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Developments from Nonharmoni Fourier Series

Kristian Seip

Abstract. We begin this survey by showing that Paley and Wiener’s un-
conditional basis problem for nonharmonic Fourier series can be understood
as a problem about weighted norm inequalities for Hilbert operators. Then
we reformulate the basis problem in a more general setting, and discuss
Beurling-type density theorems for sampling and interpolation. Next, we
state some multiplier theorems, of a similar nature as the famous Beurling-
Malliavin theorem, and sketch their role in the subject. Finally, we discuss
extensions of nonharmonic Fourier series to weighted Paley-Wiener spaces,
and indicate how these spaces are explored via de Branges’ Hilbert spaces of
entire functions.

1991 Mathematics Subject Classification: 30, 42, 46

1. From Paley-Wiener to Hunt-Muckenhoupt-Wheeden

The theory of nonharmonic Fourier series begins with Paley and Wiener [18],
who discovered that the trigonometric system {eikx} remains an unconditional
basis for L2(−π, π) when the integer frequencies k are replaced by “nonharmonic”
frequencies λk satisfying |λk − k| ≤ d for some d < 1/π2. This result led to quite
extensive activity around the problem of describing all unconditional bases of the
form {eiλkx} for L2(−π, π). A decisive breaktrough was made by Pavlov [19], and
a complete solution to the problem as just stated is now available [9,12,15].

We shall present below a survey of recent developments which are closely re-
lated to the problem of Paley and Wiener. Let us therefore begin by clarifying
how the unconditional basis problem can be understood: It can be recast as a
question concerning boundedness of Hilbert operators in certain weighted L2 (or
more generally Lp) spaces of functions and sequences, and thus leads us to the
Hunt-Muckenhoupt-Wheeden theorem [7]. We will follow [12], in which this shift
from Hilbert space geometry to weighted norm inequalities is made.

We restate the Paley-Wiener problem in terms of entire functions. Denote by
PW p (0 < p ≤ ∞) the classical Paley-Wiener spaces, which consist of all entire
functions of exponential type at most π whose restrictions to the real line are
in Lp. We endow PW p with the natural Lp(R)-norms, and note that they are
Banach spaces when 1 ≤ p ≤ ∞ and complete metric spaces when 0 < p < 1. For
1 < p <∞, we say that a sequence of complex numbers Λ = {λk}, λk = ξk+ iηk is
a complete interpolating sequence for PW p if the interpolation problem f(λk) = ak
has a unique solution f ∈ PW p for every sequence {ak} satisfying

∑

k

|ak|
pe−pπ|ηk|(1 + |ηk|) <∞.
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714 Kristian Seip

Via the Paley-Wiener theorem, it is found that Λ is a complete interpolating
sequence for PW 2 if and only if the system {eiλkx} is an unconditional basis for
L2(−π, π).

Let us see how the Hilbert operator comes into play when we seek to describe
complete interpolating sequences. Suppose Λ is a complete interpolating sequence
for PW p, 1 < p < ∞. Let us assume for simplicity that all the points of Λ lie in
a horizontal strip, that 0 6∈ Λ, and ξk ≤ ξk+1 for all k. It is easy to show that Λ
has to be a separated sequence, i.e., infj 6=k |λj − λk| > 0, and also that it must
be uniformly dense, i.e., that supk(ξk+1 − ξk) < ∞. In what follows, one should
think of Λ roughly as an arithmetic progression.

If the function f0 ∈ PW p solves the interpolation problem f0(λk) = δ0,k, k ∈ Z,
then f0(µ) 6= 0 for µ ∈ C \ Λ, since otherwise the function (z − λ0)(z − µ)−1f0(z)
belongs to PW p and vanishes on Λ, contradicting the uniqueness of the solution
of the interpolation problem. It is a short step from this observation to conclude
that the limit

(1) S(z) = lim
R→∞

∏

|λk|<R

(1− z/λk)

exists and defines an entire function of exponential type π. This function is called
the generating function of the sequence Λ. It follows that if a = {aj} is a se-
quence such that aj = 0 except for finitely many j’s, the unique solution of the
interpolation problem f(λj) = aj , has the form

f(z) =
∑

j

aj
S′(λj)

S(z)

(z − λj)
.

Now if Γ = {γj} is any other separated and uniformly dense sequence lying in
a horizontal strip, a classical inequality of Plancherel and Pólya [11, pp. 50–51]
shows that

∑

j

|f(γj)|
p .

∫

R

|f(x)|pdx.

(We write g . h whenever there is a positive constant C such that g ≤ Ch, and
g ≃ h if both g . h and h . g.) Because the solution of the interpolation problem
is unique, the open mapping theorem implies that

∑

|f(λj)|
p ≃

∫

|f(x)|pdx, and
so

(2)
∑

j

|f(γj)|
p .

∑

j

|aj |
p.

We claim that this inequality is just a weighted norm inequality for a discrete
Hilbert operator. To see this, let ℓpw be the space of all sequences b = {bk}
satisfying ‖b‖pw,p :=

∑

|bk|
pwk < ∞ for some positive weight sequence w = {wj}.

If we put u = {|S′(λj)|
p} and v = {|S(γj)|

p}, (2) says that the Hilbert operator
HΛ,Γ : ℓpu → ℓpv defined as

(HΛ,Γb)j =
∑

k

bk
γj − λk

,
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is a bounded operator.
So far we have not assumed anything about Γ, except that it is separated and

uniformly dense. We may in fact tailor it specifically to Λ in such a way that the
weights u and v become identical, apart from a multiplicative constant. To see
how this can be done, set ε = infj 6=k |λj − λk|/3, and observe that since S has no
zeros in the disk |z − λj | ≤ ε, we can find a point γj with |γj − λj | = ε and

|S(γj)| = ε|S′(λj)|.

We are now in a familiar situation, and obtain in accordance with the celebrated
Hunt-Muckenhoupt-Wheeden theorem [7] that the weight w = {|S′(λj)|

p} must
satisfy a discrete Muckenhoupt (Ap) condition:

(3) sup
k∈Z,n>0





1

n

k+n
∑

j=k+1

wj









1

n

k+n
∑

j=k+1

w
− 1

p−1

j





p−1

<∞.

The analogy is clear: The classical continuous (Ap) condition for a positive weight
v(x) > 0, x ∈ R is

(4) sup
I

{

(

1

|I|

∫

I

vdx

)(

1

|I|

∫

I

v−
1

p−1 dx

)p−1
}

<∞,

where I ranges over all intervals in R, and the Hunt-Muckenhoupt-Wheeden the-
orem [7] says that (3) is necessary and sufficient for boundedness of the classical
Hilbert operator on the weighted space of functions Lp(R; vdt). It is clear that (3)
is essentially a special case of (4). In fact, in our case, we may use either of the
conditions, because it may be proved that (3) with w = {|S′(λj)|

p} is equivalent
to (4) with v = |S(x)/dist(x,Λ)|p.

The above reasoning has provided an essential piece of evidence for the main
theorem of [12], which we will now state. We remove the assumption that Λ
be located in a horizontal strip. It is then convenient to introduce the distance
function

δ(z, ζ) =
|z − ζ|

1 + |z − ζ|
,

which expresses that we deal with Euclidean geometry close to the real axis and
hyperbolic geometry far away from the real axis. We say that Λ is δ-separated
if infj 6=k δ(λj , λk) > 0. Moreover, Λ is said to satisfy the two-sided Carleson
condition if for any square Q of side-length l(Q) and with one of its sides sitting
on the real axis, we have

∑

λk∈Q∩Λ

|ℑλk| ≤ Cl(Q),

with C independent Q.
The main theorem of [12] is:
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716 Kristian Seip

Theorem 1. A sequence Λ = {λk} of complex numbers is a complete interpolating
sequence for PW p (1 < p <∞) if and only if the following three conditions hold.

(i) The sequence Λ is δ-separated and satisfies the two-sided Carleson condi-
tion.

(ii) The limit S(z) in (1) exists and represents an entire function of exponential
type π.

(iii) The weight (|S(x)|/dist(x,Λ))
p
(x ∈ R) satisfies the (Ap) condition (4).

This theorem should be read in the following way: Condition (i) is a separation
condition in which the Carleson condition is present because we solve in particular
an interpolation problem in Hp; (ii) is mainly a density condition, as it gives
the type of S; (iii) is a condition on the “balance” of the sequence. It is in fact
a working condition, if one makes use of the equivalence between the (A2) and
Helson-Szegö conditions. For instance, the so-called Kadets 1/4 theorem, which
says that |λk − k| ≤ d < 1/4 is the best possible inequality in the Paley-Wiener
condition, is a direct consequence (see [9]). A similar perturbation result can be
proved for PW p, as shown in [12].

2. Beurling-type density theorems for sampling and interpolation

Stated as an interpolation problem for entire functions, the Paley-Wiener basis
problem makes sense for a large class of holomorphic spaces. In this section, we
shall extend the setting, and then consider the complementary situation that com-
plete interpolating sequences are nonexistent. Building on a basic contribution
by Beurling [2], who considered a problem of balayage of Fourier-Stieltjes trans-
forms and a corresponding interpolation problem, we reformulate the Paley-Wiener
problem by seeking to describe separately so-called sampling and interpolating se-
quences. Again, problems of this type can be traced back to classical work on
nonharmonic Fourier series [5,8]; for the modern state of research on such nonhar-
monic Fourier series, see [21].

Assume we are given a weighted Lp space of holomorphic functions defined on
some domain Ω in the complex plane. We denote this space by B and assume that
the functional of point evaluation f 7→ f(z) is bounded for each z ∈ Ω. The norm
of this functional is called the majorant of B, and it is denoted by M(z). If p = 2,

then B is a Hilbert space and M(z) =
√

K(z, z), where K(z, ζ) is the reproducing
kernel of the space. We say that a sequence of distinct points Λ = {λk} in Ω is
a sampling sequence for B if ‖f‖B ≃ ‖{f(λk)/M(λk)}‖ℓp for f ∈ B. We say that
Λ is an interpolating sequence for B if the interpolation problem f(λk) = ak has a
solution f ∈ B whenever {ak/M(λk)} ∈ ℓp. Finally, we say that Λ is a complete
interpolating sequence for B if it is both sampling and interpolating. It is not
difficult to check (using the open mapping theorem) that this definition is in line
with the one given in the previous section.

Saying that a complete interpolating sequence is both a sampling and an inter-
polating sequence is a way of expressing that it exists as a compromise between two
competing density conditions: A sampling sequence should be uniformly “dense”,
while an interpolating sequence should be uniformly “sparse”. However, the rea-
soning of the previous section shows that there is more to it than only competing
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density conditions: Existence of complete interpolating sequences is tied to norm
inequalities for Hilbert operators between weighted Lp spaces. This means that
we can expect to find such sequences only when 1 < p < ∞ and in spaces with a
special underlying geometry.

In this section, we shall present an aspect of the following striking dichotomy:
Geometric density conditions characterize sampling and interpolating sequences if
and only if there are no complete interpolating sequences. Of course, we are not
able to claim that the truth of this statement is universal, but it covers at least
three wide classes of model spaces: weighted Paley-Wiener spaces PW p

ψ (to be

considered in Section 4), weighted Fock spaces F pψ, and weighted Bergman spaces

Apψ (to be defined shortly). In all three cases, the growth of functions is controled

by eψ, where ψ is a subharmonic function whose Laplacian has an appropriate
behavior compared to the underlying geometry: in the Paley-Wiener case, ∆ψ is
supported by the real line and the Riesz measure of ψ is µ(x)dx, with µ(x) ≃ 1; in
the Fock case, ∆ψ(z) ≃ 1 for all z ∈ C; in the Bergman case, ∆ψ(z) ≃ (1−|z|2)−2

for all z in the unit disk D. A common feature is that density conditions for
sampling and interpolation are expressed in terms of ∆ψ. We note that it is only
for Paley-Wiener spaces that we have weighted norm inequalities for the Hilbert
operators attached to the possible complete interpolating sequences.

We comment first on the Fock and Bergman cases, which are similar. We
will only present results for Bergman spaces; the Fock case has been treated in
the recent paper [17]. The results to be presented here for Bergman spaces are
new, and we shall sketch proofs which are quite different from those of [17]. We
call these results Beurling-type density theorems, because results of this type were
first presented by Beurling and because certain parts of Beurling’s analysis seem
indispensable in whatever setting we consider.

We need to give a precise definition of the weighted Bergman spaces Apψ. Sup-
pose a subharmonic function ψ on the unit disk is given, whose Laplacian satisfies
∆ψ(z) ≃ (1 − |z|2)−2 for all z ∈ D. Let dm denote Lebesgue area measure on C.
Define

‖f‖pψ,p =

∫

D

|f(z)|pe−pψ(z) (1− |z|2)−1dm(z)

for p < ∞, and ‖f‖ψ,∞ = supz |f(z)|e
−ψ(z). We denote by Apψ (0 < p ≤ ∞) the

set of all functions f analytic in D such that ‖f‖ψ,p < ∞. A prime example is
obtained by setting ψ(z) = −β log(1− |z|2), with β > 0.

Now set

ρ(z, ζ) =

∣

∣

∣

∣

z − ζ

1− ζz

∣

∣

∣

∣

,

which is the pseudohyperbolic distance between z and ζ. We say that a sequence
Λ = {λj} is ρ-separated if infj 6=k ρ(λj , λk) > 0. For a fixed ρ-separated sequence
Λ, we denote by n(z, r) the number of points λk ∈ Λ which satisfy ρ(z, λk) < r,
and set correspondingly

aψ(z, r) =

∫

ρ(z,ζ)<r

∆ψ(ζ)dm(ζ).
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The lower uniform density of Γ with respect to ψ is defined as

D−
ψ (Λ) = lim inf

r→1−
inf
z∈D

∫ r

0
n(z, t)dt

∫ r

0
aψ(z, t)dt

,

and the upper uniform density of Γ with respect to ψ is

D+
ψ (Λ) = lim sup

r→1−
sup
z∈D

∫ r

0
n(z, t)dt

∫ r

0
aψ(z, t)dt

.

We have then the following two Beurling-type density theorems.

Theorem 2. A sequence Λ is sampling for Apψ if and only if it contains a ρ-

separated subsequence Λ′ satisfying D−
ψ (Λ

′) > 1/π and in addition, when 0 < p <
∞, it is a finite union of ρ-separated sequences.

Theorem 3. A sequence Λ is interpolating for Apψ if and only if it is ρ-separated

and satisfies D+
ψ (Λ) < 1/π.

For ψ(z) = −β log(1 − |z|2) these are the main results of [20]. In the next
section, we will sketch how the general case follows from these special results, via
a certain multiplier theorem. Here we restrict ourselves to making two remarks
concerning the proof for ψ(z) = −β log(1− |z|2); in this case, with a slight abuse
of notation, we set Apψ = Apβ and ‖ · ‖ψ,p = ‖ · ‖β,p.

First, we would like to point out what is the core of Beurling’s approach as it
appears when transferred to D. Namely, Apβ enjoys the following group invariance:
If τ is a Möbius self-map of D, the operator Tτ defined by

(Tτf)(z) = (τ ′(z))β+1/pf(τ(z))

acts isometrically on Apβ . This implies that sampling and interpolating sequences
are Möbius invariant, and in fact, by a normal family argument, any compact-
wise limit of a sequence τnΛ, where τn are Möbius self-maps of D, is sam-
pling/interpolating if Λ is sampling/interpolating. An analysis of such compact-
wise limits plays an essential role in Beurling’s scheme. This part of Beurling’s
proof is of a general nature and is applicable whenever we have a suitable group
invariance; we refer to [16] for a discussion of how the notion of “group invariance”
can be extended to spaces with general weights.

Our second remark concerns the proof of the sufficiency of the density condition
for interpolation. In [22], this was done by first relating the upper uniform density
to a density used by Korenblum for describing the zeros of functions in A∞

β , and
then use this relation to construct a linear operator of interpolation. A less intricate
and more direct proof, using Hörmander-type L2 estimates for ∂̄, has later been
given by Berndtsson and Ortega-Cerdà [1]. This approach works also for F pψ.

We end this section with a few words about the original interpolation problem
considered by Beurling [2], to illustrate that “Beurling-type” density conditions
may be rather subtle. Beurling considered interpolating values only along the real
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axis, in which case uniform densities of real sequences yield a complete description.
If we permit complex sequences Λ, we are led to combine techniques from entire
functions and Hardy spaces in a nontrivial manner, and to solve simultaneously
an interpolation problem in H∞.

Suppose Λ is δ-separated, and let h be a positive number. Denote by n+h (r)
the maximum number of points from Λ to be found in a rectangle of the form
{z = x + iy : t < x < t + r, |y| < h}, where t is any real number. The upper
uniform density of Λ is defined to be

D+(Λ) = lim
h→∞

lim
r→∞

n+h (r)

r
.

We have then the following “mixed” Beurling-type and Carleson theorem.

Theorem 4. A sequence Λ is interpolating for PW∞ if and only if it is δ-
separated, satisfies the two-sided Carleson condition, and D+(Λ) < τ/π.

This result is proved in [17]. A key ingredient in the proof will be presented
in the next section. There is of course a similar result for the sampling problem,
but it is more elementary. The result holds also when PW∞ is replaced by PW p,
p < 1, which is an easier case than p = ∞.

3. The role of multipliers

The most distinguished example of a multiplier theorem is the following deep result
of Beurling and Malliavin [3,10]: If f is an entire function of exponential type with
bounded logarithmic integral,

∫

R

log+ |f(x)|

1 + x2
dx <∞,

then, for every ε > 0 there exists an entire function g of exponential type ε with
both |g| and |fg| bounded on the real axis.

In this section, we discuss how certain more modest multiplier theorems fit into
our theory. As for the Beurling-Malliavin theorem, proofs are based on atom-
izing Riesz measures of certain subharmonic functions, but the details are quite
straightforward in our case. However, it should be noted that we obtain more
precise estimates on what corresponds to the product |fg| above. This is why
these multiplier theorems have an interesting role to play in our subject.

For the Paley-Wiener case, we have the following mulitplier theorem:

Theorem 5. Suppose Λ is a δ-separated sequence and ω is a subharmonic function
of the form

(5) ψ(z) =

∫ ∞

−∞

[log |1− z/t|+ (1− χ[−1,1](t))ℜz/t]µ(t)dt,

where µ(t) ≃ 1. Then there exists an entire function g with δ-separated zero
sequence Z(g) lying in a horizontal strip, with δ(Λ, Z(g)) > 0, and such that
|g(z)|e−ψ(z) ≃ δ(z,Γ).

The corresponding result for the disk is:
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Theorem 6. Suppose Λ is a ρ-separated sequence in D, and let φ be subharmonic
in D so that its Laplacian ∆φ satisfies ∆φ(z) ≃ (1 − |z|2)−2 for all z ∈ D. Then
there exists a function g analytic in D, with ρ-separated zero sequence Z(g) and
ρ(Z(g),Λ) > 0, and such that |g(z)| ≃ ρ(z, Z(g))eφ(z).

There is also an analogous result for the Fock case [14]. The two theorems
above are in fact inspired by that result. A proof of Theorem 5 can be found in
[16], while Theorem 6 is a slight variant of Theorem 2 of [22].

Theorem 5 is a key ingredient in the proof of Theorem 4. It is used both to
transform Beurling’s interpolation problem into an H∞ problem, and to “correct”
H∞ solutions to produce solutions which are entire functions. We give only a hint
how the first transformation is done. If we assume Λ satisfies the conditions of
Theorem 4 and set ε = 1−D+(Λ), then Theorem 5 yields the existence of a function
h vanishing on Λ, and satisfying the estimate |h(z)| ≃ eπ(1−ε/2)|ℑz|δ(z, Z(h)),
where Z(h) is the zero sequence of h. (Incidentally, this argument shows that every
interpolating sequence for PW∞ is contained in a sequence which is a complete
interpolating sequence for each of the spaces PW p, 1 < p <∞. It is a striking fact
that, on the other hand, there exists an interpolating sequence for PW 2 which is
not a subsequence of any complete interpolating sequence for PW 2, as shown in
[21].)

Next, we sketch how Theorem 6 can be used to prove Theorems 2 and 3 from
the case of regular weights −β log(1 − |z|2). To this end, we begin by showing
that Apψ can be embedded into Apβ for a sufficently large β: Choose β so large that

φ(z) = β log(1/(1−|z|2))−ψ(z) is a subharmonic function satisfying the condition
of Theorem 6. Taking g to be the function of Theorem 6, it is clear that f ∈ Apψ if

and only if fg ∈ Apβ , and that ‖f‖ψ,p ≃ ‖f‖β,p. In other words, we may associate

Apψ with the closed subspace of Apβ which consists of functions vanishing on Z(g).
We now take Λ to be the ρ-separated sequence of Theorem 6, and claim that then

Λ is sampling/interpolating for Apψ if and only if Z(g)∪Λ is sampling/interpolating

for Apβ . The sufficiency of the condition Z(g) ∪ Λ being sampling/interpolating is
trivial in view of the observation we just made, while the necessity can be obtained
from the fact that Z(g) is interpolating for Apβ , as follows from Theorem 3 in the
case of regular weights. Now Theorems 2 and 3 follow from the regular case by a
simple rewriting of the density conditions.

For other applications of Theorem 6, see [6,22].

4. From de Branges to weighted Paley-Wiener spaces

Suppose ψ is a subharmonic function in C of the form (5) with µ(t) ≃ 1. Set
w = e−ψ, and define

‖f‖pw,p =

∫

R

|f(t)w(t)|p dt

for p <∞, and ‖f‖w,∞ = supz |f(z)|e
−ψ(z). We denote by PW p

ψ (0 < p ≤ ∞) the

set of all entire functions f such that ‖f‖w,p <∞ and log |f(z)| ≤ Cε+ψ(z)+ε|z|
for all ε > 0. The Phragmén-Lindelöf principle ensures that these spaces are
complete with respect to their norms.

Documenta Mathematica · Extra Volume ICM 1998 · II · 713–722



Developments from Nonharmonic Fourier Series 721

Following the reasoning at the end of Section 3, we may extend Theorem 1
and Theorem 4 to cover these weighted Paley-Wiener spaces. Thus our choice of
weights is natural if we wish to see how far the basic results of nonharmonic Fourier
series can be extended. But weighted Paley-Wiener spaces are interesting for other
reasons. One particularly interesting point is the connection to de Branges’ Hilbert
spaces of entire functions [4], and that this link can be used to explore the nature
of weighted Paley-Wiener spaces. We shall briefly indicate how this may work.
The presentation is based on [14], where a complete treatment can be found. We
stick from now on to the Hilbert space case p = 2.

A natural question is: Why is our choice of weights e−ψ reasonable? It is
quite easy to see that our condition on the weight implies M(x)w(x) ≃ 1. By
means of de Branges’ theory, we can prove that this relation, which is a regularity
condition on w, in fact characterizes weighted Paley-Wiener spaces. To be more
precise, suppose H is a Hilbert space of entire functions whose norm is given by
‖ · ‖w,2, where w is a positive weight function. We assume the functional of point
evaluation is bounded for each z ∈ C, and further that H is closed under the
operations f(z) 7→ f(z)(z − ζ)/(z − ζ) (provided f(ζ) = 0) and f(z) 7→ f∗(z),

where f∗(z) = f(z). If M(x)w(x) ≃ 1, we say that w is a majorant weight. Then
the following holds:

Theorem 7. A positive function w is a majorant weight for some space H if and
only if there exists a function µ(x) ≃ 1 and a real entire function g such that

(6) logw(x) + g(x) +

∫ ∞

−∞

[log |1− x/t|+ (1− χ[−1,1](t))x/t]µ(t)dt ∈ L∞.

The function g represents an inessential part of the weight, because a replace-
ment of w by we−g corresponds to multiplying all functions in H by a fac-
tor exp g/2. Then assuming g ≡ 0, it is plain from de Branges’ theory that
M(x)w(x) ≃ 1 and the form of w together force H to be a weighted Paley-Wiener
space.

It is interesting to note that if w has a bounded logaritmic integral, the condition
(6) of Theorem 7 says that we have a representation logw = u+ v, with u ∈ L∞

and (ṽ)′ ∈ L∞, where ṽ denotes the Hilbert transform of v.
The proof of Theorem 7 is based on converting the problem in the following

way. By de Branges’ theory, H coincides with a de Branges space H(E); here E
is an entire function without zeros in the upper half-plane, |E(z)| ≥ |E(z̄)| for all
ℑz > 0, and f ∈ H(E) if and only if f/E and f∗/E both belong to H2 of the
upper half-plane. That H = H(E) means in particular that ‖f/E‖2 = ‖f‖w,2
for all f ∈ H. With this relation established, the proof becomes a problem of
exploring the distribution of the zeros of E. To give a hint about the nature of
the problem, we mention the following result. Let Λ = {ξk − iηk} denote the zero
sequence of E, and suppose ξk ≤ ξk+1 for all k. Then: H(E) equals (up to norm
equivalence) a weighted Paley-Wiener space if and only if Λ is uniformly dense and
a finite union of separated sequences, the sequence Λ∩{z : ℑz > −ε} is separated
for some ε > 0, and {ηk} is a discrete (A2) weight. The analogue of Theorem 1
for PW 2

ψ is used to prove the last part of this statement.
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