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Wave Equations with Low Regularity Coeffi
ients

Hart F. Smith

Abstract. We illustrate how harmonic analysis techniques that were de-
veloped to understand the Lp mapping properties of oscillatory integral and
Fourier integral operators lead to an understanding of solutions to the wave
equation on Riemannian manifolds with metrics of limited differentiability.
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1. Lp mapping properties of Fourier integral operators

For the purposes of this section, a standard Fourier integral operator of order m
is a finite sum of operators of the form

(1.1) Tf(x) =

∫
eiϕ(x,ξ) a(x, ξ) f̂(ξ) dξ .

The phase function ϕ(x, ξ) is real, homogeneous of degree 1 in ξ, smooth for ξ 6= 0,
and satisfies the nondegeneracy condition

det

[
∂2ϕ

∂xi∂ξj

]
6= 0 .

The amplitude a(x, ξ) is a standard amplitude of order m, which for convenience
is also taken compactly supported in x:

∣∣∂βx∂αξ a(x, ξ)
∣∣ ≤ Cα,β

(
1 + |ξ|

)m−|α|
.

The most important examples are the two terms of the wave group:

Ctf(x) =

∫
ei〈x,ξ〉 cos

(
t |ξ|

)
f̂(ξ) dξ ,

Stf(x) =

∫
ei〈x,ξ〉

sin
(
t |ξ|

)

|ξ|
f̂(ξ) dξ .

For each fixed t, these are standard Fourier integral operators, respectively of
order 0 and −1, with two phases ϕ±(x, ξ) = 〈x, ξ〉 ± t|ξ| . The importance of these
operators is that the solution to the Cauchy problem for the wave equation

∂2t u(t, x) =

n∑

j=1

∂2xj
u(t, x) ,

u(0, x) = f(x) ,

∂tu(0, x) = g(x) ,
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is given by u(t, x) = Ctf(x) + Stg(x) .
By a theorem of Hörmander [H] and Eskin [E], Fourier integral operators of

order 0 are bounded on the space L2(Rn). For the spaces Lp(Rn) , p 6= 2 , this
is not the case, and examples of Littman [Li] show that the following result of
Seeger-Sogge-Stein [SSS] is of the best possible nature.

Theorem. Let T be a Fourier integral operator of order m = −(n−1) |1/p−1/2| ,
and 1 < p < ∞ . Then T is a bounded operator on Lp(Rn) . If m = −(n − 1)/2 ,
then T is a bounded operator on the local Hardy space h1(Rn) .

Lipschitz and Lp estimates for the wave equation on compact manifolds were
obtained by Colin de Vèrdiere and Frisch [CFr]. For operators related to the wave
equation the above was demonstrated by Peral [Per], M. Beals [Be], and Miyachi
[M].

The key to establishing the above theorem is to break up the operator (1.1)
into simple pieces using a partition of unity in the ξ variable. The first step is to
make a Littlewood-Paley decomposition by splitting the ξ space into dyadic annuli
2k−1 ≤ |ξ| ≤ 2k+1 . A finer decomposition involving the angular variable is then
made in a parabolic manner: the shell |ξ| ≈ λ is divided into conic sets of opening
angle λ−1/2 .

The motivation behind this decomposition is that on each resulting region in ξ,
the homogeneous phase function ϕ(x, ξ) is well approximated by a phase which is
linear in ξ , in the sense that the error is uniformly controlled. Each piece of the

operator is then essentially a localisation of f̂(ξ) to a cube, followed by a change
of coordinates, and has uniformly bounded norm on L1(Rn) . The loss of (n−1)/2
derivatives on the local Hardy space results from the fact that, at frequencies
comparable to λ, the operator is a sum of λ(n−1)/2 pieces, each of which acts
independently on h1(Rn) . For details, see [SSS] or chapter IX of [St].

This dyadic-parabolic decomposition is implicit in the work of C. Fefferman
[F], where it was exploited to understand spherical summation multipliers. For
the wave operators, it is related to approximate plane-wave decompositions of
solutions: if the function f(x) has Fourier transform localised to a dyadic shell
|ξ| ≈ λ, and within angle λ−1/2 about some direction ω, then for |t| . 1,

Ctf(x) ≈
1

2

(
f(x+ tω)− f(x− tω)

)
,

with errors that can be uniformly controlled as λ→ ∞ .
The above theorem can be sharpened by the following result [Sm1], which is

natural in view of the fact that order 0 Fourier integral operators form an algebra.

Theorem. There exists a function space H1
FIO(R

n), with continuous mappings

D−(n−1)/2 : h1(Rn) −→ H1
FIO(R

n) −→ h1(Rn) ,

on which the order 0 Fourier integral operators are bounded mappings.

The norm of a function f in H1
FIO is defined by the integral of a quadratic

expression in f , analogous to the Lusin area characterisation of functions in the
real Hardy space of Fefferman-Stein [FS]. The appropriate area function for H1

FIO

is evaluated at a spatial point and a direction; in essence, each dyadic-parabolic
piece of f is treated independently.
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2. Strichartz Estimates

Of greater interest for nonlinear wave equations than the preceeding fixed time
estimates for solutions of the wave equation are the family of Strichartz estimates,
which control mixed Lp norms of a solution over space and time, in terms of
Sobolev norms of the initial data. For simplicity, we restrict attention here to
space dimension n = 3.

Theorem. Let u(t, x) = Ctf(x) + Stg(x) be the solution to the Cauchy problem

for the wave equation. Then for 2 ≤ q < ∞, if 1/p + 1/q = 1/2, the following

hold:

(2.1) ‖u‖Lp
tL

q
x(R1+3) ≤ Cq

(
‖f‖Ḣ1−2/q(R3) + ‖g‖Ḣ−2/q(R3)

)
.

In the form stated here, (2.1) is due to Pecher [Pec]. The original Strichartz
estimate [Str1,2] is the case p = q = 4 . More general estimates of this type, in
general dimensions, have been developed by several authors, including Brenner
[Br], Ginibre and Velo [GV1,2], Kapitanski [K], Keel and Tao [KT], and Lindblad
and Sogge [LS].

In case q = 2 , p = ∞ , estimate (2.1) is an energy inequality. The other endpoint
estimate at q = ∞ does not hold; this would state that

‖u‖L2
tL

∞
x (R1+3) ≤ C

(
‖f‖Ḣ1(R3) + ‖g‖L2(R3)

)
.

(The failure of this estimate motivates the study of the important null form esti-
mates of Klainerman-Machedon [KM].) However, a substitute estimate does hold,
which is sufficient to obtain (2.1) for q < ∞ by interpolation. To state this esti-
mate, let

Cλ
t f(x) =

∫
ei〈x,ξ〉 cos

(
t |ξ|

)
φ
(
λ−1 |ξ|

)
f̂(ξ) dξ ,

where φ(s) is supported in 1/2 ≤ s ≤ 2 . Then

(2.2) ‖Cλ
t f‖L∞(R3) ≤ C λ2 t−1 ‖f‖L1(R3) .

This says that the convolution kernel associated to Cλ
t is pointwise bounded by

λ2 t−1, which can be demonstrated by stationary phase arguments.
For n = 3, a proof of (2.2) (for |t| . 1 and λ ≥ 1) can be obtained using the

dyadic-parabolic decomposition mentioned in the first section of this paper; this is
important since it allows for a broader class of amplitudes in the Fourier integral
operator, which is crucial for low regularity wave equations.

To begin, write

(2.3) φ
(
λ−1 |ξ|

)
=

∑

ω

ψ̂ω
λ (ξ) ,

where ψ̂ω
λ (ξ) is supported in a cone of angle λ−1/2 about the direction ω, and ω

varies over λ indices evenly distributed over the unit sphere. The function ψω
λ (x)
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is of L∞ norm comparable to λ2, and is concentrated in a box with two sides
of length λ−1/2, and one side of length λ−1, the last along the direction ω . The
function

(2.4)

∫
ei〈x,ξ〉−it|ξ| ψ̂ω

λ (ξ) dξ

is a “coherent wave packet of frequency λ”, in the sense that for |t| . 1 it travels
along a ray without significantly changing its shape. We remark that this func-
tion is also critical for the Strichartz estimates, in that the two sides of (2.1) are
comparable as λ→ ∞ .

The convolution kernel of Cλ
t splits into a sum

∑

ω

∫
ei〈x,ξ〉 cos

(
t |ξ|

)
ψ̂ω
λ (ξ) dξ ≈

1

2

∑

ω

ψω
λ (x+ tω) + ψω

λ (x− tω) .

Then (2.2) follows by showing that the overlap of “supports” of the ψω
λ (x + tω)

is bounded by t−1, which is a simple exercise in geometry. (We remark that this
simple proof fails in space dimension n ≥ 4, where the overlap count is too high.)

3. The wave equation on Riemannian manifolds

Let

∆gf(x) =
1√
g(x)

n∑

i,j=1

∂xi

(√
g(x) gij(x) ∂xj

f(x)
)

be the Laplace-Beltrami operator for a smooth Riemannian metric g in a coordi-
nate patch. The Cauchy problem for the wave equation

(3.1)

∂2t u(t, x) = ∆gu(t, x) ,

u(0, x) = f(x) ,

∂tu(0, x) = g(x) ,

has finite propagation speed, so for small time intervals it suffices to work in a
coordinate neighborhood.

To solve the Cauchy problem, one seeks the analogue of the plane wave solutions
exp(i〈x, ξ〉± it|ξ|). Lax [Lax] provided an asymptotic construction of solutions for
small t of the form

eiϕ
±(t,x,ξ) a±(t, x, ξ) ,

where a±(t, x, ξ) is a standard amplitude of order 0 (which equals 1 at t = 0), and
the real phase ϕ±(t, x, ξ) satisfies the eikonal equation

∂tϕ
±(t, x, ξ) = ±

∥∥dxϕ±(t, x, ξ)
∥∥
g
,

ϕ±(0, x, ξ) = 〈x, ξ〉 .
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The solution to the Cauchy problem (for initial condition g = 0) can be written
(up to an error which is a smooth integral kernel aplied to f) in the form

u(t, x) =
1

2

∑

±

∫
eiϕ

±(t,x,ξ) a±(t, x, ξ) f̂(ξ) dξ .

Using stationary phase techniques, the estimate (2.2) can be shown to hold for
small time intervals, and together with L2 bounds on Fourier integral operators
this implies the Strichartz estimates (2.1) locally, as shown by Kapitanski [K], and
Mockenhaupt-Seeger-Sogge [MSS].

4. Low regularity metrics

Consider the following question: what is the minimal regularity condition on the
metric coefficients gij(x) which insures that the Strichartz estimates hold for so-
lutions u(t, x) to the Cauchy problem (3.1)?

A natural condition for geometric optics is that the metric coefficients possess
two bounded derivatives; that is, gij(x) ∈ C1,1(Rn) . This is the minimal regu-
larity condition in the Hölder classes which yields a unique, bilipschitz geodesic
flow. That this condition is also optimal among the Hölder classes for Strichartz
estimates is shown by the following counterexamples of the author and Sogge [SS].

Theorem. For n ≥ 3, and any α < 1, there exists hα(x) ∈ C1,α(Rn) , and a

solution u(t, x) to the Cauchy problem for

∂2t u(t, x) = hα(x)∆u(t, x) ,

for which the Strichartz estimates do not hold.

The function hα(x) is constructed so that the geodesic flow is singularly focused
along some ray. This permits the construction of coherent wave packets travelling
along the ray which, due to the singular focusing, are contained in smaller sets
than the coherent wave packets (2.4) that are critical for the Strichartz estimates.

On the other hand, the arguments at the end of section 2 show that a positive
proof of the Strichartz estimates (in space dimensions 2 and 3) for a metric g

can be reduced to studying wave packets. Roughly, one needs to show that the
solution to the Cauchy problem with initial condition ψω

λ (x) is a coherent wave
packet that travels along the geodesic x in direction ω. Together with a bilipschitz
geodesic flow, this implies the analogue of estimate (2.2).

In [Sm2], this idea was coupled with a decomposition of functions into wave
packets to construct the wave group for metrics g(t, x) ∈ C1,1

(
R

1+n
)
. Modifying

techniques of Frazier and Jawerth [FJW] permits the construction of a spanning
set of functions for L2(Rn) consisting of translates of the ψω

λ (x). The ansatz that
the function ψω

λ (x) is rigidly transported along the geodesic flow leads to an inverse
for the wave equation, modulo an error that can be eliminated by iteration.

To obtain a manageable class of operators, however, a modification is needed:
the function ψω

λ is transported not along the geodesic flow of the metric g, but
rather along the flow of a smooth approximation gλ to g, where the approximation
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is chosen depending on the frequency λ, analogous to the paraproduct/multilinear
Fourier analysis techniques of Bony [Bo], Coifman and Meyer [CM]. We outline
this approximation in the next section in the context of a modified parametrix
construction for metrics of bounded curvature.

5. Metrics of bounded sectional curvature

In this section, we assume g(x) to be a Riemannian metric such that all sectional
curvatures are pointwise bounded by some constant C; this is the notion of L∞

pinched curvature. Some a priori regularity is necessary to make sense of the
Riemann curvature tensor, which is a nonlinear expression in the derivatives of
g; the condition ∇xg

ij(x) ∈ Lq(Rn) for some q > n is sufficient. This is also
sufficient to construct local harmonic coordinates for g. Lanczos [Lan] observed
that in these coordinates the Ricci curvature is an elliptic expression in terms of g
(see DeTurk and Kazdan [DK]); consequently in such coordinates the metric has
all second partial derivatives belonging to BMO(Rn), which we henceforth assume.

Take a sequence of smooth approximating metrics gk(x) to g(x) by the rule

g
ij
k (x) =

(
φk ∗ gij

)
(x) ,

where φk(x) = 2nk/2φ(2k/2x) , with φ(x) a smooth bump function of integral 1.
It follows from the condition ∇2

xg
ij(x) ∈ BMO(Rn) that

(5.1)
∥∥gij

k − gij
∥∥
L∞(Rn)

. 2−k .

Let ϕ±
k (t, x, ξ) be the solutions to the eikonal equations for gk:

(5.2)
∂tϕ

±
k (t, x, ξ) = ±

∥∥dxϕ±
k (t, x, ξ)

∥∥
gk
,

ϕ±
k (0, x, ξ) = 〈x, ξ〉 .

It follows from the bounded sectional curvature condition that the geodesic flow
of gk is bilipschitz, uniformly in k, hence that the ϕ±

k (t, x, ξ) form a bounded
sequence in C2(R7). Let

(5.3) Stg(x) =
1

2i

∞∑

k=0

∫ (
eiϕ

+

k (t,x,ξ) − eiϕ
−

k (t,x,ξ)
)
‖ξ‖−1

gk(x)
ĝk(ξ) dξ ,

where g =
∑

k gk is a Littlewood-Paley decomposition of g. It then follows from
(5.1) and (5.2) that (

∂2t −∆g

)
St = Rt

is a bounded operator on the Sobolev spaces Hγ(Rn), for −1 ≤ γ ≤ 2 , with norms
uniformly bounded in t.

One then seeks a solution to the inhomogeneous Cauchy problem

∂2t u(t, x) = ∆gu(t, x) + F (t, x) ,

u(0, x) = 0 ,

∂tu(0, x) = 0 ,
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in the form

u(t, x) =

∫ t

0

St−sG(s, x) ds .

This leads to a Volterra equation,

F (t, x) = G(t, x) +

∫ t

0

Rt−sG(s, x) ds

which may be solved by iteration.
Estimates of the form (2.1) are thus reduced to L2 → Lp mapping properties

of operators of the form (5.3). The symbols and phases of these operators satisfy
exactly the estimates needed to use the decomposition of Seeger-Sogge-Stein. In
particular, functions of the form ψω

λ (see (2.3)) are mapped to coherent wave
packets. Combined with the ideas at the end of section 2, this yields the following
(for details see [Sm3]).

Theorem. Let g(x) be a Riemannian metric on an open ball in R
3 such that,

for 1 ≤ i, j ≤ 3, ∇2
xg

ij(x) ∈ BMO(R3). Suppose also that the components of the

Riemannian curvature tensor satisfy, for all indices, Rijkl(x) ∈ L∞(R3) . Then
for t in some interval about 0, solutions to the Cauchy problem (3.1) satisfy the

Strichartz estimates (2.1).
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