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Hyperboliity, Stability,

and the Creation of Homolini Points

Shuhei Hayashi

1 The connecting lemma

The importance of connecting invariant manifolds by small perturbations of dy-
namical systems has been realized through the solution of the C1 Stability and Ω-
Stability Conjectures for diffeomorphisms, respectively by Mañé ([M3]) and Palis
([P2]). Moreover, the extension of their results was done through the creation of
homoclinic points by C1 small perturbation ([H1]).

LetM be a compact manifold without boundary and let Diff1(M), resp. X 1(M),
be the set of C1 diffeomorphisms of M , resp. vector fields on M , with the C1

topology. Denote by Xt, t ∈ R, the C1 flow on M generated by X ∈ X 1(M). A
set Λ ⊂ M is hyperbolic for f ∈ Diff1(M), resp. X ∈ X 1(M), if it is compact,
invariant, i.e., f(Λ) = Λ, resp. Xt(Λ) = Λ for all t ∈ R, there exists a continuous
splitting TM |Λ = Es ⊕ Eu, resp. TM |Λ = E0 ⊕ Es ⊕ Eu that is invariant under
Df , resp. DXt for all t ∈ R, and there exist constants K > 0, 0 < λ < 1 such
that

||(Dfn)|Es(x)|| ≤ Kλn, n ≥ 0

and
||(Df−n)|Eu(x)|| ≤ Kλn, n ≥ 0,

resp.
E0(x) = R ·X(x)

||(DXt)|E
s(x)|| ≤ Kλt, t ≥ 0

and
||(DX−t)|E

u(x)|| ≤ Kλt, t ≥ 0

for all x ∈ Λ. In particular, Λ is called isolated if there exists a compact neighbor-
hood U of Λ such that ⋂

n∈Z

fn(U) = Λ,

resp. ⋂

t∈R

Xt(U) = Λ.

We say that p is a homoclinic point associated to Λ if

p ∈ W s(Λ) ∩Wu(Λ)− Λ.
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Theorem 1.1 [H2]. If a C1 dynamical system has an almost homoclinic sequence
associated to an isolated hyperbolic set Λ, then there exists a dynamical system
C1 arbitrarily close to the original one, coinciding with it in a neighborhood of Λ,
and having a homoclinic point associated to Λ.

For the definition of almost homoclinic sequences, see [H2]. For instance, a se-
quence of periodic orbits outside Λ accumulating on Λ gives an almost homoclinic
sequence associated to Λ. In the proof of Theorem 1.1, we only use Pugh’s per-
turbation technique in his Closing Lemma and don’t need the hyperbolicity of Λ.
So, we can apply the perturbation in Theorem 1.1 to more general situation. In
particular, we get Theorem 1.2 below.
For X ∈ X 1(M) and a point x ∈ M , the ω-limit set of x, ω(x) is defined by
ω(x) = {y ∈ M |∃ti → +∞ such that Xti(x) → y}; the α-limit set of x, α(x) is
defined similarly with ti → −∞ instead of ti → +∞.

Theorem 1.2 [H3]. Let U be a neighborhood of X ∈ X 1(M) and p, q ∈ M with
q ∈ ω(p)− ω(q) be given. Then, there exists Y ∈ U coinciding with X outside an
arbitrarily small neighborhood of {Xt(q)| − T ≤ t ≤ 0} for some T (U , q,X) > 0
and having an orbit including p and {Xt(q)|t ≥ 0}.

There still remains the other type of connecting problem even for the C1 case.

Problem. For p and q respectively belonging to the unstable and stable mani-
folds of a hyperbolic singularity (or periodic orbit), if ω(p) meets α(q), then is it
possible to have a homoclinic point associated to it by a C1 small perturbation?

This problem is mentioned in [PM] and [Pu]. Pugh gave an example in [Pu]
showing that it is not always possible even for a C1 vector field when the ambient
manifold is not compact. Theorem 1.3 below is not the complete solution of the
problem when the manifold is compact, but, using it together with Theorem 1.2, we
get a C1 Make or Break Lemma (Theorem 1.4), which gives an affirmative answer
to a question suggested by Mañé. Denote by Sing(X) and Per(X) respectively the
set of singularities of X and that of periodic points of X.

Theorem 1.3 [H3]. Let U be a neighborhood of X ∈ X 1(M) and p, q ∈ M with
ω(p) ∩ α(q)− (Sing(X) ∪ Per(X)) 6= ∅ be given. Then, for each p̃ ∈ ω(p) ∩ α(q)−
(Sing(X) ∪ Per(X)), there exists Y ∈ U coinciding with X outside an arbitrarily
small neighborhood of {Xt(p̃)|0 ≤ t ≤ T} for some T (U , p̃, X) > 0 and having an
orbit including p and q.

Theorem 1.4 [H3]. Given p, q ∈ M with ω(p) ∩ α(q) 6= ∅, there exists a vector
field Y C1 close to X ∈ X 1(M) such that either (a) Y has an orbit including p

and q, or (b) ω(p) ∩ α(q) = ∅.
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2 The Stability Conjecture The concept of (structural) stability goes back

to the work of Andronov and Pontryagin [AP] in 1937. They considered the
necessary and sufficient conditions for vector fields on a two-dimensional disk to
be structurally stable. Here the structural stability deals with the topological
persistence under small perturbations of the orbit structure of a dynamical system,
which is expressed by a homeomorphism of the ambient manifold sending orbits of
the initial one onto orbits of the perturbed system preserving their orientations.
In the late fifties, Peixoto extended this characterization to closed orientable sur-
faces and subsequently proved the density of stable two-dimensional flows. At this
point, Smale thought that perhaps such kind of result could be true in any dimen-
sion for both diffeomorphisms and flows. To that end, he formulated what is now
called a Morse-Smale system: the limit set consists of finitely many fixed or peri-
odic hyperbolic orbits with their stable and unstable manifolds being transverse.
And he conjectured that (a) they are (structurally) stable and (b) they are dense
among all Cr dynamical systems, r ≥ 1. Part (b) of the conjecture was soon shown
not to be true, due to the existence (and persistence) of transversal homoclinic
orbits. Remarkably, Smale responded by discovering that a transversal homoclinic
orbit implies the existence of a new prototype of dynamics: the horseshoe trans-
formation, whose limit set consists of a Cantor set in which the (infinitely many)
periodic orbits are dense. In the mid sixties, motivated by Smale’s questions,
Anosov proved that globally hyperbolic systems are stable. Soon afterwards, Palis
and Smale proved that the Morse-Smale systems are stable, so (at least) part (a)
of Smale’s initial conjecture is correct. Their methods were quite distinct from
those of Anosov, since for the Morse-Smale systems there are several hyperbolic
“pieces” (fixed or periodic orbits), with stable and unstable manifolds of different
dimensions. At this point, putting together their result and that of Anosov, Palis
and Smale formulated in 1967 the celebrated Stability Conjecture: a system is
stable if its limit set is hyperbolic and all the stable and unstable manifolds are
transversal. Instead of hyperbolicity of the limit set, we can require the nonwan-
dering set to be hyperbolic and the periodic orbits to be dense on it (Axiom A or
hyperbolic systems).
In the beginning of 1970’s, Robbin, de Melo, and Robinson proved that the prop-
erties of Axiom A together with the transversality condition between stable and
unstable manifolds (the strong transversality condition) is sufficient for the struc-
tural stability.

Theorem 2.1 (Robbin [R], de Melo [dM], Robinson [Ro]). C1 dynamical sys-
tems satisfying Axiom A and the strong transversality condition are C1 struc-
turally stable.

In fact, a celebrated conjecture, the so-called Stability Conjecture had been
raised by Palis and Smale [PSm] in the late 1960’s, saying that the condition
is the necessary and sufficient conditions for structural stability. The sufficient
condition was proved relatively early, but it took much longer time to solve the
converse. After contributions by many mathematicians, it was finally solved for
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the C1 case by Mañé for diffeomorphisms and by Hayashi for flows. (See also Wen
[W].)

Theorem 2.2 (Mañé [M3], Hayashi [H2]). C1 structurally stable dynamical
systems satisfy Axiom A and the strong transversality condition.

The Ω-stability is a stability restricted to the nonwandering set (so it is weaker
than the structural stability), and there is a similar conjecture, the so-called Ω-
Stability Conjecture. See Palis [P2] and Hayashi [H2] for the proof. Thus, Palis-
Smale’s conjecture characterizing stable dynamical systems has completed (for the
C1 case). As a consequence, it turns out that the two concepts, hyperbolicity and
stability are essentially equivalent to each other for C1 dynamical systems of a
compact manifold.

As to Theorem 2.2 for flows, the biggest difficulty is the existence of singularities
(which are all hyperbolic by stability). In fact, if a sequence of periodic points
is accumulating on a singularity, similar arguments to the diffeomorphism case
cannot be applied, and if singularities are separated from periodic points, taking
the time-one map, parallel arguments to those of diffeomorphism case are available
in principle. The separation, the crucial step in the proof of Theorem 2.2 for flows,
is obtained by Theorem 1.1. In fact, a sequence of periodic points accumulating
on a (hyperbolic) singularity gives an almost homoclinic sequence, so Theorem
1.1 implies that a homoclinic point associated to the singularity can be created
by a C1 small perturbation, which belongs to an unstable saddle connection and
contradicts the stability of the vector field. Thus we get the following: for C1

stable vector fields, singularities are not in the closure of the set of periodic points.
In other words, singularities are isolated in the nonwandering set.

However, there is still an essential difference between diffeomorphisms and flows;
that is, even though the set of periodic points with the same index (the dimension
of the stable subspace) is hyperbolic (then it can be decomposed into disjoint
finite union of isolated hyperbolic sets each of which has a dense orbit), a periodic
point with the same index might appear far from the original hyperbolic set by
arbitrarily small perturbation, which never occurs in stable diffeomorphisms. This
phenomenon cause a difficulty in proving the hyperbolicity, but we can take a dense
subset in the set of stable vector fields in which the phenomenon never occurs. So,
by a similar method to the diffeomorphism case, hyperbolicity of each vector field
in the dense subset is obtained. After that, every stable vector field is finally
proved to be hyperbolic.

3 Beyond hyperbolicity

As mentioned in Section 2, Smale expected that the stable systems would be dense
in the set of all dynamical systems. This “dream” has collapsed through many
examples: there are open sets of unstable or even Ω-unstable systems (see [PT]).
Still, one can ask:
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Conjecture 3.1 (Palis). The set of Morse-Smale dynamical systems together
with the systems having a transversal homoclinic point forms a dense subset in
the space of dynamical systems.

Since Axiom A systems which are not Morse-Smale ones have transversal ho-
moclinic points, this conjecture can be also considered as a step toward another
conjecture by Palis [PT]:

Conjecture 3.2 (Palis). Every diffeomorphism on a compact manifold can be
approximated by a diffeomorphism satisfying Axiom A or else by one exhibiting a
bifurcation involving the creation of homoclinic points (homoclinic bifurcation).

This is in the direction of Palis’ program aiming at the global understanding of
dynamical systems in the complement of the closure of the set of hyperbolic (or
stable) ones. One of his main conjectures is to ask if densely one has finitely many
attractors with Sinai-Ruelle-Bowen invariant measures and whose basins cover
Lebesgue almost all points in the ambient manifold. Moreover, the attractors
should be stochastically stable (see [P3]). In a probabilistic way that would rescue
the lost dream of the sixties mentioned in the beginning of this section. Another
way is to find a dense subset in the complement having a dynamical feature and
find out some mechanism to investigate the bifurcations around each element of the
dense subset. It is known that homoclinic tangencies (nontransversal intersection
of a stable and an unstable manifold of the same hyperbolic fixed point or periodic
point) yields rich phenomena of nonhyperbolic dynamics, such as infinitely many
sinks and strange attractors. See [P3] and [PT] for more on this program.

For the two-dimensional case, Conjecture 3.2 was solved recently by Pujals and
Sambarino [PS]; that is, every C1 surface diffeomorphism can be approximated
by Axiom A diffeomorphism or else by one exhibiting a homoclinic tangency .
In higher dimensions, there are examples of open sets of nonhyperbolic diffeo-
morphisms where elements exhibit no homoclinic tangencies. In fact, Diaz [D]
constructed examples which is obtained after unfolding a three-dimensional cycles
with two hyperbolic fixed points p and q of saddle type having different indices
containing a transversal intersection of Wu(p) and W s(q) and a nontransversal
orbit of intersection between Wu(q) and W s(p).

As a first step to have the hyperbolicity in the complement of the closure of the
set of diffeomorphisms exhibiting a homoclinic tangency, it is natural to consider
showing the existence of dominated splitting on the supports of ergodic probability
measures. Here a dominated splitting on a compact invariant set Λ is a continuous,
f -invariant (i.e., invariant under the derivative of f) splitting

TM |Λ = E ⊕ F

such that there exist constants m ∈ Z+, 0 < λ < 1 satisfying
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||(Dfm)|E(x)|| · ||(Df−m)|F (fm(x))|| < λ.

We know that there exist the Lyapunov splittings in a dense subsets of the sup-
ports of ergodic measures by Oseledec’s theorem. Let us recall the Oseledec’s
theorem. Denote by Λ(f) for f ∈ Diff1(M) the set of points satisfying the follow-
ing properties: there exists a splitting TxM =

⊕m

i=1 Ei(x) (the Lyapunov splitting
at x) and numbers λ1(x) > · · · > λm(x) (the Lyapunov exponents at x) such that
limn→±∞

1
n
log ||(Dxf

n)v|| = λi(x) for every 1 ≤ i ≤ m and 0 6= v ∈ Ei(x). Os-
eledec proved that µ(Λ(f)) = 1 for every f -invariant probability measure µ on the
Borel σ-algebra of M . Here Ei(x) (1 ≤ i ≤ m) are just measurable functions of x.
In this direction, there is a theorem by Mañé [M2], saying that for C1 generic f

(elements in a residual subset of Diff1(M)), there is a residual subsetR in the space
of ergodic measures Me(f) of f such that each µ ∈ R has a dominated splitting on
its support s(µ) coinciding with the Lyapunov splitting at µ-a.e. point of s(µ). As
Mañé mentioned in [M2], generic elements of Me(f) fail to reflect the dynamical
complexity of f in the sense that C1 generically, the entropy hµ(f) is zero for
generic µ. For instance, hµ(f) = 0 when µ is supported on a single periodic orbit.
So he suggested to work in the space Mc

e(f) = {µ ∈ Me(f)|hµ(f) > c} and prove
that generic measures in Mc

e(f) satisfy a strong form of Oseledec’s theorem.
The following result is in the direction of the combination of proposals of Mañé
and Palis. Let H1(M) be the set of C1 diffeomorphisms exhibiting a homoclinic
tangency.

Theorem 3.3 [H5]. There is a dense subset D in the complement of H1(M) such
that if f ∈ D, for every µ ∈ Me(f) which is not supported on a single periodic
orbit, either limn→±∞

1
n
log ||(Dxf

n)v|| = 0 for µ-a.e. x and every 0 6= v ∈ TxM

or there exist dominated splittings

TM |s(µ) = E− ⊕ F,

TM |s(µ) = E ⊕ F+

such that

E−(x) =
⊕

λj(x)<0

Ej(x), F =
⊕

λj(x)≥0

Fj(x),

E(x) =
⊕

λj(x)≤0

Ej(x), F+ =
⊕

λj(x)>0

Fj(x)

at µ-a.e. x of s(µ).

For the proof, we need an improved version of Mañé’s ergodic closing lemma
([M1]) and a theorem in Pesin theory. Using this theorem and Theorem 1.1, we
get the following result toward the solution of Conjecture 3.1.
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Theorem 3.4 [H5]. In the complement of the closure of the set of diffeomor-
phisms exhibiting a transversal homoclinic point together with the Morse-Smale
ones, every diffeomorphism can be C1 approximated by one having an ergodic
measure whose support has dominated splittings as in Theorem 3.3.

Acknowledgment: The author would like to thank Professor J. Palis for his
many suggestions on this paper.
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