p1, both depending only on n and K, such that if f ∈W 1,p
loc (D) is weakly

K-quasiregular with p0 < p < p1, then

(20)

∫

D

|φDf |p ≤ C(n,K)

∫

D

|f |p|∇φ|p

for all test functions φ ∈ C∞
0 (D)

In fact, (20) follows for those p’s for which ‖µ‖∞‖S‖L2p/n(Λl) < 1.

Essential in the above argument is that for l = n/2 the matrix dilatation op-
erates linearly on Df#, c.f. (16). Hence for odd dimensions one necessarily needs
nonlinear arguments. Iwaniec [I1] resolved the problem with the help of a nonlin-
ear Hodge theory. In a subsequent work [I2] he obtained the following beautiful
refinement.

Theorem 5.3. [I2] For each n ≥ 2 there is an exponent p0(n) < n such that for
all F ∈W 1,p(Rn,Rn) with p > p0(n) we have

(21)

∣

∣

∣

∣

∫

Rn

|DF |p−nJf (x)dx

∣

∣

∣

∣

≤ λp(n)

∫

Rn

|DF |pdx

where λp(n) < 1. Moreover, for n even this holds for p0(n) =
n
2 .

In general dimensions n ≥ 2 we obtain then the Cacciopoli type estimates (20)
for all weakly K-quasiregular mappings, for exponents p with λp(n)K < 1, by
choosing F = φf in (21).

As a consequence we obtain removability and regularity results for quasiregular
mappings, complementing the higher integrability theorems of Gehring [G2].

Corollary 5.4. Let 1 < K < ∞ and D ⊂ R
n. Then there is a number q1 < n

such that every weakly K-quasiregular mapping, contained in a Sobolev space
W 1,q

loc (D) with q1 < q, is quasiregular in D.
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Corollary 5.5. For all K ≥ 1 there is a δ = δ(n,K) > 0 such that all sets
E ⊂ R

n of dimension dim(E) < δ are removable for bounded K−quasiregular
mappings.

In the converse direction Rickman [Ri2] shows that there are Cantor sets
E ⊂ R

3 of arbitrarily small Hausdorff dimension that are not removable for some
bounded quasiregular mappings. Very recently Bishop [Bi] extended the result to
quasiconformal mappings.

In conclusion, for n > 2 the optimal bounds for q1, δ in Corollaries 5.4 and
5.5 are still open. However, Iwaniec [I2] connects this with problems in nonlinear
elasticity and, in particular, with convexity questions. Recall that a function of
matrices F : Mnxm → R is quasiconvex if F(A)|D| ≤

∫

D
F(A +Dψ) for all A ∈

Mnxm and ψ ∈ C∞
0 (Rn,Rm). Quasiconvexity governs the lower semicontinuity

of the functionals I(u) =
∫

D
F
(

Du(x)
)

dx in the appropriate Sobolev spaces and
hence understanding the notion is a fundamental problem in higher dimensional
calculus of variations. An explicit necessary condition is that of rank-one convexity,
i.e. that t 7→ F(A + tB) is convex for all rank-one matrixes B. However, Sverak
[Sv] found examples showing that in general rank-one convexity is not sufficient
for quasiconvexity when n ≥ 2 and m ≥ 3.

Developing methods towards finding the precise bounds [I2] proves that the
functions

Fp(A) = |1−
n

p
||A|p − |A|p−ndetA, p >

n

2
,

are rank-one convex in all dimensions n ≥ 2. This gives support to the conjecture
that the optimal bound in (21) is λr(n) = |1 − n

p |, in other words that Fp is

quasiconvex at A = 0. If that is indeed the case, then the optimal regularity
bounds of Corollaries 2.2 - 2.5 generalize to all dimensions n, i.e. 5.4, 5.5 hold with
q = nK

K+1 , δ = n
K+1 and K-quasiconformal mappings have locally p−integrable

derivatives for p < nK
K−1 . Combined with arguments originally due to Burkholder

[Bu] this would also prove the above mentioned conjecture for the Lp-norms of the
Beurling transform.

It seems evident that further advances in quasiconformal regularity require a
deeper understanding of the notion of quasiconvexity in the plane and as well as
under special symmetries in higher dimensions.
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[MSS] Mañé R., Sad P. and Sullivan D., On the dynamics of rational maps, Ann. Sci. École
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