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Singularity and Regularity | Loal and Global

Michael Christ

Abstract. There exists a smoothly bounded, pseudoconvex domain in
C

2 for which the Bergman projection fails to preserve the class of func-
tions which are globally smooth up to the boundary. The counterexample
is explained and placed in a wider context through a broader discussion
of the local and global regularity of solutions to subelliptic and more
degenerate partial differential equations in various function spaces.
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1 Introduction

Consider a bounded open set Ω ⊂ C
n, assumed always to have C∞ boundary.

The Bergman projection B is the orthogonal projection from L2(Ω) (with respect
to Lebesgue measure) onto the closed subspace consisting of all L2 holomorphic
functions. Our purpose is to explain and to place in a wider context the following
counterexample.

Theorem 1. [8] There exists a smoothly bounded, pseudoconvex domain Ω ⊂ C
2

for which the Bergman projection fails to preserve C∞(Ω).

Barrett [1] had given a nonpseudoconvex example, but the issue is most nat-
ural for pseudoconvex domains. The first motivation was Bell and Ligocka’s dis-
covery that if C∞(Ω) were always preserved then any biholomorphic mapping
between two (smoothly bounded) pseudoconvex domains would extend smoothly
to a diffeomorphism of their closures; this in turn would have implications for
the classification of domains up to biholomorphism by means of boundary invari-
ants.1 Secondly, it is one of many problems about the regularity of solutions of
the ∂̄–Neumann problem and related PDE.

This paper stresses the author’s own work. Because of rigid limitations on
the lengths of text and bibliography, the important contributions of many au-
thors are slighted, including S. Baouendi, E. Bernardi, A. Bove, D. Catlin, S.-
C. Chen, D. Geller, C. Goulaouic, N. Hanges, B. Helffer, A. A. Himonas, M. Der-
ridj, V. Grušin, G. Komatsu, J. J. Kohn, G. Métivier, Pham The Lai, D. Robert,
N. Sibony, D. Tartakoff, and C.-C. Yu. A more complete bibliography and discus-
sion are in [10].

1The question of boundary extendibility of biholomorphic mappings remains open.
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2 Some Background

Except for very symmetric domains, the best method known for analyzing the
Bergman projection is by means of the ∂̄–Neumann problem. This is a boundary
value problem2 �u = f on Ω, with boundary conditions u ∂̄ρ = 0 and ∂̄u ∂̄ρ =
0 on ∂Ω, where u, f are (0, 1) forms, ρ is any defining function for Ω, � = ∂̄∂̄∗+∂̄∗∂̄
and denotes the interior product of forms.

� is simply the Laplacian times the identity matrix, but the boundary con-
ditions are noncoercive. In C

n a Dirichlet condition is imposed on one of the n
components of u; on each of the other components is imposed a complex Neumann
condition; however the problem does not decouple into separate scalar problems,
instead there is an interaction between the good (Dirichlet) component and bad
(complex Neumann) components. This interaction, and consequently the regular-
ity of solutions, depend heavily on the complex geometry of the boundary.

For any pseudoconvex, bounded, smoothly bounded domain Ω there exists for
each f ∈ L2 a unique solution u ∈ L2 which satisfies the boundary conditions in
an appropriate sense; the bounded linear operator N mapping f to u is called the
Neumann operator. The Bergman projection is related to N by Kohn’s formula
B = I − ∂̄∗N∂̄. In particular, if the ∂̄–Neumann problem is globally regular in
the sense that N preserves C∞(Ω), then B also preserves C∞(Ω). In C

2 these
properties are actually equivalent; there is a less simply formulated generalization
in higher dimensions.

More commonly studied is hypoellipticity. The ∂̄–Neumann problem is said
to be hypoelliptic (in C∞) if for every p ∈ Ω and f ∈ L2(Ω) which is C∞ near p,
the solution u likewise is C∞ near p. A partial differential operator L is said to be
hypoelliptic (in C∞) in an open set U if for any distribution, u ∈ C∞ in any open
subset of U where Lu ∈ C∞. These notions can be modified by replacing C∞ by
other function classes such as Cω, the real analytic functions, or Gs, the Gevrey
classes. Hypoellipticity implies global regularity.

The issue in hypoellipticity is whether N transports singularities in f from
one place to another, while in global regularity the issue is whether N creates

singularities out of nothing. We will argue in §5 that this point of view, though
literally correct, is misleading.

Global regularity is a very weak property. A standard example is L = ∂x1
+

α∂x2
on a two-torus, where α ∈ R is constant; L is globally regular, unless α has

exceptional Diophantine properties, yet is never hypoelliptic. Similarly, on any
compact Lie group, convolution with any distribution preserves C∞(G).

The ∂̄–Neumann problem is hypoelliptic if Ω is strictly pseudoconvex or more
generally is of finite type. The latter condition is necessary for subellipticity, but
not for hypoellipticity; see for instance [13].

For C2, the ∂̄–Neumann problem is closely related to sums of squares of (two)
real vector fields in a three real dimensional space.3 Indeed, the general method
of reduction to the boundary reduces matters to an equation �+v = g on ∂Ω,
where the pseudodifferential Calderón operator �+, near its characteristic variety

2In this paper only the ∂̄–Neumann problem for forms of bidegree (0, 1) will be discussed.
3In higher dimensions matters are more subtle.
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Σ ⊂ T ∗∂Ω (and modulo an elliptic factor), takes the form ∂̄b ◦ ∂̄
∗
b , modulo certain

lower order terms which are omitted here to simplify the exposition. Here ∂̄b
is a Cauchy-Riemann operator associated to the CR structure on ∂Ω; thus the
complex geometry of ∂Ω enters the problem quite directly. Locally ∂̄b = X + iY
where X,Y are everywhere linearly independent, smooth real vector fields. Thus
∂̄b ◦ ∂̄∗b = −X2 − Y 2 + i[X,Y ] modulo relatively harmless lower order terms.
Pseudoconvexity guarantees that the principal symbol of i[X,Y ] is nonnegative
near Σ, so it does not substantially alter the character of −X2 − Y 2. Henceforth
we assume always that n = 2.

The ∂̄–Neumann problem is said to be compact if N is a compact mapping
from L2 to L2. It is exactly regular in the Sobolev space Hs if N maps Hs(Ω) to
itself, and is simply said to be exactly regular if it is exactly regular in Hs for every
s ≥ 0. A simple perturbation argument shows that for any Ω there exists δ > 0
such that exact regularity holds in Hs for all 0 ≤ s < δ. Subellipticity implies
compactness, which implies exact regularity, which implies global regularity in C∞.
All existing proofs of global regularity proceed by establishing exact regularity.
The other two implications just stated are not reversible; nor does compactness
imply hypoellipticity.

Compactness is easily shown to fail for domains in C
2 whose boundaries con-

tain one-dimensional complex disks. No satisfactory characterization is known;
Matheos [19] has constructed Hartogs domains in C

2 whose boundaries contain no
complex disks, yet for which N is noncompact.

Global regularity can hold without compactness. It holds in the presence
of sufficient symmetry, no matter how degenerate the domain. A related but
deeper theorem of Boas and Straube [3] requires only an approximate symmetry:
it suffices to have a smooth real vector field T on ∂Ω which is everywhere transverse
to the complex tangent space, and for which [T,X] and [T, Y ] belong everywhere
to the span of X,Y (where X,Y denote the real and imaginary parts of ∂̄b in
local coordinates). Moreover a weaker approximate version of this condition still
suffices [3], and is quite important.

An interesting special class of domains consists of those for which the set W
of all weakly pseudoconvex boundary points is a smooth one-dimensional complex
manifold with boundary. To any such domain is associated [4] a cohomology class
α ∈ H1(W ), which vanishes if and only if there exists a vector field T having the
required weaker version of the above commutation property. α also admits complex
geometric descriptions. Consequently global regularity holds (a) whenever W is
simply connected, and (b) (paradoxically) whenever the CR structure is sufficiently

degenerate near W .

In the negative direction, Kiselman [18] proved that for certain nonsmooth
domains with corners, both exact and global regularity fail. Barrett [2] extended
the analysis to show that for the famous worm domains, exact regularity cannot
hold for large s; this left open the possibility that N might map Hs to Hs−ε for
all s ≥ 0 and ε > 0. Roughly speaking, he produced Kiselman’s domains as limits
of blowups of worm domains and used the common scaling of the two sides in the
inequality ‖Nu‖Hs ≤ C‖u‖Hs to pass from exact regularity for worm domains to
the same for Kiselman’s domains.
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The worm domains were originally invented by Diederich and Fornæss [14]
as examples of smoothly bounded, pseudoconvex domains whose closures lack4.
arbitrarily small pseudoconvex neighborhoods. A worm domain W ⊂ C

2 takes
the form

W = {z : |z1 + ei log |z2|
2

|2 < 1− φ(log |z2|
2)} (1)

with the following properties: (i) W has smooth boundary and is pseudoconvex;
(ii) φ ∈ C∞ takes values in [0, 1], vanishes identically on [−r, r] for some r > 0,
and vanishes nowhere else; and (iii) W is strictly pseudoconvex at every boundary
point where | log |z2|

2| > r. There do exist φ for which these properties hold [14].
The two caps, where | log |z2|| > r, serve to make W be bounded. Properties of
worm domains include: (iv) The set of all weakly pseudoconvex points of ∂W is the
annular complex manifold with boundary Ar = {z : z1 = 0 and | log |z2|

2| ≤ r}.
(v) The cohomology class α ∈ H1(Ar) is nonzero. (vi) There is a one-parameter
global symmetry group, ρθ(z) = (z1, e

iθz2) for θ ∈ R.

3 Comments on the proof

The proof of Theorem 1 demonstrates that global regularity fails for all worm
domains; moreover N and B fail to map C∞(W) to Hs, where s(r) tends to
zero as r → ∞. Siu [24] has given an alternative proof that there exist worm
domains for which B fails to map C∞(W) to a Hölder class Λs(W); he obtains
good control on the dependence of s on r. Grosso modo he shows that the two caps
can be chosen so that their effects on B(f) cancel for a certain f , reducing matters
to Kiselman’s analysis. Both proofs exploit special features of worm domains and
appear quite limited in scope. Only the original proof will be discussed here.

Boundary reduction leads to a global regularity problem for a pseudodiffer-
ential equation on the real three-dimensional manifold ∂W; the pseudodifferential
operator is closely analogous to −X2 − Y 2 for certain real vector fields. With
respect to the symmetries ρθ, L

2(∂W) decomposes by Fourier analysis into or-
thogonal subspaces Hj . The equation respects this decomposition. Fixing any
such j, one may identify functions in Hj with functions of two real variables.

A model captures the essence of the situation. Fix an open neighborhood V
of A = [−r, r] × {0} ⊂ R

2, with coordinates (x, t). Let L = −X2 − Y 2 + b(x, t)
where X = ∂x, Y is a real vector field which in the region |x| ≤ r takes the form
[a(x)t+O(t2)]∂t with a nowhere vanishing, and X,Y, [X,Y ] span the tangent space
everywhere on V \A. Suppose moreover that Re 〈Lu, u〉 ≥ c‖u‖2L2 for all u ∈ C2

supported in V , and likewise for the transpose of L.
The last hypothesis mimics the L2(W) boundedness of N . A corresponds to

the set of all weakly pseudoconvex points in ∂W; L is hypoelliptic on V \A. The
condition a(x) 6= 0 corresponds to the nonvanishing of α ∈ H1(W); if a(x, t) ≡ 0
for |x| ≤ r, then L is more degenerate but paradoxically becomes globally regular,
as follows from the method of [3]. Under the hypotheses stated, there exists
u /∈ C∞(V ) such that Lu ∈ C∞(V ). The proof is quite indirect; no construction
of singular solutions is known to me. Of its three steps, the principal one is:

4Provided that the parameter r below is ≥ π.
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Proposition 2. There exists a discrete set Σ ⊂ [0,∞), with 0 /∈ Σ, so that for

every s /∈ Σ, one has ‖u‖Hs ≤ Cs‖Lu‖Hs for every u ∈ C∞
0 (V ).

The hypotheses ensure that L−1 : L2 7→ L2 is well defined and bounded. Step
2 is to show5 that L−1 cannot map Hs

0 to Hs for large s. Supposing the contrary,
scaling (x, t) 7→ (x, λt), and letting λ→ ∞ as in [2], one deduces that the limiting
operator L = −∂2x−(a(x)t∂t)

2+b(x, 0) on [−r, r]×(0,∞), with Dirichlet boundary
conditions at x = ±r, must be exactly regular in a (homogeneous) Sobolev space
of the same order s.

Applying the Mellin transform with respect to t and conjugating by ∂st , one
arrives at ODEs −∂2x−a

2(x)(s+ iτ)2+ b(x, 0), for τ ∈ R, with Dirichlet boundary
conditions on [−r, r]. There must exist nonlinear eigenvalues σ+iτ for which there
are nonzero solutions f (with f(±r) = 0); f(x)tσ+iτ is then a solution of the two
variable Dirichlet problem, and is singular at t = 0. Consequently L−1 cannot
preserve Hs for s > σ + 1

2 .
Step 3 is merely to observe that if L−1 did map C∞

0 (V ) to C∞(V ) then
because L−1 is bounded on L2, a density argument combined with step 1 would
imply that L−1 maps Hs

0(V ) to Hs(V ), for all s /∈ Σ, contradicting step 2.
The more intricate analysis for Step 1 divides naturally into three overlapping

regions: (i) the complement of A, where L is subelliptic; (ii) the Cartesian product
of [−r, r] with an arbitrarily small neighborhood of 0, where the natural tool is
Mellin analysis in the t coordinate and reduction to properties of the family of
one dimensional Dirichlet problems described above, modulo certain error terms;
and (iii) an arbitrarily narrow transitional region r ≤ |x| < r + δ, for which little
information is available; ‖u‖L2 ≤ Cδ+1‖∂xu‖L2 for functions supported there. The
final ingredient is an a priori inequality ‖∂xu‖Hs ≤ Cs‖Lu‖Hs + Cs‖u‖Hs . This
combined with the three region analysis yields the proof.

4 Other regularity problems

Henceforth we discuss the regularity of solutions of Lu = f where L =
∑

j X
2
j

and the Xj are real vector fields in some open set or compact manifold without
boundary, denoted in either case by V . Their coefficients are assumed to belong to
whichever function space we are working in. (Many of the results do however have
analogues for the ∂̄–Neumann problem.) Regularity in C∞, Cω and to a lesser
extent Gs, will be discussed, in both the global and local (that is, hypoellipticity)
senses. There are two types of positive results for each function space F : (a) If L
is sufficiently strong then it is hypoelliptic in F . (b) If L is arbitrarily weak but
satisfies an appropriate commutation condition then it is still hypoelliptic in F .
We assume an inequality valid for all u ∈ C2

0 :

∫

|û|2(ξ)w2(ξ) dξ ≤ C
∑

j

‖Xju‖
2
L2 , (2)

where w(ξ) → ∞ as |ξ| → ∞, suitably interpreted in the manifold case.

5Certain points are slurred over in the discussion for the sake of brevity.
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C∞, global. (a) The validity of (2) with some w → ∞ is equivalent to com-
pactness, which implies global regularity. A type (b) result is that of Boas and
Straube [3]; here it is not required that w → ∞.

C∞, local. (a) If w(ξ)/ log |ξ| → ∞ as |ξ| → ∞ then L is C∞ hypoelliptic [20].
This is sharp in general. A consequence [13] is hypoellipticity of the ∂̄–Neumann
problem for any domain in C

2 for which the set of weakly pseudoconvex points is
a real hypersurface M ⊂ ∂Ω transverse to the complex tangent space, for which
the Levi form λ is ≫ exp(−c distance (z,M)−1) for all c > 0. A result of type
(b) is roughly as follows; for more precise statements see [17],[21] and the many
references therein.

Suppose that for any ray R ⊂ T ∗V and any small conic neighborhood Γ of R
there exists a scalar valued symbol 0 ≤ ψ ∈ S0

1,0 such that ψ ≡ 0 in some smaller
conic neighborhood of R, ψ ≥ 1 on T ∗V \Γ, and such that for each δ > 0 there
exists Cδ < ∞ such that for any relatively compact open subset U ⋐ V and for
all u ∈ C2

0 (U) and each index i,

‖Op
[

log〈ξ〉{ψ, σ(Xi)}
]

u‖2 ≤ δ
∑

j

‖Xju‖
2 + Cδ‖u‖

2 (3)

Then L is hypoelliptic, indeed microhypoelliptic, in V . Here Op(·) denotes the
pseudodifferential operator with the indicated symbol, and {·} the Poisson bracket.

Cω, local. (a) w(ξ) ≥ c|ξ| is equivalent to ellipticity, which by a theorem of
Petrowsky, implies analytic hypoellipticity. (b) Denote by Σ ⊂ T ∗V the charac-
teristic variety of L. By assumption, Σ is conic. Assume that Σ is a manifold,
and that the symbol of L vanishes to order exactly two at each point of Σ. Sup-
pose that for each p ∈ T ∗V and each small neighborhood W of p, there exists
ψ ∈ Cω(W ) such that ψ(p) = 0, ψ > 0 near the boundary of W , and Hσj

(ψ) ≡ 0
in W , where Hσj

, here and below, denotes the Hamiltonian vector field associated
to the principal symbol of Xj . Then L is analytic hypoelliptic, by a theorem of
Grigis and Sjöstrand6 [16]. A closely related commutation condition appears in
the work of Tartakoff.

Gs, local. (a) If (2) holds with w(ξ) = |ξ|1/s then L is hypoelliptic in the
Gevrey class Gs by a theorem of Derridj and Zuily; this is the optimal condition on
w. A type (b) result is in [17]. Two examples indicate the intricacy of the problem.
(i) [9] In R

3 with coordinates (x, y1, y2), the operator ∂
2
x+x

2(m−1)1∂2y1
+x2(n−1)∂2y2

is hypoelliptic in Gs if and only if s ≥ max(n/m,m/n); however it satisfies (2)
only with w(ξ) ∼ |ξ|1/max(n,m). (ii) [11] In R

2 with coordinates (x, t), for p ≥ 1,
∂2x + x2(m−1)∂2t + x2(m−1−k)t2p∂2t is hypoelliptic in Gs if7 s−1 ≤ 1− p̃−1(1−m−1)
where p̃ = p(m− 1)/k. The optimal w here is ∼ |ξ|1/m. In the positive direction
these results were obtained independently and in greater generality by Matsuzawa,
and were also proved by Bernardi, Bove and Tartakoff. The negative result for (ii)
for m = 2, k = 1, p = 1 is due to Métivier. An intriguing conjecture of Treves [26]
proposes to relate analytic hypoellipticity to the fine symplectic geometry of the

6The theorem is not formulated explicitly but does seem to be proved in [16].
7I am confident that this exponent can be proved to be optimal for many parameters m, p, k,

by the method used in [7] to disprove analytic hypoellipticity, but have not verified the details.
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characteristic variety Σ of L; these examples illustrate that at least for s > 1, Gs

hypoellipticity is not controlled by Σ alone.

Cω, global. The result and method in [7] show that there is no better result
of type (a) than for local Cω regularity. I know of no really satisfactory general
result of type (b), although there are many particular results of that flavor.

We turn to results in the negative direction, concentrating on the Cω case.
The theory here is fragmentary, with a large gap between counterexamples and
the results above. A common structure underlies the proofs. To L one associates
a one-parameter family of simpler operators, Lz; in all the results below, these
are ordinary differential operators.8 In simple cases, solutions to the ODE lead
to solutions of Lu = 0, by separation of variables. One proves the existence of at
least one nonlinear eigenvalue ζ ∈ C for which Lζ has a nonzero solution fζ in the
Schwartz class on R

1.

Analytic hypoellipticity implies that all solutions of Lu = f satisfy certain
uniform Cauchy-type inequalities in terms of f . When separation of variables
applies, scaling and fζ lead to a one-parameter family of solutions of L which
violate any such Cauchy inequalities as λ → ∞. For instance, for the Baouendi-
Goulaouic example ∂2x+x

2∂2t +∂
2
y , one has solutions u = exp(iλt+iζλ1/2y)f(λ1/2x)

where −ζ2, f are a Hermite eigenvalue and corresponding eigenfunction. This
method was pioneered by Olĕınik and Radkevič [22], and developed much further,
to situations where separation of variables does not apply directly, by G. Métivier.

Theorem 3 is a bit more complicated, and the proofs of Theorems 4 and 5 are
even more intricate, because separation of variables does not apply directly. The
latter two theorems rely on reasoning by contradiction. Assuming the Cauchy
inequalities, the structure of the equation is used to deduce stronger a priori

bounds on solutions. Exact solutions of Luλ = fλ for precisely chosen fλ are then
proved to be well controlled by solutions of a simpler related partial differential
equation, which in turn can be analyzed by separation of variables. Eventually
solutions which are supposed to be holomorphic in certain regions are proved to
have poles, a contradiction. This reasoning has elements in common with the proof
of global C∞ irregularity for the worm domains.

Theorem 3. [5] Consider L = X2 + Y 2 in R
3, where X,Y are linearly indepen-

dent at each point. Suppose there exists a nonconstant curve γ ⊂ R
3 such that at

each point p ∈ γ, the tangent vector γ̇(p) is in the span of X,Y , and moreover

X,Y, [X,Y ] fail to span the tangent space to R
3 at p. Then L is not analytic

hypoelliptic.

This is a very special case of an older conjecture of Treves [25].

Next consider L = X2 + Y 2 in an open subset of R2, and L̃ = (X + iY )(X −
iY ), where X,Y do not simultaneously vanish at any point. Assume the bracket
hypothesis; for L̃ we also impose a certain natural pseudoconvexity hypothesis
(see [6]). The positive parts of the following theorem are special cases of an old
theorem of Grušin.

8Barrett has studied nonlinear eigenvalue problems for elliptic PDE on smoothly bounded
Riemann surfaces, which are relevant to global regularity for the ∂̄–Neumann problem.
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Theorem 4. [6] L̃ is microlocally analytic hypoelliptic if and only if there exist

coordinates (x, t) in which span{X,Y } = span{∂x, x
m−1∂t}, as C

ω(R3)-modules,

for some m ≥ 1. For generic9 pairs X,Y , L is analytic hypoelliptic if and only if

the same condition holds.

The generalization to more than two vector fields (for L) is straightforward,
but matters are much subtler in R

n for n > 2.

Theorem 5. [7] There exists a bounded, pseudoconvex domain Ω ⊂ C
2 with Cω

boundary, for which the Szegö projection fails to preserve Cω(∂Ω).

F. Tolli has shown that, in contrast to the C∞ case, there exists such a domain
which is strictly pseudoconvex except at a single isolated point.

5 A metric in phase space

For definiteness let L =
∑

X2
j be a sum of squares of vector fields, in an open

subset of Rn. Let σj(x, ξ) be the principal symbol of Xj and Hσj
the associated

Hamiltonian vector field in T ∗
R

n. Assume the bracket hypothesis of Hörmander
to hold to some order ≤ m; define the effective symbol σ̃(x, ξ) to be the square root
of

∑

I |σI(x, ξ)|
2/|I|, where each σI is an iterated Poisson bracket of the functions

σj , I = (j1, . . . j|I|), 1 ≤ |I| ≤ m.
All the positive results above are consistent with a vague and partly conjec-

tural principle: “energy” propagates in phase space along the integral curves of
Hσj

, while decaying at a rate dictated by σ̃. An analogue is the Feynman-Kac
formula for −∆+V with potential V ≥ 0; heat propagates along Brownian paths,
decaying at a relative rate proportional to V . From this point of view, global and
local regularity are similar notions; the former fails when too much energy is trans-
ported from small |ξ| to large |ξ|, whereas (micro)local regularity fails whenever
too much energy is transported from any one place to another in phase space.

To make this more precise we define [12] a metric ρL on T ∗
R

n: ρL(p, q) is
the supremum of |ψ(p) − ψ(q)|, over all C1 functions ψ : T ∗

R
n 7→ R satisfying

(i) |Hσj
ψ| ≤ σ̃ and (ii) |ξ|−1|∇xψ| + |∇ξψ| ≤ 1. This definition is distinct from

a phase space metric introduced by Fefferman [15] and Parmeggiani [23]; ρL is
unchanged if L is multiplied by a constant.

Points (x, ξ), (x′, ξ′) are said to be δ-separated if |x−x′|+(|ξ|+|ξ′|)−1|ξ−ξ′| ≥
δ. Denote by ρ∆ the metric associated by the above definition to the Laplacian;
essentially dρ2∆ = |ξ|2dx2 + dξ2.

The results concerning Cω/Gs hypoellipticity discussed in this paper are con-
sistent [12] with the requirement that for each δ > 0 there exists cδ <∞ such that

for all δ-separated pairs p, q, ρL(p, q) ≥ cδρ
1/s
∆ (p, q) (with s = 1 for Cω = G1). For

example, the exponent [1−p̃−1(1−m−1)]−1 encountered above is exactly predicted
by this comparison inequality. The same is roughly true for C∞ hypoellipticity,
with the condition ρL(p, q)/ log ρ∆(p, q) → ∞ as ρ∆(p, q) → ∞, for δ-separated
points p, q, provided that an effective symbol σ̃ is defined in an ad hoc way on a

9See [6]. The genericity hypothesis is needed at present solely because the underlying nonlinear
eigenvalue problem is not completely solved.
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case by case basis. For global regularity the same remarks apply, provided merely
that δ-separatedness is replaced by the assumption that

∣

∣|ξ| − |ξ′|
∣

∣ ≥ δ|ξ|+ δ|ξ′|.
A fundamental question, then, is to what extent ρL controls the hypoellipticity

and global regularity of L. Skepticism is in order because only ∇ψ, rather than
higher-order derivatives, is taken into account. In existing proofs of hypoellipticity,
ψ belongs to an appropriate symbol class; in [16], for instance, it must be analytic,
with appropriate bounds as |ξ| → ∞.

A delicate example is X2 + Y 2 in R
3, with coordinates (x, y, t), where X =

∂x+b(x, y)∂t, Y = ∂y+a(x, y)∂t, a, b ∈ Cω are real, and ∂xa−∂yb ≡ x6+y6+x2y2.
It is shown in [12] that (i) ρL(p, q) ≥ cρ∆(p, q) for δ-separated points, but (ii) if
ψ is additionally required to belong to the standard class S1

1,0, then the modified
metric which results no longer satisfies the inequality. To determine whether or not
this operator is analytic hypoelliptic might well represent a substantial advance.
It would also be desirable to have proofs of negative results based on the same
point of view as ρL, rather than the nonlinear eigenvalue method.
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449.

[18] C. Kiselman, A study of the Bergman projection in certain Hartogs domains,
Proc. Symp. Pure Math. 52 (1991), Part 3, 219-231.

[19] P. Matheos, Failure of compactness for the d-bar Neumann problem for two

complex dimensional Hartogs domains with no analytic disks in the boundary,
UCLA Ph.D. dissertation, June 1998. To appear in J. Geom. Analysis.

[20] Y. Morimoto, A criterion for hypoellipticity of second order differential oper-

ators, Osaka J. Math. 24 (1987), 651-675.

[21] Y. Morimoto and T. Morioka, The positivity of Schrödinger operators and the

hypoellipticity of second order degenerate elliptic operators, Bull. Sc. Math. 121
(1997), 507-547.
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