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Retifiability, Analyti Capaity,

and Singular Integrals

Pertti Mattila

Abstract. This is a survey of some interplay between geometric measure
theory (rectifiability), complex analysis (analytic capacity) and harmonic
analysis (singular integrals). Vaguely, it deals with the following three prin-
ciples:

1. The analytic capacity of a 1-dimensional compact subset of the complex
plane C is zero if and only if E is purely unrectifiable.

2. The analytic capacity of a 1-dimensional compact subset E of C is pos-
itive if and only if the Cauchy singular integral operator is L2-bounded
on a large part of E.

3. Singular integrals behave nicely on an m-dimensional subset E of Rn if
and only if E is in some sense rectifiable.
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1. Analytic capacity; finite length. First a general remark: since the list
of complete references would be very long I have omitted many which the reader
can find in [C1], [D1], [G] or [M2]. The analytic capacity of a compact subset E
of C was defined by Ahlfors in 1947 as

γ(E) = sup
f

lim
z→∞

|zf(z)|

where the supremum is taken over all analytic functions f : C \ E → C such
that |f(z)| ≤ 1 and f(∞) = 0. Ahlfors showed that (see [G]) γ(E) = 0 if and
only if E is removable for bounded analytic functions. That is, whenever U is an
open set containing E, any bounded analytic function in U \ E has an analytic
extension to U . Or equivalently, the only bounded analytic functions in C \E are
constants. This is all very easy (but Ahlfors proved deep results about the existence
of an extremal and its properties) and this characterization of removability is quite
complex analytic. One would wish to find a geometric characterization. This is
often called the Painlevé problem, since Painlevé started to study it about 100
years ago.
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There are two very easy results, see [G] or [M2]: If the 1-dimensional Hausdorff
measure H1(E) = 0, then γ(E) = 0. If the Hausdorff dimension of E dimE > 1,
then γ(E) > 0. Thus the following recent theorem of David [D2] leaves the question
open only for sets E with H1(E) = ∞ and dimE = 1 (but there is quite a variety
of them).

1.1. Theorem. Let E ⊂ C be compact with H1(E) < ∞. Then γ(E) = 0 if and
only if H1(E ∩ Γ) = 0 for every rectifiable curve Γ.

Sets E such that H1(E ∩ Γ) = 0 for every rectifiable curve Γ are called purely
unrectifiable according to Federer’s terminology. Besicovitch studied their prop-
erties extensively in the 20’s and 30’s and called them irregular. They and their
rectifiable (regular) counterparts and higher dimensional generalizations are quite
basic in geometric measure theory.

I discuss the proof of Theorem 1.1, which also brings forth clearly the role of
singular integrals. Suppose first that E is not purely unrectifiable. Then it meets
some rectifiable curve in positive length. Some rather easy arguments show that it
meets also some Lipschitz graph Γ with small Lipschitz constant in positive length.
Calderòn showed in 1977 that the Cauchy singular integral operator CΓ,

CΓg(z) = lim
ε→0

∫

Γ\B(z,ε)

g(ζ)

ζ − z
dH1ζ,

is bounded in L2(Γ) for such a Γ. (Later Coifman, McIntosh and Meyer showed
that this is true for all Lipschitz graphs.) By that time it was already known, see
[C1], for example, that then there is some bounded non-negative function h on Γ
such that f = CΓh is bounded in C \ E. Thus γ(E) > 0.

The last step is based on a duality argument using the Hahn–Banach theorem
and no constructive method of finding a non-constant bounded analytic function
in C\E is known even if Γ is C1. If it is C1+ε, then such a method exists, see [G].

Suppose then that γ(E) > 0. We should find a rectifiable curve Γ such that
H1(E ∩ Γ) > 0. First, there is a non-constant bounded analytic function f in
C\E vanishing at infinity, and an easy argument, see, e.g., [M2], using the Cauchy
integral formula yields a bounded Borel function ϕ : E → C such that f = CEϕ.

Let us assume that H1
(

E ∩ B(z, r)
)

≤ Cr for z ∈ C and r > 0; this is not a
really serious restriction. Then it is still easy to see that even the maximal function
C∗

Eϕ,

C∗
Eϕ(z) = sup

ε>0

∣

∣

∣

∣

∫

E\B(z,ε)

ϕ(ζ)

ζ − z
dH1ζ

∣

∣

∣

∣

is bounded in C. Suppose we would be lucky enough to find ϕ so that it is also
non-negative. Set µ = ϕH1|E. Using Fubini’s theorem as Melnikov and Verdera
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did in [MV] we get for all ε > 0,

∞ > C ≥

∫
∣

∣

∣

∣

∫

C\B(z,ε)

1

ζ − z
dµζ

∣

∣

∣

∣

2

dµz

=

∫∫∫

Aε

1

(z1 − z3) (z2 − z3)
dµz1 dµz2 dµz3 +O(1)

=
1

6

∫∫∫

Aε

∑

σ

1

(zσ(1) − zσ(3)) (zσ(2) − zσ(3))
dµz1 dµz2 dµz3 +O(1).

Here σ runs through all six permutations of {1, 2, 3} and Aε = {(z1, z2, z3) :
|zi − zj | > ε for i 6= j}. To get that the error term is bounded is an easy estimate
using µ

(

B(z, r)
)

≤ Cr for all z, r. Now a remarkable identity found by Melnikov
in [M] says that

∑

σ

1

(zσ(1) − zσ(3)) (zσ(2) − zσ(3))
= c(z1, z2, z3)

2

where c(z1, z2, z3) is the reciprocal of the radius of the circle passing through
z1, z2, z3 ∈ C. This is 0 if and only if these points are collinear. The number
c(z1, z2, z3) is called the Menger curvature of the triple (z1, z2, z3). Menger intro-
duced it in the early 30’s to define the curvature for continua in compact, convex
metric spaces, see [K]. Using the above formulas and letting ε→ 0, we obtain

c2(µ) ≡

∫∫∫

c(x, y, z)2 dµx dµy dµz <∞.

So now we have some geometric information about µ, and looking at it more closely
we find that “most” (in µ-sense) triples of points which lie close to each other must
be nearly collinear. This gives good hopes for a construction of rectifiable curves
which carry positive µ measure.

The following theorem was first proved by David and then Legér [L] gave a
different proof which also allows a higher dimensional version. Note that the
situation is somewhat similar to that in Jones’s traveling salesman result in [J].

1.2. Theorem. If µ = ϕH1|E, ϕ ∈ L∞(E), ϕ ≥ 0, H1(E) <∞ and c2(µ) <∞,
then there are rectifiable curves Γi such that

µ

(

C \
∞
⋃

i=1

Γi

)

= 0.

We have then that H1(E ∩Γi) > 0 for some i, and so E is not purely unrectifi-
able.

This would end the proof of Theorem 1.1 except that we have made the unjusti-
fied assumption that ϕ ≥ 0. Note that in the above argument to get c2(µ) <∞ we
did not need the uniform boundedness of the Cauchy transform; we only needed
the boundedness in L2. Hence Theorem 1.1 follows if we can show:
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1.3. Theorem. If there is a non-zero ϕ ∈ L∞(E) such that C∗
Eϕ is bounded,

then there is F ⊂ E such that H1(F ) > 0 and the truncated operators CF,ε;

CF,εg(z) =

∫

F\B(z,ε)

g(ζ)

ζ − z
dH1ζ,

are uniformly bounded in L2(H1|F ).

Then we can use the constant function 1 to get c2(H1|F ) <∞.
Theorem 1.3 follows from [DM] and [D2]. First ϕ was transformed to an accre-

tive function ψ (i.e., Reψ ≥ δ > 0) with L2-estimates for the Cauchy transform in
[DM] with a construction relying on ideas of Christ from [C2], where Theorem 1.3
was proved for AD-regular sets (see Section 3). Then David proved a general T (b)-
theorem in [D2] yielding Theorem 1.3. A little later Nazarov, Treil and Volberg
gave in [NTV3] a different simpler proof for Theorem 1.3 also obtaining a general
T (b)-theorem.

The problem of removable sets for Lipschitz harmonic functions is very much
like that for bounded analytic functions. Theorem 1.1 is valid also in this case,
but we don’t know if the two classes of removable sets are exactly the same. The
reason for this similarity is that rather than studying bounded harmonic functions
we are studying harmonic functions with bounded gradient and the gradient of
the fundamental solution c log |z| is essentially the Cauchy kernel.

This problem is interesting also in R
n. There are several partial results, see

[MP], but nothing like the analog of Theorem 1.1, even for (n − 1)-dimensional
AD-regular sets. Now the kernel is |x|−nx, x ∈ R

n, but we don’t know anything
useful to replace Melnikov’s identity with.

2. Analytic capacity; infinite length. If H1(E) < ∞, then by a result of
Besicovitch E is purely unrectifiable if and only if

(2.1) H1
(

pθ(E)
)

= 0 for almost all θ ∈ [0, π),

where pθ is the orthogonal projection onto the line making angle θ with the real
axis. Vitushkin conjectured in the 60’s that (2.1) would be equivalent to γ(E) = 0
for all compact sets E ⊂ C. Thus Theorem 1.1 says that he was right when
H1(E) < ∞. The general conjecture was shown to be false in [M1] where it was
shown that (2.1) is not conformally invariant, but this did not say which of the
two implications is false. In [JM] Jones and Murai gave a concrete example where
(2.1) holds but γ(E) > 0. It is not known if γ(E) = 0 implies (2.1). Now Melnikov
has a new conjecture:

2.2. Conjecture. For any compact E ⊂ C, γ(E) > 0 if and only if there is a
(non-negative) Radon measure µ on E such that µ(E) > 0, µ

(

B(z, r)
)

≤ r for all

z ∈ C, r > 0, and c2(µ) <∞.

Melnikov proved in [M] that the “if part” of this conjecture is true. In fact, he
proved the quantitative estimate

γ(E) ≥ C
µ(C)3/2

(

µ(C) + c2(µ)
)1/2

,
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if µ is as in Conjecture 2.2.
Using this result of Melnikov, Joyce and Mörtes have given in [JoM] another

example with simpler arguments where (2.1) holds but γ(E) > 0.
Conjecture 2.2 is not known even for non-degenerate continua; then the analytic

capacity is positive. Another test case, which is open, is given by the Cantor sets
of Garnett in [G, p. 87]. There is a mistake in [G] and the characterization for
γ(E) > 0 given in Theorem 2.2 is not correct, see [M3] and [E] for this and some
related results.

3. Singular integrals on regular sets. A compact subset E of C is called
AD-regular (Ahlfors–David) if there exists a positive number C such that

r/C ≤ H1
(

E ∩B(z, r)
)

≤ Cr for z ∈ E, 0 < r < 1.

The following theorem was proved in [MMV] using the above relations between the
Cauchy kernel and Menger curvature. This also gave Theorem 1.1 for AD-regular
sets. Some generalizations, but still partial results of Theorem 1.1, were given by
Lin [Li] (doubling condition) and Pajot [P] (positive lower density).

3.1. Theorem. Let E ⊂ C be AD-regular. The truncated operators CE,ε are
uniformly bounded in L2(H1|E) if and only if E is uniformly rectifiable, that is,
there is an AD-regular curve containing E.

The uniform L2-boundedness of CE,ε is equivalent to the boundedness of the
principal value operator CE , if we know that the principal values exist almost
everywhere for a dense set of functions. But we don’t know this a priori, hence
the above formulation. This is also equivalent to the boundedness of the maximal
operator C∗

E .
It is obvious what the AD-regularity means for m-dimensional subsets of Rn;

we just replace r by rm and H1 by the m-dimensional Hausdorff measure Hm. It
is less obvious what the uniform rectifiability should mean if m > 1, but David
and Semmes have shown that there exist several natural equivalent definitions
and they have developed an extensive theory of such sets, see [DS]. They have also
studied singular integrals on them and shown that they are bounded in L2(Hm|E)
for a large class of Calderón–Zygmund kernels. The converse is also valid, i.e., L2-
boundedness implies uniform rectifiability, if one assumes the L2-boundedness for
the operators related to all kernels of the type ϕ(|x|) |x|−m−1x, x ∈ R

n, where ϕ is
a smooth non-negative function. However, it is not known if the converse is valid if
one only uses one single kernel, for example, the Riesz kernel Km(x) = |x|−m−1x.
The problem is again that we don’t have anything like the curvature identity.
Farag [F] has looked at different ways of forming sums of permutations starting
from Km, but all of them take both positive and negative values and are thus
difficult to use.

We can also ask if results like Theorem 3.1 hold for other kernels in the plane.
The same method works for the real and imaginary parts of the Cauchy kernel,
for example, but I don’t know any other essentially different kernel for which this,
or some other, method would work. Joyce has looked at the kernels |z|−2k z2k−1,
k = 1, 2, . . . , and again found for the sum of permutations both positive and
negative values, when k > 1.
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One can also study m-regular sets E for non-integral m, but Vihtilä showed in
[Vi] that then the singular integral operator related to Km is never bounded in
L2(Hm|E).

4. Existence of principal values. In the previous section we saw that the
L2-boundedness of the singular integral operators is often equivalent to uniform
rectifiability. For non-uniform rectifiability there are characterizations with the
existence of principal values. A subset E of Rn is called m-rectifiable if there are
C1 (or, equivalently, Lipschitz) m-dimensional surfaces Si such that

Hm

(

E \

∞
⋃

i=1

Si

)

= 0.

4.1. Theorem. Let E ⊂ C be H1 measurable with H1(E) < ∞. Then E is
1-rectifiable if and only if

lim
ε→0

∫

E\B(z,ε)

1

ζ − z
dH1ζ

exists for H1 almost all z ∈ E.

The fact that the existence of principal values implies rectifiability was proved
by Tolsa in [T3] using results of Nazarov, Treil and Volberg from [NTV3] and the
curvature method. Hence this is restricted to the Cauchy kernel and 1-dimensional
sets. It is not known if the analogue of Theorem 4.1 holds for m-dimensional sets
if m ≥ 2. The existence of principal values was proved in [MM]. Verdera gave a
different proof in [V] which also works in general dimensions (see also [M2]). With
an extra condition on positive lower density we have the following, see [MPr] or
[M2].

4.2. Theorem. Let E ⊂ R
n be Hm measurable with Hm(E) < ∞. Then E is

m-rectifiable if and only if for Hm almost all x ∈ E,

lim inf
r→0

r−mHm
(

E ∩B(x, r)
)

> 0

and

lim
ε→0

∫

E\B(x,ε)

x− y

|x− y|m+1
dHmy

exists.

Huovinen proved in [H] a result analogous to Theorem 4.2 for some other kernels
in C.

Tolsa has given in [T2] a complete geometric characterization, involving curva-
ture, of those Radon measures µ on C for which

Cν(z) = lim
ε→0

∫

C\B(z,ε)

1

ζ − z
dνζ

exists for µ almost all z for all Radon measures ν in C.
There is another very nice result in [T2]: if the Cauchy operator g 7→

(1/z) ∗ (gdµ) is bounded in L2(µ) (meaning again the uniform boundedness of
the truncated operators), then the principal values Cµ(z) exist for µ almost all
z ∈ C. This is again known (essentially) only for the Cauchy kernel, since the
proof uses curvature.
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5. Calderón–Zygmund theory in non-homogeneous spaces. We have al-
ready mentioned several times the works of Nazarov, Treil and Volberg [NTV1–3]
and Tolsa [T1–3]. Their starting point was the following question. Let µ be
a Radon measure in R

n. If µ is doubling; µ
(

B(x, 2r)
)

≤ Cµ
(

B(x, r)
)

for all
x ∈ sptµ, r > 0 (or, in other words, (sptµ, µ) is a space of homogeneous type),
most of the Calderón–Zygmund theory of singular integrals is valid. Surprisingly,
the works mentioned above show that almost always the doubling condition is not
needed at all. Tolsa uses the curvature method, and this is again restricted to the
Cauchy kernel. Nazarov, Treil and Volberg have developed a beautiful method us-
ing random lattices of dyadic cubes and showing that with a large probability such
a lattice is in a good position in order that useful estimates can be established.
This works for general Calderón–Zygmund kernels in R

n. Then one obtains in
great generality such basic results as the equivalence of the L2-boundedness to
the Lp-boundedness for 1 < p < ∞ and to the weak L1-boundedness, Cotlar’s
inequality, T (1)- and T (b)-theorems.

The T (b)-theorem for singular integral operators T such as the Cauchy operator
says that if there exists b ∈ L∞(µ) such that Re b ≥ δ > 0 (this can be replaced
with weaker conditions) and T (b) ∈ BMO(µ), then T is bounded in L2(µ). The
first such theorem without any doubling condition was proved by David in [D2];
this was the last missing piece in the proof of Theorem 1.1. There is some difference
with David’s T (b)-theorem and that of Nazarov, Treil and Volberg since David is
defining BMO with generalized “dyadic cubes” which depend on the measure µ.
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1–39.
[T1] X. Tolsa, L2-boundedness of the Cauchy integral operator for continuous measures, to

appear in Duke Math. J.
[T2] X. Tolsa, Cotlar’s inequality and existence of principal values for the Cauchy integral

without the doubling condition, to appear in J. Reine Angew. Math.
[T3] X. Tolsa, Curvature of measures, Cauchy singular integral and analytic capacity, Ph.D.

Thesis, Universitat Autonoma de Barcelona (1998).
[V] J. Verdera, A weak type inequality for Cauchy transforms of measures, Publ. Mat. 36

(1992), 1029–1034.
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