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Refletion Priniple in Higher Dimensions

Klas Diederich and Sergey Pinchuk

Abstract. The article discusses the use of the reflection principle in
studying the following conjecture: Let D,D′ ⊂ Cn be domains with
smooth real-analytic boundaries and f : D → D′ a proper holomorphic
map. Then f extends holomorphically to a neighborhood of the closure
of D.
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1 Boundary regularity of proper holomorphic maps

Let D,D′ ⊂⊂ Cn, n ≥ 2, be domains and f : D → D′ a proper holomorphic map.
The following two questions are very natural to ask:

1) Suppose, the boundaries ∂D and ∂D′ are both C∞-smooth. Does f

always admit a C∞ extension f̂ : D → D′?
2) Suppose, the boundaries ∂D and ∂D′ are both Cω-smooth. Does f always

admit a holomorphic extension f̂ to a neighborhood of D?
Both questions in full generality are open. However, a lot has been found out

about them since the early 70’s. The emphasis of this article is on question 2).
For a survey until 1989 see [13].

The modern development for question 1 started with the article by Ch. Fef-
ferman [12], showing that there is a C∞-extension of f , if ∂D and ∂D′ are both
strictly pseudoconvex and f is biholomorphic. For question 2) the positive an-
swer for strictly pseudoconvex domains was obtained by H. Lewy [15] and S.
Pinchuk [16] independently (again f biholomorphic).

Concerning question 1, important further progress was made using methods
by S. Webster, E. Ligocka and S. Bell. With them the positive answer was obtained
in the case of pseudoconvex domains D,D′ of finite type (see [7] and [3]). (A
local version needed in section 3 is contained in [4].) After M. Christ discovered
in [6], that on the so-called worm domains the ∂-Neumann problem is not globally
hypoelliptic, it has become clear, that these methods do not carry over to the
general case of pseudoconvex domains.

Concerning question 2) again the case of pseudoconvex domains has been
successfully treated independently in [2] and [8] (both articles also contain local
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versions). The case of question 2 for D and D′ not necessarily pseudoconvex, has
been positively solved for n = 2 in [10] building on previous work [11], [8] and [9].

The main methods used in treating question 2 (the real-analytic case) are
variations of a reflection principle in several complex variables. There are two
major forms, an analytic and a geometric one. Let us at first briefly look at the
analytic variant. We choose real-analytic defining functions ρ(z, z) and ρ′(z′, z′)
for the domains D resp. D′. The properness of the map f implies, that we have
ρ′(f(z), f(z)) ≡ 0 on ∂D. In the case n = 1, by the implicit function theorem, this
equation can be solved in the form f(z) = λ′(f(z)) with a holomorphic function λ′.
This gives the extension. In dimension n > 1, we need at least n independent equa-
tions giving the separation into holomorphic and antiholomorphic parts. Under
suitable conditions on the boundaries, they can be obtained by applying tangental
CR-operators to the equation ρ′(f(z), f(z)) ≡ 0. In the strictly pseudoconvex case
(see [15] and [16]) one differentiation is enough. However, for boundaries of finite
type the number of differentiations is a-priori undetermined. Hence this method,
in general, applies only if it is known in advance, that the map f extends in a C∞

way up to ∂D.

The geometric version of the reflection principle uses the complexification of
the defining functions and the so-called Segre varieties given by them. It will be
explained in the next section. For n = 1 Segre varieties are just points such that
this reflection principle is the well-known Schwarz principle. For n = 2 this version
was successfully applied in [10] and the articles on which this was built. We point
out, that [10] also includes many relevant results for arbitrary n ≥ 2. A new
general result is contained here in section 3.

2 Segre varieties and the geometric reflection principle

LetD ⊂⊂ Cn be a domain, such that ∂D is real-analytic smooth near z0 ∈ ∂D. We
may assume z0 = 0. On a suitable open neighborhood W of 0 we can choose a real-
analytic defining function ρ(z, z) for D. After shrinking W the complexification
ρ(z, w) of ρ, which is holomorphic in z and antiholomorphic in w, is well-defined
and has a power series convergent on W ×W . We now can associate to any point
w ∈ W its so-called ”Segre variety” defined as

Qw := {z ∈ W : ρ(z, w) = 0} (2.1)

It is a closed complex submanifold of W not depending on the choice of the defin-
ing function ρ. It easily follows, that these Segre varieties are also invariant under
biholomorphic changes of coordinate systems and, hence, under local biholomor-
phisms. The geometric reflection principle makes systematic use of these local
invariants and their behavior (A complete list of basic properties needed can be
found in Prop. 2.2 of [10]). We will now explain its main ideas and some more
technical details needed in section 3 for the proof of Theorem 3.1.

For convenience we will use for z ∈ Cn the notation z = (′z, zn). We can
choose so-called normal coordinates associated to ∂D at 0 (see [5]). With respect
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to them, ρ has the form

ρ(z, z) = 2xn +
∑

j=0

ρj(
′z, ′z)(2yn)

j
(2.2)

with real-analytic functions ρj vanishing at 0 and without purely holomorphic or
antiholomorphic terms. The complexification of ρ then can be written as

ρ(z, w) = zn + wn +

∞
∑

j=0

ρj(
′z, ′w)(−i)

j
(zn − wn)

j
(2.3)

It follows, that one has

ρ(z, w) = 0 ⇔ zn + wn +
∑

|k|>0

λk(w)
′z

k
= 0 (2.4)

where the summation is over multiindices k = (k1, . . . , kn−1) with kj ≥ 0 and each
λk is a holomorphic function on W . It follows from (2.4) for later use

ρ(z, w) = (1 + α(z, w))

(

zn + wn +
∑

k

λk(w)
′z

k

)

(2.5)

with a Cω−function α(z, w), holomorphic in z, antiholomorphic in w, vanishing at
0.

For convenience we write λ0(w) := wn. The holomorphic map

W ∋ w 7−→ λ̂(w) :=
(

λk(w) : k ∈ INn−1
0

)

is called the ”Segre map”. Because of the Noether property, there is an integer
L > 0 associated to ∂D, such that the terms up to total order L in λ̂ completely
determine λ̂. If L is chosen with this property we also call Segre map the part

W ∋ w 7−→ λ(w) := (λk(w) : |k| ≤ L) ∈ CN (2.6)

It is important to observe, that the Segre map is often not injective. Therefore,
the size of the complex-analytic sets

Aw := {z : Qz = Qw} (2.7)

is decisive for the geometric reflection principle. We say

Definition 2.1 The domain D is called essentially finite at 0 ∈ ∂D, if A0 (and,
hence, Aw for all w close to 0) is finite (see [11] and [1]).

Real-analytic smooth hypersurfaces of finite type are always essentially finite. Fur-
thermore, if ∂D is essentially finite at 0, the Segre map λ is finite and, hence, proper
on W sufficiently small, . In this case, the set S := λ(W ) ⊂ CN is closed complex
analytic in a suitable neighborhood of λ(0).
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Let now D,D′ ⊂⊂ Cn be real-analytic smooth domains. According to [14]
they are of finite type. We will apply the above considerations both to D and D′.
We introduce the notational convention, that the objects associated to D′ will be
denoted by the same letters as for D with a prime added (for instance, Q′

w′ is the
Segre variety associated to ∂D′ at w′).

Suppose now a proper holomorphic map f : D → D′ is given. The program
of using the Segre varieties for constructing a holomorphic extension of f to a
neighborhood of D consists of the following two major steps:

1) Let 0 ∈ ∂D be an (arbitrary) point. Show, that there is a neighborhood
W of 0, an open set W ′ ⊂ Cn and a proper holomorphic correspondence F : W →
W ′ extending f from W ∩D to W .

2) Let W be an open neighborhood of 0 ∈ ∂D, W ′ ⊂ Cn open, and suppose,
that a proper holomorphic correspondence F : W → W ′ extends f from W ∩ D

to W . Show, that this implies the extendability of f as a holomorphic map to a
neighborhood of 0.

This program has been carried out in full detail for n = 2 in [10]. However,
many considerations of [10] are valid for general n and the step 2) for general n
will be completed in this article in Theorem 3.1.

For the first step of the above-mentioned program we proceed essentially as
follows: We choose the neighborhood W of 0 suitably and denote by W ′ a small
open neighborhood of ∂D′. For w′ ∈ W ′, we denote by sw′ the point on Q′

w′ on
the complex normal through w′ to ∂D′ and by sw′Q′

w′ the germ of Q′
w′ at sw′. We

put

V :=
{

(w,w′) ∈
(

W \D
)

×
(

W ′ \D′
)

: f(Qw ∩D) ⊃ sw′Q′
w′

}

(2.8)

Notice, that, since the Segre map λ′ is, in general, not injective, the set V will
usually contain several points (w,w′) lying over one point w.

After now showing at first by totally different techniques, that f extends
as a holomorphic map to a neighborhood of a dense subset of ∂D, a long chain
of steps distinguishing between boundary points of different CR-nature allows to
show, that the set V can be extended across ∂D ∩W in such a way, that a proper
holomorphic correspondence F : W → W ′ is obtained extending f .

In step 2) an extending proper holomorphic correspondence F : W → W ′

is given. It induces a continuous extension of f to W ∩ D. Again one uses the
fact, that f extends holomorphically across a dense subset of ∂D to deduce from
the invariance of the Segre varieties under biholomorphisms the following much
stronger invariance property with respect to F (Corollary 4.2 and 5.5 of [10]):

Theorem 2.2 If neighborhoods W of 0 and W ′ of 0′ := f(0) are chosen suitably,
then there is a bijective holomorphic map ϕ : S → S ′, such that the diagram

S
−→
ϕ S ′

λ ↑ ↑ λ′

W
−→
F̂ W ′

is commutative. (Here we denoted by F̂ the set-valued map induced by F .)
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We mention the following immediate consequence needed in the proof of Theo-
rem 3.1. It concerns the functions λk from (2.4):

Lemma 2.3 Under the hypothesis of Theorem (2.2) and with W,W ′ chosen as
there, for every multiindex k = (k1, . . . , kn−1), |k| > 0, the set λ′

k(F̂ (z)) consists
of a unique complex number for every z ∈ W and this defines a holomorphic
function on W .

3 Extending correspondences are maps in all dimensions

We will show in this section:

Theorem 3.1 Let D,D′ ⊂⊂ Cn be domains, n ≥ 2. Suppose that z0 ∈ ∂D and
z′0 ∈ ∂D′ have open neighborhoods W resp. W ′ such that ∂D ∩W and ∂D′ ∩W ′

are smooth real-analytic, essentially finite hypersurfaces and let f : D → D′ be
a proper holomorphic map. Furthermore, suppose, that the given map f extends
as a proper holomorphic correspondence F to a neighborhood of z0 such that
F̂ (z0) = z′0. Then the map f extends holomorphically to a neighborhood of z0.

Proof: We may assume, that z0 = 0 = z′0, that the given correspondence F

extending f is defined over W and the coordinates z, z′ have been chosen to be
normal at 0. Hence, a suitable defining function ρ ∈ Cω(W ) can be written as
in (2.2), similarly for D′ near 0. We apply all notions of section 2. After rescaling
the coordinates, we have polydiscs U ⊂ W and U ′ ⊂ W ′ around 0 of radius 2,
such that F̂ (U) ⊂ U ′ and the following property holds:

All functions ρ(z, w), ρj(
′z, ′w), λk(w),

∑

k λk(w)
′z

k
and the corresponding

functions for the image are holomorphic in polydiscs around 0 of radius 2 in the
corresponding dimensions. In particular, the series

∑

k |λk(w)|,
∑

k |
∂λk

∂wn

(w)| and
the corresponding series for the image converge uniformly on compact subsets of
U (resp. U ′). Because of the normality of the coordinates we also have λ′

k(0) = 0

and
∂λ′

k

∂w′

n

(0) = 0 for all k. Therefore we have

∑

k

|λ′
k(0)| = 0 and

∑

k

∣

∣

∣

∣

∂λ′
k

∂w′
n

(0)

∣

∣

∣

∣

= 0 (3.1)

Since, as explained in [10], Prop.7.2, fn(z) = znh(z) on U with h holomorphic
and h(0) 6= 0, we can make a biholomorphic coordinate change by replacing zn by
znh(z). However, we have to be aware of the fact that the new coordinates are no
longer normal for ∂D at 0.

Now the series
∑

k λ
′
k(w

′)λ′
k(ζ

′
) converges on U ′ × U ′ and represents a holo-

morphic function there. Putting ζ ′ := w′ and w′ ∈ F̂ (z), we get because of
Lemma 2.3

∑

k |λ
′
k(w

′)|2 ∈ Cω(U ′) and
∑

k |λ
′
k(F̂ (z))|2 ∈ Cω(U).

Since ∂D′ is supposed to be essentially finite, we may assume, that for all
a′ ∈ U ′ the set

A′
a := { (′w′, w′

n) ∈ U ′ : w′
n = a′n, λ

′
k(w

′) = λ′
k(a

′) ∀|k| > 0} (3.2)
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is finite.
We now introduce the following two decisive auxiliary open sets depending on

a sufficiently large number M ≫ 1 and ε ∈ (− 1
M
, 0]:

D′(M, ε) :=

{

w′ ∈ U ′ : 2Rew′
n +M |w′

n|
2
+M

∑

k

|λ′
k(w

′)|
2
< ε

}

(3.3)

D(M, ε) :=

{

z ∈ U : 2xn +M |zn|
2
+M

∑

k

∣

∣

∣
λ′
k

(

F̂ (z)
)∣

∣

∣

2

< ε

}

(3.4)

We have

Lemma 3.2 The open sets D′(M, ε) and D(M, ε) are pseudoconvex and their
boundaries are of finite type at all points in U resp. U ′ where they are smooth.

Proof: Both open sets are obviously inside the polydisk U resp. U ′ as sub-
levelsets of plurisubharmonic functions (for (3.4) we know from Lemma 2.3, that
the λ′

k(F̂ (z)) are holomorphic functions on U). Hence they are pseudoconvex.
Next we observe, that, the defining function for D′(M, ε) from (3.3) can be

rewritten

ρ′M,ε(w
′, w′) := M

∣

∣

∣

∣

w′
n +

1

M

∣

∣

∣

∣

2

+M
∑

k

|λ′
k(w

′)|
2
− ε−

1

M
(3.5)

If ∂D′(M, ε) is smooth near a point w′0 ∈ U ′ and h : ∆ → ∂D′(M, ε) is a holomor-
phic map with h(0) = w′0 and h(∆) ⊂ ∂D′(M, ε), then because of (3.5), hn and
λ′
k ◦h(t) have to be constant for all k. Since A′

a is finite, h itself has to be constant
showing that ∂D′(M, ε) is of finite type at w′0. The reasoning for D(M, ε) goes
the same way.

In general, it is not true that D′(M, ε) ⊂ D′ (resp. D(M, ε) ⊂ D). However,
we have the following crucial

Lemma 3.3 If M ≫ 1 is sufficiently large, then one has for any ε ∈ (− 1
M
, 0]

a) the non-smooth part of ∂D′(M, ε) is contained in D′;
b) the non-smooth part of ∂D(M, ε) is contained in D.

Proof: We show at first a). Since ε ≤ 0, w′ ∈ ∂D′(M, ε) implies because of (3.5)

M

∣

∣

∣

∣

w′
n +

1

M

∣

∣

∣

∣

2

+M
∑

k

|λ′
k(w

′)|
2
≤

1

M
(3.6)

Hence, the next three estimates follow directly

−
2

M
≤ Rew′

n ≤ 0, |w′
n|

2
≤

4

M2
,
∑

k

|λ′
k(w

′)|
2
≤

1

M2
(3.7)
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Since 0 is the only solution of the system

w′
n = 0, λ′

k(w
′) = 0 ∀|k| > 0

shrink to the origin for M → ∞. In particular, necessarily also w′ → 0 as M → ∞.
Let now ∂D′(M, ε) be non-smooth at w′. Then grad ρ′M,ε(w

′, w′) = 0. Hence

∂ρ′M,ε

∂w′
n

(w′, w′) = 0

implying
1

M
+Rew′

n +Re
∑

k

∂λ′
k

∂w′
n

(w′)λk(w′) = 0 (3.8)

By (3.7) we have |λ′
k(w

′)| ≤ 1
M

and, therefore,

∣

∣

∣

∣

∣

∑

k

∂λ′
k

∂w′
n

(w′)λ′
k(w

′)

∣

∣

∣

∣

∣

≤
1

M

∑

k

∣

∣

∣

∣

∂λ′
k

∂w′
n

(w′)

∣

∣

∣

∣

Because of (3.1) the sum on the right side is o(1) for w′ → 0 uniformly in ε (this
uniformity in ε ∈ (− 1

M
, 0] holds in all the following estimates). Hence we get

∑

k

∂λ′
k

∂w′
n

(w′)λ′
k(w

′) = o

(

1

M

)

for M → ∞ (3.9)

Together with (3.8) we get

Rew′
n = −

1

M
+ o

(

1

M

)

(3.10)

Using again |λ′
k(w

′)| ≤ 1
M

we also obtain

∑

k

λ′
k(w

′)′w′k = o

(

1

M

)

(3.11)

Putting (3.10) and (3.11) into (2.5), we deduce

ρ′(w′, w′) = (1− α′(w′, w′))

(

2Rew′
n +

∑

k

λ′
k(w

′)′w′k

)

= −
2

M
+ o

(

1

M

)

< 0

for large M uniformly in ε. Hence w′ ∈ D′ finishing part a).
For showing b) we consider the defining function

ρM,ε(z, z) := 2Re zn +M |zn|
2
+M

∑

k

∣

∣

∣
λ′
k

(

F̂ (z)
)
∣

∣

∣

2

− ε (3.12)
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of D(M, ε) and keep in mind that fn(zn) = zn. Let now z ∈ ∂D(M, ε) be a
non-smooth boundary point. In complete analogy to a) we get

2Re zn +M |zn|
2
+M

∑

k

∣

∣

∣
λ′
k

(

F̂ (z)
)∣

∣

∣

2

≤ 0 (3.13)

and the three inequalities

−
2

M
≤ xn ≤ 0, |zn|

2
≤

4

M2
,
∑

k

∣

∣

∣
λ′
k

(

F̂ (z)
)∣

∣

∣

2

≤
1

M2
(3.14)

and since, again, F̂ (z) → {0} as z → 0, we have

∑

k

λ′
k

(

F̂ (z)
)[

′F̂ (z)
]k

= o

(

1

M

)

(3.15)

However, since
∂λ′

k
(F̂ (z))
∂zn

does not necessarily vanish at 0, the analogue of (3.10)
might not hold. But there exists at least a c > 0 such that for large M ≫ 1

xn ≤ −
c

M
(3.16)

Namely, if (at least on a suitable subsequence) xn = o( 1
M
), then we get from (3.13)

|λ′
k(F̂ (z))| = o( 1

M
) and, therefore,

∑

k

∂λ′
k

(

F̂ (z)
)

∂zn
λ′
k

(

F̂ (z)
)

= o

(

1

M

)

This, however, is a contradiction to

1

M
+ xn +Re

∑

k

∂λ′
k

∂zn

(

F̂ (z)
)

λ′
k

(

F̂ (z)
)

= 0 (3.17)

which holds in analogy to (3.8). This shows (3.16).

In order to show that z ∈ D we will use the multivalued ”function”
ρ′(F̂ (z), F̂ (z)), observing at first, that according to Prop. 7.1 from [10], for any
fixed z, all its values have the same sign, namely, D always goes to D′ under F̂ (z)
and the exterior goes to the exterior.

Because of (2.5) we have

ρ′
(

F̂ (z), F̂ (z)
)

=
(

1 + α′
(

F̂ (z), F̂ (z)
))

(

2xn +
∑

k

λ′
k

(

F̂ (z)
)[

′F̂ (z)
]k
)

with α′(0, 0) = 0. Hence, we obtain from (3.15) and (3.16)

ρ′
(

F̂ (z), F̂ (z)
)

≤ −
2c

M
+ o

(

1

M

)

< 0 (3.18)

Therefore, z ∈ D.

The next essential step in proving Theorem 3.1 is to show

Documenta Mathematica · Extra Volume ICM 1998 · II · 703–712



Reflection Principle 711

Lemma 3.4 If M ≫ 1 is chosen as in Lemma 3.3, then f extends holomorphically
to a proper map f̂ : D(M, 0) → D′(M, 0).

Proof: For such M and ε close to − 1
M
, D(M, ε) is a small neighborhood of the set

A :=

{

zn = −
1

M
,λ′

k

(

F̂ (z)
)

= 0 ∀|k| > 0

}

Because of (2.5) we have for any z ∈ A (notice, that zn = − 1
M
)

ρ′
(

F̂ (z), F̂ (z)
)

=
(

1 + α′
(

F̂ (z), F̂ (z)
))

· 2xn < 0

Hence D(M, ε) ⊂ D and D′(M, ε) ⊂ D′ if in addition ε ∈ (− 1
M
, 0] is close to

− 1
M
. Therefore, by the definition of D(M, ε), f : D(M, ε) → D′(M, ε) is proper

holomorphic.
Now let ε ∈ (− 1

M
, 0] be maximal such that f extends to a proper holomorphic

map f̂ : D(M, ε) → D′(M, ε). Notice at first, that this map is extended as a proper

holomorphic correspondence to a neighborhood of D(M, ε)∩U by F . Therefore, f̂
is continuous up to the boundary. Because of Lemma 3.3 and known results about
holomorphic extension as mentioned in section 2 this map extends as a proper
holomorphic map to D(M, ε̃) with ε̃ > ε unless ε = 0.

End of the proof of Theorem 3.1: By applying the same arguments as at
the end of the last proof and using that 0 ∈ ∂D(M, 0), we see, that f̂ extends
holomorphically to a neighborhood of 0.
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