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0. This text can be complemented by the survey [M96] where surprising geo-
metric phenomena observed in high dimensional spaces are described. The presen-
tation there is more geometric with the emphasis on convex asymptotic geometry.
In this talk we try to understand the reasons behind these very unusual geometric
phenomena. A perceived random nature of high dimensional spaces we observe is
at the root of the reasons I will discuss in the talk and the patterns it produces
create the unusual phenomena we observe.

A more technical description of the results of the Asymptotic Theory of Finite
Dimensional Normed Spaces up to 1986 can be found in [M86]. The following
surveys and books may complete the picture in the direction of Local Theory:
[MS86], [P89], [TJ88], [LM93], [M92]. For a description of the Concentration
Phenomenon technique and its applications to Functional Analysis, Probability
and Discrete Mathematics, see [MS86], [M88a], [T95], [T96], [LT91], [AlSp92].

In the dictionary, “randomness” is exactly the opposite of “pattern”. Ran-
domness means “no pattern”. But, in fact, objects created by independent iden-
tically distributed random processes, being different, are in a sense, most undis-
tinguishable and similar in the statistical sense. It is a challenge to discover these
similarities, a pattern, in very different looking objects. We will do this on the
example of convex bodies and normed spaces of high dimension. In fact, when
we discover very similar patterns in arbitrary, and apparently very diverse convex
bodies or normed spaces of high dimension we interpret them as a manifestation
of the randomness principle mentioned above.

1. We demonstrate one such pattern through the following theorem. We first
put it in a non-precise “meta” form: for every convex compact body K ⊂ R

n there

corresponds an ellipsoid EK of the same volume (volK = vol EK) and with the

same barycenter – “a pattern” – which represents K in many respects.

To put this in an exact form we will need some notation.
Let X = (Rn, ‖ · ‖, | · |) be a normed space equipped with a norm ‖ · ‖ and the

standard euclidean norm | · |. Let D be the standard euclidean ball and K(= KX)
be the unit ball of the normed space (X, ‖ · ‖). We write |A| for the volume of the
set A. We call the family of convex bodies {uK | u ∈ SLn} associated with K
the family of its positions. We have two parallel languages to describe the same

1Partially supported by a Binational US-Israel Science Foundation Grant.

Documenta Mathematica · Extra Volume ICM 1998 · II · 665–677



666 V. Milman

results. On one hand, we construct some special ellipsoid, say E , which represents
the body K (in a sense which will be specified later), but on the other hand, we

may change the position of K and consider K̂ = uK, u ∈ SLn, where u is chosen
such that uE = λD (λ :=vol.rad. E = (|E|/|D|)1/n is the volume radius of E).
Then the euclidean ball λD now represents K̂; however this position of K is a
specially chosen position and our “pattern” is shifted from a “special ellipsoid” to
a “special position”. Below, we prefer the language of positions.

Theorem 1. ∃C s.t. ∀n and any four convex bodies Ki, i = 1, . . . , 4, of volume
radius 1, i.e. |Ki| = |D|, and with 0 being the centroid of Ki, the following is true:

there are positions K̂i = uiK, ui ∈ SLn, for every i, and a couple of orthogonal
operators {v1, v2} ⊂ O(n) so that the body

Q = Conv
[
(K̂1 ∩ v1K̂2) ∪ v2(K̂3 ∩ v1K̂4)

]

is C-close to the euclidean ball D, i.e. D/
√
C ⊂ Q ⊂

√
CD. Moreover, (i) the

probability that a randomly chosen couple {v1; v2} ⊂ O(n) × O(n) satisfies the
theorem is very high; it is larger than 1− 1/2n (this is the reason we will call such
a couple “a random couple”); (ii) for any v ∈ O(n)

vol. rad.(K̂1 ∩ vK̂2) ≥ 1√
C

and vol. rad. Conv(K̂1 ∪ vK̂2) ≤
√
C .

(We may say that ellipsoids Ei = u−1
i D represent “essential” symmetries of K,

but only in an “isomorphic” sense, and not in the “isometric” one as it is usual in
geometry.)

(This Theorem was proved by the author in the centrally-symmetric case; see
[M96] for references. For an extension to the general case, see [MP98].)

2. To continue with examples of very “regular” asymptotic behavior of an
arbitrary high dimensional space we need more notation. As before, let a normed
space X = (Rn, ‖ · ‖) be equipped with the euclidean norm | · |. Denote b = ‖Id :
(Rn, | · |) → (Rn, ‖ · ‖)‖ and a = 1

2 DiamKX . So, 1
a |x| ≤ ‖x‖ ≤ b|x|. The dual

norm ‖x‖∗ = supy 6=0
|(x,y)|
‖y‖ is naturally defined and then b = 1

2 DiamK0 where

the polar body K0 = KX∗ , X∗ is the dual space to X. Let M ≡
∫
Sn−1 ‖x‖dµ(x),

Sn−1 = ∂D be the unit euclidean sphere and µ(x) be the probability rotation
invariant measure on Sn−1. Similarly, M∗ is the expectation of ‖x‖∗ on the sphere
Sn−1, i.e. M∗ =

∫
Sn−1 ‖x‖∗dµ(x). There is the natural geometric meaning of M∗

as being half of the mean width of KX .
We will show below that these four numbers: a, b,M and M∗, uniquely de-

scribe (but again in an “isomorphic” sense) many geometric and analytic properties
of the space X (and its unit ball KX). Some of these properties are quantitively
described by the following parameters:

k(X)=max
{
k | µGn,k

{
E ∈ Gn,k

∣∣ 1
2M |x| ≤ ‖x‖≤2M |x|, for ∀x ∈ E

}
>1− k

n+k

}
,

where µGn,k
in the formula is the Haar probability measure on the Grassmannian

manifold Gn,k of all k-dimensional subspaces of n-dimensional space R
n,

t(X) = min
{
t | ∃ui ∈ O(n) and 1

2M · |x| ≤ 1
t

∑t
1 ‖uix‖ ≤ 2M |x|

}
.
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So, k(X) is a “local” parameter, meaning it describes the behavior of the sub-
spaces of a space which belongs to a set of properties we call “the local structure”,
and t(X) is a “global” parameter because it relates to a property of the whole
space. Let us also agree to write f ∼ ϕ when there are two universal constants
(independent of anything) c1 and c2 and c1ϕ ≤ f ≤ c2ϕ. So the two quantities ϕ
and f are uniformly (universally) equivalent.

Theorem 2. (i) ([M71]; [MS97]) k(X) ∼ n(Mb )2; (ii) [(BLM88]; [MS97]) t(X) ∼
( b
M )2. Therefore, these local and global parameters are related in a very precise

form: k(X) · t(X) ∼ n ([MS97]).

A few comments and interpretations:
(i) For any operator A : ℓn2 → X we may similarly introduce M(A) =∫

Sn−1 ‖Ax‖dµ(x) and k(A) (putting ‖Ax‖ instead of ‖x‖ in the definition of k(X)).

Then (i) may be rewritten in the form ‖A‖ ∼ M(A)
√

n/k(A). Here ‖A‖ is the
standard operator norm of operator A and this gives an asymptotic formula for
the operator norm through the average and some geometric parameters related to
the operator A.

(ii) Considering the dual space X∗ we have, of course, k∗ ≡ k(X∗) ∼
n(M∗/a)2, meaning that a “random” orthogonal projection PEK onto a subspace
E of dimension k∗, looks, up to a factor 4, like a euclidean ball: 1

2M
∗ · D(E) ⊂

PEK ⊂ 2M∗ ·D(E). Furthermore, for any integer n ≥ k ≥ k∗ and for a “random”
subspace E, dim E = k,

Diam PEK ∼ Diam K ·
√

k/n

and PEK ∼ M∗D(E) for k ≤ k∗ (in particular, Diam PEK is stabilized on 2M∗).
So, we observe the regular decay (by a factor

√
k/n) of the diameter of a

“random” k-dimensional projection of K till stabilization when this projection
becomes almost a euclidean ball itself, and this fact is true for any convex centrally
symmetric body – another pattern of behavior. It also provides us with an example
of ”phase transition” - a typical asymptotic phenomenon as we will see also later.

For quite a long time, we have known how to write very precise estimates, re-
flecting different asymptotic behavior of high dimensional normed spaces. Usually,
we knew that these estimates are exact on some important subclasses of spaces.
However, the new ”message”, based on many recent results, indicates that, in
fact, available estimates are exact for every sequence of spaces of increasing di-
mension (we can say, ”for every individual space”). We call such exact estimates
”asymptotic formulas”.

In the next three sections we will demonstrate more asymptotic formulas,
each of which represents a specific pattern of behavior of an arbitrary high dimen-
sional normed space. We would like to emphasize that it is less important in this
presentation how these formulas look. The central issue is that such asymptotic
formulas do exist and are applicable to any norm, that very little information on
a norm ( or a convex body) implies deep understanding of a complicated behavior
of these normed spaces.

3. Can we also describe how the ball M∗D(E) is “filled” by random projections
from the inside? A clear pattern of behavior is seen again in asymptotic formulas
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for the radius of the largest ball inscribed into the random projection PEK for
dimE = k, k ≫ k∗. We compute it in the dual form. This means that we compute
(estimate) the diameter of a random k-dimensional section of the polar body K0.
There is a well-known and useful fact, the so-called Low M∗-estimate (see [M85],
[PT86], [Gor88]), which gives a simply formulated upper bound for such sections.
However, it is not exact and is far from being the asymptotic formula we are
interested in. To perceive the kind of result that should be expected here, I will
mention one particular fact from [GM97a]: Let k = [n/2] and r be the solution
of the following equation: M∗(K ∩ rD) = 1

2r (the unique solution always exists);
then the diameter of a random k-dimensional central section of K is less than 2r.
On the other hand, solve the equation M∗(K ∩ r1D) = (1 − 1

48.36 )r1; a random
k-dimensional section of K has diameter greater than 1

60r1.
There is a more precise form of answer which requires deeper information

on the body K but is still easily computable (I am now taking a Computational
Geometry point of view). Define the following functions: for k = λn, 0 < λ < 1,

S∗
K(λ) =

∫

E∈Gn,k

M∗(K∩E)dµ(E) , and DK(λ) = 1
2

∫

E∈Gn,k

diam (K∩E)dµ(E) .

Theorem 3 ([GM98a]). Let 1
bD ⊂ K ⊂ aD and ab ≤ nt (the non-degeneracy

condition). Then ∀λ ∈ (0, 1)

S∗
K(λ) ≤ DK(λ) ≤ c′S∗

K(λ1)
/√

1− λ2

for λ = λ1λ2 (and λ1 − λ ≥ c′′t log n/n) and c′, c′′ two universal constants.

4. We will return to these asymptotic formulas but let us now continue our
search for patterns of asymptotically “similar behavior” of any convex set in R

n.
We will now study (following [LMS98]) the geometric structure of the level sets
K ∩ rSn−1 = A(r) and will see that, from a point of view we put forward below,
these sets in some interval of values of “r” appear very similar. Define

rt = min
{

1
2 Diam

t⋂

1

uiK | ui ∈ O(n)
}
,

and also the inverse function T (r) = min
{
t | ∃ui ∈ O(n) and

⋂t
1 uiK ⊂ rD

}
.

(So, T (rt) = t.) Of course, the meaning of T (r) is that there is a covering of
rSn−1 by T (r) rotations of rSn−1\A(r) and there is no covering with a smaller
number of rotations. Again, in the interval 2/b ≤ r ≤ 1/2M the function T (r) is
exactly described [LMS98]: log T (r) ≃ n/r2b2 , although under some kind of non-
degeneracy condition: br .

√
n/ log n (just note that always br ≤ b/2M .

√
n).

The exponential behavior of T (r) for r ≤ 1/2M (and any fixed number λ > 1
may be substituted for 2) changes to “polynomial” around level 1/M : Let T ∼
( b
M )2 · 1

ε2 ; then, (i) for a random choice of {ui}T1 ⊂ O(n), ∩uiK ⊂ 1+ε
M D, but, (ii)

for any choice {ui}T1 ⊂ O(n), the intersection ∩uiK 6⊆ 1
(1+ε)MD.

Of course, not for every spherical level r do different convex bodies look
similar. Consider, for example, the unit balls of ℓn∞ and ℓn1 (the cube and the
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cross-polytope) normalized so that they are inscribed in the euclidean ball D of
the same radius (say 1). Then the contact points with the sphere are in the first
case 2n and in the second, only 2n. Naturally, for r < 1 but close to 1, the
level sets are completely different. So, on what level does this phenomenon of
similarity of spherical level sets start? Naturally, in this language the maximal
such expected level cannot be above r2. So, can r2 be described by very little
“statistical” information about K? The answer is “Yes”:

Theorem 4 ([GM97b]). (i) r2 ≤
√
2DK(1/2) (we introduced the average diameter

DK(λ) above); (ii) there are universal numbers C > 1 and 0 < c < 1 such that
DK(c) ≤ C · r2.

I would like to recall that we also saw that DK(λ) is well described by the
well computable function S∗

K(λ).

5. Much more delicate analytic information about the level sets for r < 1/M
(and even slightly above this level) may, in fact, be provided in another language.

Let Mq =
( ∫

Sn−1 ‖x‖qdµ(x)
)1/q

, q ≥ 1, and let

tq(X) = min
{
t | ∃{ui}t1⊂O(n) such that

1

2
Mq|x| ≤

(1
t

t∑

1

‖uix‖q
)1/q

≤ 2Mq|x|
}
.

(Note, that the information on the level sets is obtained by choosing q such that
r = 1/Mq.) Then we again have asymptotic formulas describing the behavior of
Mq and tq.

Theorem 5 ([LMS98]). (i) Mq ∼ M1 for 1 ≤ q ≤ k(X) ∼ n(M/b)2, Mq ∼ b
√
q/n

for k(X) ≤ q ≤ n and Mq ∼ b for q ≥ n. (Note again a “phase transition”).

(ii) tq ∼ t1 (= t(X) ∼ (b/M)2) for 1 ≤ q ≤ 2, t
2/q
q ∼ t1(M1/Mq)

2 for 2 ≤ q;
again a phase transition. However, because also Mq has its phase transition,
we have two phase transitions for the function tq on the interval 1 ≤ q ≤ n:

tq ∼ (b/M)2 for 1 ≤ q ≤ 2, t
2/q
q ∼ (b/M)2 for 2 ≤ q ≤ k(X) and t

2/q
q ∼ n/q for

k(X) ≤ q ≤ n.

6. As another example of pattern-type behavior of any convex body in R
n, let

us mention the following recent fact, proved in [ABV98]:

Theorem 6. Let K be a convex body in R
n with 0 in its interior. For any ε > 0

the probability (measured by the standard Lebesgue measure on K) of two points,
say x and y, in K having K-distance of at most t =

√
2(1− ε), i.e. x− y ∈ tK, is

at most exp{−ε2n/2}. (Therefore there are exponentially many points in K such
that their pairwise differences do not belong to tK for t <

√
2(1− ε)).

So, we again see that the number “
√
2” which is natural for the euclidean ball

is also the crucial bound for any other convex body K.

7. Let us return to the study of the special position of the body K (or, equiv-
alently, the special ellipsoid) which we already encountered in Theorem 1. It is
usually called the M -position of K. Its formal definition is the following. Let
N(K,T ) denote the covering number of K by T (i.e. the minimum number of
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shifts of T which cover K). Then K is in an M -position (with parameter σ > 0)
if, for λ = (|K|/|D|)1/n

(∗) N(K,λD) ·N(λD,K) ·N(K0, λD) ·N(λD,K0) ≤ eσn .

(It is enough to assume N(K,λD) ≤ eσn and (∗) will follow with a different
σ1 = C · σ, where C is a universal number – see [MS97], [MP98].)

Theorem 7. There is a universal number σ > 0 such that any convex body K
with barycenter 0 has an M -position with parameter σ (i.e. ∃u ∈ SLn such that
uK is in this M -position).

(For centrally symmetric K, see [M88b] or [M96] for references or the book,
[P89]; extension for general convex bodies, [MP98]; generalization to centrally-
symmetric p-convex bodies, [BBP95]).

This position of K gives the “correct balance” between the body K (in such
a position) and the euclidean ball (or, between the norm and the euclidean struc-
ture). Let us explain this by some facts. First, we already demonstrated the use
of M -position of a body K in Theorem 1. A few more facts:

Theorem 8 ([MS97]). Assume that the unit ball K of a space X = (Rn, ‖·‖, |·|) is
in an M -position. Assume further that there are {ui}t1 ⊂ O(n) and 0 < r, C < ∞
such that

r|x| ≤ 1

t

t∑

1

‖uix‖ ≤ Cr|x| (for all x ∈ R
n) .

Then there is a C ′, depending on t, C and the σ-constant of the M -position only,
and v ∈ O(n) such that, for some r′,

r′|x| ≤ ‖x‖+ ‖vx‖ ≤ C ′r′|x| (for all x ∈ R
n) .

Note that the assumption that K is in an M -position (i.e. that the euclidean
structure is specially chosen for our norm ‖ · ‖) is absolutely essential. Without
this assumption, for any t ≪ n/ log n, and any λ < 1, one may construct a family
of norms (for spaces of dimensions increasing to infinity) such that some average
of t-rotations will be uniformly isomorphic to the euclidean norm, but no averages
of λt rotations can be uniformly equivalent to any euclidean norm (for other such
facts, see [MS97]).

Also we observe a remarkable “restructuring” of volume distribution over K
under “random” projections where “randomness” is understood in an M -euclidean
structure:

Theorem 9 ([M90]-symmetric case; [MP98]-general case). Let a convex set K
with barycenter at 0 be in an M -position. Then for any 0 < λ < 1 a random
orthogonal projection PEK ⊂ E ∈ Gn,[λn] has volume ratio bounded by a constant
C(λ, σ) depending only on the proportion of the space λ (dimE = [λn]) and the
constant σ of the M -position. (The volume ratio of a body T is the 1

n th power
of the ratio of |T | and the volume of the maximal volume ellipsoid inscribed in T ,
called John’s ellipsoid of T ; see [P89] for the importance of this notion in Local
Theory).
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8. Additional results. In this section I would like to give a brief review of
a few recent developments in Local Theory/Convexity.

(i) Brascamp-Lieb inequalities and their applications. In 1989 Keith Ball [Bal89]
discovered the relevance of the Brascamp-Lieb [BL76] inequalities to convex ge-
ometry. He put these inequalities in the following form:

Theorem 10. Let m ≥ n, (ui)
m
i=1 be unit vectors in R

n and let (ci)
m
i=1 be positive

real numbers such that
∑m

i=1 ciui ⊗ ui = In. Then for all non-negative functions
fi ∈ L1(R), i = 1, . . . ,m one has

∫

Rn

m∏

i=1

f ci
i (〈x, ui〉)dx ≤

m∏

i=1

(∫
f
)ci

.

The additional condition which relates the ui’s and the ci’s is often available
in convexity and describes, for example, the isotropicity of the John ellipsoid of a
given body K. The Brascamp-Lieb inequalities provide sharp upper estimates for
volumes. As an application K. Ball obtained sharp upper bounds for the volumes
of central linear sections of the unit cube. He also proved that the volume ratio of
any symmetric convex body in R

n is less than that of the cube [Bal89], and that
the simplex has maximal volume ratio [Bal91]. This article also contains a reverse
isoperimetric inequality: for every convex body K there exists an affine image

TK of K such that the ratio |∂(TK)|/|TK|n−1

n is less than the same quantity
computed for the simplex (in the symmetric case, the cube is extremal). For other
applications, see [SSc95], [Sc98].

A general reverse Brascamp-Lieb inequality conjectured earlier by Ball [Bal91]
was proved by F. Barthe [Bar98b]. His proof uses measure transportation, a new
tool started by the result of Brenier [Br91] and developed by McCann [MC95]. It
provides Lieb’s general inequality and its converse altogether. This new proof al-
lows one to settle the problem of equality cases in the applications of the Brascamp-
Lieb inequality to convexity. The reverse inequality may be viewed as a generaliza-
tion of the Prekopa-Leindler inequality. In particular, it provides lower estimates
of volumes of convex hulls and new Brunn-Minkowski type estimates for sum of
convex sets sitted in subspaces ([Bar98b]). The particular case of these inequalities
which corresponds to Ball’s formulation of the Brascamp-Lieb inequalities says:

Theorem 11 ([Bar97]; [Bar98b]). Let m ≥ n, let (ui)
m
i=1 be unit vectors in R

n

and let (ci)
m
i=1 be positive real numbers such that

∑m
i=1 ciui ⊗ ui = In. Then for

all non-negative functions fi ∈ L1(R), i = 1, . . . ,m one has

∫ ∗

Rn

sup
x=

∑
ciθiui

m∏

i=1

f ci
i (θi)dx ≥

m∏

i=1

(∫
f
)ci

.

This result allows Barthe ([Bar98b]) to find the convex bodies of extremal
exterior volume ratio and to prove that among the bodies whose John ellipsoid is
the Euclidean unit ball, the regular n-simplex has maximal mean width [Bar98a]
(this is dual to [Sc98]).
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Returning to measure transportation type results let us emphasize that thay
are used together with regularity results by Caffarelli [Ca92]. Another curious
and useful consequence of this combination of results is the following statement
[ADM98]: Let K and T be convex open sets of the same (finite) volume; then
there is a smooth measure preserving onto map ϕ : K → T such that K + T =
{x+ ϕ(x)|x ∈ K}.
(ii) Economic embedding of n-dimensional subspaces of Lq to ℓNp . Let us mention
here a few new groups of results on embedding some classical spaces to other
classical spaces which is a more traditional direction in Local Theory. First, the
problem of embedding euclidean subspaces (up to a (1 + ε)-isomorphism) into
different classes of normed spaces was well understood in the earlier stages of the
theory (see [MS86]). Interesting additions in isometric embeddings of ℓn2 into ℓNp
were done in [M88c], [L70], [R92], [LV93], [K95].

Also, an “isomorphic form” of Dvoretzky Theorem was proved in [MS95]
and [MS98] showing that ℓn∞ gives essentially the worst embedding of ℓk2 for any
k > log n. More precisely, for some absolute constant K > 0 and for every n and
every log n ≤ k < n, any n-dimensional normed space, X, contains a k-dimensional

subspace, Y , satisfying d(Y, ℓk2) ≤ K
√

k
log(1+n/k) , and this is exact for all the range

of k for ℓn∞ spaces ([CP88], [Gl89]).
However, the main interest was directed to non-euclidean embeddings. First,

an extremely surprising result by Johnson-Schechtman [JS82] stated that ℓnq may

be (1 + ε)-embedded into ℓNp for p < q < 2 and N ∼ c(ε; p; q)n (for some function
c(ε; p; q)). Then Schechtman [S85], [S87] discovered another simple approach to
deal with the problem of economic embedding of subspaces of Lq into another
ℓp (the so-called “empirical method”). This method is not connected with a eu-
clidean structure and the standard use of the Concentration Phenomenon through
euclidean spaces, and is equally well applied to the search for large subspaces in
a given space without special consideration to the structure of the norm we are
working with. It was then used in [BLM89] and [T90] and the question of economic
“random” embedding of a subspace En ⊂ Lq of dimension n into ℓNp with exact
bounds on N(n) is well understood although some “residual” log n factors are still
distorting the picture.

The question of “natural” embedding (as opposed to “random” embedding)
of some subspaces of Lp in low dimensional ℓp-spaces happened to be completely
different. The whole theory of such embeddings arose in [FJS91]. A few sample
results follow:

Theorem 12. (i) Let Rn be the span of the first n Rademacher functions in L1;
if X is a subspace of L1 containing Rn and 2-isomorphic to ℓm1 then m > cn for
some universal c > 1 (and the same is true for n Gaussian functions).

(ii) Every norm one operator from a C(K) space which is a good isomorphism
when restricted to a k-dimensional well isomorphic to euclidean subspace also
preserves a subspace of dimension ck (for some c > 1) which is well isomorphic to
an ℓ∞-space.

Another important type of embedding is a complemented embedding (i.e.
embedding of a space to another space with a well bounded projection on it). The
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empirical method mentioned before provides good estimates for complemented
embeddings as well. However additional remarkable results were achieved in [JS91]
using some kind of “discrete homothety”. For example,

Theorem 13 [JS91]. If ℓnp is decomposed into a direct sum X + Y with X well
isomorphic to a Hilbert space, then Y is well isomorphic to an ℓmp -space.

The final result given by the theorem is in a direction where some hard work
was also done previously (see [BTz87]).
(iii) Extension of the Dvoretzky-Rogers Lemma and corresponding factorization

results. In 1988, Bourgain and Szarek [BS88] strongly improved the classical
Dvoretzky-Rogers Lemma. In the form of a “proportional factorization” their
result states: If X is an n-dimensional normed space, then for every δ ∈ (0, 1)
one can find m ≥ (1 − δ)n and two operators α : ℓm2 → X, β : X → ℓm∞, such
that id2,∞ = β ◦ α and ‖α‖ · ‖β‖ ≤ C(δ) for some constant C(δ) depending on
δ only. The dependence on δ was improved to C(δ) . δ−2 in [ST89]. It is now
known (see [G96], [Ru97]) that the best possible exponent on δ in the proportional
Dvoretzky-Rogers factorization must lie between 1 and 1/2. (All these results have
immediate application for estimating the maximal Banach-Mazur distance of ℓn∞
to any other n-dimensional normed space.)

It was observed in [GM97c] that the factorization result from [G96] is a con-
sequence of a coordinate version of the Low M∗-estimate. The following “coordi-
nate” result was proved: If E is an ellipsoid then for every δ ∈ (0, 1) we can find a
coordinate subspace R

σ(= F ) where σ ⊆ {1, . . . , n}, |σ| ≥ (1− δ)n, such that for
the orthogonal (coordinate) projection PF (E),

PF (E) ⊇
c
√
δ√

log 2/δ M(E)
D ∩ F

(for the definition of the expectationM(E), see Sect.2). Note that the factorization
discussed above is a consequence of such a coordinate estimate. There is also an
extension of this fact to some general classes of bodies (instead of to an ellipsoid).
9. Isotropic positions in convex geometry. In all previous results an
isomorphic view on the theory was one of the main messages. Even some definitions
were done in an isomorphic form (say, a universal constant σ in the definition of an
M -position or M -ellipsoid). However, it is not impossible that a more traditional
isometric approach exists which would describe our isomorphic results. (K. Ball
suggested such a possibility to me some time ago based on, I believe, his results
which I described in 8(i); the “isotropic” view presented below is based on our
joint work with Giannopoulos [GM98b].)

Let us start with the isotropic position of a centrally symmetric convex body
K ⊂ R

n equipped with an inner product (·, ·). So, K is isotropic iff |K| = 1 and
there is a constant L such that

∫

K

(f, x)(x, ϕ)dx = L(f, ϕ)

for any f and ϕ in R
n. Many remarkable properties of such a position are known

and well studied (see, e.g. [MP89]). But our interest is in the following remark
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(from the same source): Consider minu∈SLn

∫
uK

|x|2dx (where |x|2 = (x, x)). Then
min. is achieved on the isotropic position.

We understand now that it is a very general fact and for many natural func-
tionals f(uK) considered as functions defined on SLn (i.e. u ∈ SLn), the minimum
is achieved on some kind of isotropic position (but for a measure which should be
found and properly described). For example, the result of F. John about the maxi-
mal volume ellipsoid in K provides such an isotropic measure supported on contact
points of K and the maximal volume ellipsoid (and the theorem is a consequence
of such a general view [GM98b]). But our interest in the framework of this paper
has resulted in the fact that some positions used in Asymptotic Convex Geometry
(and, in fact, all important used positions we know) have an isometric description
as isotropic positions which we derive by minimizing a correctly chosen functional.
In such a way the very important ℓ-position, after slight modification becomes an
isotropic position for some measure on the sphere. We will mention in addition
only an M -position which is also an isotropic position. Indeed, let |K| = |D|, and
consider the problem

min{|uK +D| | u ∈ SLn} .

The minimum is achieved for some u0 such that the body u0K +D has minimal
surface area ([GM98b]) and u0K is in an M -position. At the same time it is known
([Pe61], [GP98]) that a convex body T has minimal surface area iff its surface area
measure (supported on Sn−1) is isotropic. So, an originally isomorphically defined
position also has a purely isometric description.

Concluding Remark. I see the results of this theory as “a window” to the
World of very high degree of freedom, just examples of organized behavior we
should expect in the study of that World; not a chaotic diversity, exponentially
increasing with increasing degree of freedom (=dimension in the presented The-
ory), but on the contrary, an asymptotically well organised World with “residual
freedom” reflected in our Theory in a “uniformly isomorphic” view on the results.
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