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Random Dynamis and its Appliations

Yuri Kifer

Abstract. Random transformations emerge in a natural way as a model
for description of a physical system whose evolution mechanism depends on
time in a stationary way. This leads to the study of actions of compositions
of different maps chosen from a typical sequence of transformations. The
question whether such actions are chaotic can be dealt with employing the
random thermodynamic formalism developped in recent years. This theory
has nice applications to random networks, fractal dimensions of random sets
and other models.
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1. Introduction

Evolution of many physical systems can be better described by compositions of
different maps, i.e. time dependent transformations, rather than by repeated ap-
plication of exactly the same transformation. It is natural to study such problems
for typical in some sense sequences of maps which leads to the framework of ran-
dom transformations.

This set up was discussed already in Ulam and von Neumann [UN] and in Kaku-
tani [Ka] in connection with random ergodic theorems. Later this topic was studied
in the framework of the relativized ergodic theory (Thouvenot [Th], Ledrappier
and Walters [LW]) but the real push this subject received in 80-ies when sto-
chastic flows appearing as solutions of stochastic differential equations provided a
rich source of random diffeomorphisms (see references and the historical review in
Arnold [Ar]). This prompted, in particular, the book [Ki1] which, in turn, played
a role in motivating other work such as the general relativized variational principle
(Bogenschütz [Bo]) and some results in smooth random dynamics. Further devel-
opments of the latter included random invariant manifolds, Lyapunov exponents,
and a random bifurcation theory (see Arnold [Ar] and references there), random
versions of the Margulis-Ruelle entropy inequality (see Kifer [Ki1], Liu and Qian
[LQ], Bahnmüller and Bogenschütz [BB]) and of the Pesin entropy formula and the
corresponding characterization of the random Sinai-Ruelle-Bowen measures ( see
Ledrappier and Young [LY], Liu and Qian [LQ], Bahnmüller and Liu [BL]), and
the random thermodynamic formalism (see Kifer [Ki2], Bogenschütz and Gundlach
[BG], Khanin and Kifer [KK]).
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810 Yuri Kifer

The formal set up consists of a probability space (Ω,A, P ) together with a
P−preserving ergodic invertible map θ : Ω → Ω, of another measurable space
(X,B), and of a measurable subset X of X×Ω with fibers Xω = {x ∈ X : (x, ω) ∈
X} ∈ B. The dynamics is given by a mesurable map τ : X → X which is a skew
product transformation τ(x, ω) = (Fωx, θω) where the fiber maps Fω : Xω → Xθω

with the composition rule Fn
ω = Fθn−1ω ◦ · · · ◦ Fθω ◦ Fω : Xω → Xθnω are called

random transformations.
Theory of random transformations concerns mainly with actions of Fn

ω for typ-
ical ω ∈ Ω, i.e. except of ω′s forming a set of zero P−measure. I shall discuss here
only certain aspects of ergodic theory of random transformations related mainly
to the random thermodynamic formalism which is crucial in describing chaotic
(stochastic) spatial behaviour of compositions Fn

ω for typical ω. Familiar signs of
stochastic behavior are the central limit theorem (CLT), the law of iterated loga-
rithm (LIL), large deviations (LD) etc. which hold true for some classes of random
transformations such as random expanding in average maps, random subshifts of
finite type and certain random hyperbolic diffeomorphisms. The theory has appli-
cations to random networks, computations of fractal dimensions of random sets,
and to random walks with stationarily changing distributions which also will be
discussed in this paper. Recently random diffeomorphisms were employed in some
models of statistical physics (see Ruelle [Rue]).

2. Random Thermodynamic Formalism

Let PP (X) be the space of probability measures on X whose marginal on Ω
coincides with P. I assume that all spaces under consideration are Borel sub-
sets of Polish spaces, and so any µ ∈ PP (X) has an essentially unique desin-
tegration µ(dx, dω) = µω(dx)P (dω) with µω, ω ∈ Ω being a measurable fam-
ily of probability measures on Xω. It is easy to see that µ is τ−invariant if
and only if Fωµ

ω = µθω P−almost surely (a.s.). Accordingly, a measurable set
A ⊂ X is τ−invariant if and only if its fibers Aω = {x : (x, ω) ∈ A} satisfy
FωA

ω = Aθω P−a.s.

Given µ ∈ PP (X) the relativized or fiber entropy h
(r)
µ (τ) of τ can be defined as

the conditional entropy of τ with respect to the σ−algebra π−1A where π : X → Ω
is the natural projection to the second factor (see [LW], [Ki1], [Bo]). Another

way to obtain h
(r)
µ (τ), somewhat similar to the deterministic case, is via finite

partitions R = {R1, ..., Rn} of X into measurable sets. Set Rω
i = {x : (x, ω) ∈ Ri}

and Rω = {Rω
1 , ..., R

ω
n} then P−a.s.,

(2.1) h(r)
µ (τ) = sup

R
lim

n→∞
1

n
Hµω

(

n−1
∨

i=0

(F i
ω)

−1Rθiω

)

.

Existence of this limit follows from Kingman’s subadditive ergodic theorem (see
[Ki1]).

Assume now that X is compact and the fibers Xω are Borel subsets of X. For
continuous random transformations Fω and any measurable function g on X such
that gω(x) is continuous in x and supx |gω(x)| ∈ L1(Ω, P ) introduce another useful
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Random Dynamics 811

quantity, called the relativized (fiber) topological pressure Qτ (g), by

(2.2) Qτ (g) = sup
µ∈PP (X)

(

∫

gdµ+ h(r)
µ (τ)).

The number Qτ (0) denoted by h
(r)
top(τ) is called the relativized topological entropy.

Actually, similarly to the deterministic case the proper definition of Qτ (g) is via
(ω, n, ε)−separated sets (see [Ki1] and [Bo]) and then (2.2), called the relativized
variational principle, is derived as a theorem. Under rather general conditions,
called (random) expansivity, one can show that hµ(τ) is upper semicontinuous
in µ, and so the supremum in (2.2) is attained at some µ ∈ PP (X) which is
called an equilibrium state. If a maximizing measure is unique it has usually nice
properties. Equilibrium states are related to Gibbs measures and both have their
roots in statistical mechanics where g plays the role of a potential.

Next, I shall describe specific models of random transformations which will
appear in the following exposition. I shall start with random subshifts of fi-
nite type (see [BG] and [KK]) where Xω = Xω

A = {x = (x0, x1, ...) : xi ∈
{1, ..., ℓ(θiω)} and axixi+1

(θiω) = 1∀i = 0, 1, ...}, ℓ : Ω → Z+ = {1, 2, ...} satis-
fies 0 <

∫

log ℓdP < ∞, and A(ω) = ((aij(ω)), ω ∈ Ω is a measurable family of
ℓ(ω)×ℓ(θω)−matrices with 0 and 1 entries such that P−a.s. A(ω) has no zero row.
Random transformations Fω act on Xω as left shifts (Fωx)i = xi+1. A random
subshift of finite type is called topologically mixing if there exists a Z+− valued
random variable 0 < N = Nω < ∞ so that P−a.s. A(θ−Nω) · · ·A(θ−2ω)A(θ−1ω)
is a matrix with positive entries. The random Ruelle-Perron-Frobenius (RPF) op-
erator Lω

g corresponding to a function g = gω(x) on X maps functions on Xω to

functions on Xθω by the formula

(2.3) Lω
g q(x) =

∑

y∈F−1
ω x

egω(y)q(y).

Suppose that E supx |gω(x)| < ∞ and

(2.4) |gω(x)− gω(y)| ≤ Kg(ω)(dist(x, y))
κ

for some κ > 0 and a random variable Kg(ω) > 0 with E| logKg| < ∞, where

dist(x, y) = e−min{i≥0:xi 6=yi} and E denotes the expectation on (Ω,A, P ). Then
the random RPF theorem ([KK], [BG]) yields that there exists a unique positive
random variable λ = λω with E| log λ| < ∞, a positive function h = hω(x), and
ν ∈ PP (X) having desintegrations νω such that

(2.5) Lω
g hω = λωhθω, (Lω

g )
∗νθω = λων

ω, and

∫

Xω

hωdν
ω = 1.

Then the relativised topological pressure of g has the form Qτ (g) =
∫

log λωdP (ω)
and µ ∈ PP (X) having desintegrations µω satisfying dµω = hωdν

ω is τ−invariant
and it is the unique equilibrium state for g.
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812 Yuri Kifer

This set up is quite appropriate to study randomly evolving graphs or random
networks N where V (ω) = {1, 2, ..., ℓ(ω)} is the set of vertices for an (eviron-
ment) ω and I connect by an arrow i ∈ V (ω) to j ∈ V (θω) iff aij(ω) = 1. A
sequence (i0, i1, ..., in) is a path in N iff aikik+1

(θkω) = 1∀k = 0, 1, ..., n − 1.
The topologically mixing condition formulated above yields that for any i ∈ V (ω)
and j ∈ V (θnω) with n sufficiently large there exists a path of length n in N
starting at i and ending at j. In the next section I shall formulate general limit
theorems which can be applied, in particular, to describe statistical properties of
paths in such random networks. More general models of multidimensional random
subshifts of finite type and of random sofic shifts, which also have combinatorial
applications, were studied in [Ki3] and [GK2], respectively.

By constructing random Markov partitions and employing random subshifts
of finite type one can study also random (spatially uniform) hyperbolic diffeo-
morphisms which have random expanding and contracting (in average) invari-
ant subbundles (see [Li], [GK1]). As an example of this situation take, for in-

stance, Fω = f
n(ω)
ω where fω is a random diffeomorphism whose all realizations

belong to a small C2 neighborhood of one Anosov diffeomorphism (or a diffeo-
morphism having a basic hyperbolic set) and n = n(ω) is a random variable
taking values 0, 1, 2, ... with 0 <

∫

log(1 + n)dP < ∞. Another interesting ex-
ample of a random Anosov diffeomorphism is due, essentially, to Arnoux and
Fisher. Let σ : Ω → Ω be a P−preserving ergodic invertible map and assume
that θ = σ2 is also ergodic. Random transformations here are automorphisms

of the torus T
2 given by Fω =

(

1 + n(ω)n(σω) n(σω)
n(ω) 1

)

where n = n(ω)

is a Z+−valued random variable with log n ∈ L1(ω, P ). Denote by [k1, k2, ...]

the continued fraction
1

k1 +
1

k2 + · · ·

and set a(ω) = [n(ω), n(σω), n(σ2ω), ...],

b(ω) = [n(σ−1ω), n(σ−2ω), ...]. Define ξ(ω) =

(

a(ω)
−1

)

, η(ω) =

(

1
b(ω)

)

,

λ(ω) = a(ω)a(σω) and γ(ω) = (b(σω)b(σ2ω))−1. Then Fωξ(ω) = λ(ω)ξ(θω),
Fωη(ω) = γ(ω)η(θω), λ(ω) < 1, γ(ω) > 1, and so, ξ and η span the contracting
and expanding (in average) directions, respectively. Allowing also zero values of
n(ω) one can achieve even that the angles between these directions may approach
zero arbitrarily close. All these constructions fall into a more general class of ran-
dom diffeomorphisms having in the tangent bundle random invariant (expanding
in average) cone families (see [GK1]).

In the continuous time case the situation is more complicated and, essentially,
no ergodic theory of random (spatially uniform) hyperbolic flows exists, as yet,
which could provide constructions of equilibrium states via a thermodynamic for-
malism approach (cf. [GK1]). A successful theory should include natural pertur-
bation models such as a random flow generated by a random vector field whose
all realizations are close to a deterministic vector field generating an Anosov flow.
Meanwhile, only simple examples can be dealt with. Consider, for instance, a

random flow F t
ω given by the equation

dF t
ωx
dt = qθtω(F

t
ωx)B(F t

ωx) where θt is an
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Random Dynamics 813

ergodic P−preserving flow on Ω, qω is a measurable family of smooth positive
functions on a compact Riemannian manifold M, and B is a vector field generat-
ing a transitive Anosov flow f t on M. Then F t

ω is obtained from f t by the random
time change and both flows have the same orbits. Using a Markov partition for f t

one can represent F t
ω as a suspension over a random subshift of finite type with a

random ceiling function bounded away from zero and infinity (see [Ki6]).
Another model I have in mind is the case of expanding in average smooth

random maps considered in [KK] which can be studied directly without a symbolic
representation. Assume for simplicity that all Xω’s coincide with one compact
connected d−dimensional C2 Riemannian manifold M and all Fω : M → M

are C2 endomorphism of M such that log ‖DF−1
ω ‖, log ‖DFω‖ ∈ L1(Ω, P ) and

∫

log ‖DF−1
ω ‖dP (ω) < 0 whereDF is the differential of F and ‖·‖ is the supremum

norm. The random RPF operator Lω
g is defined again by (2.3) and if g′ωs are Hölder

continuous, i.e. (2.4) is satisfied with an integrable logKg, then the random RPF
theorem holds true yielding a random variable λω > 0, a function h = hω(x) > 0 on
M×Ω, and probability measures νω on M satisfying (2.5) so that µ ∈ PP (X) with
desintegrations µω satisfying dµω = hωdν

ω is the unique equilibrium state for g.

Both in this model and in the case of random Anosov (hyperbolic) diffeomorphisms
there are relativized Sinai-Ruelle-Bowen measures µSRB having special properties
which are equilibrium states for the functions ϕu

ω(x) equal minus logarithm of the
Jacobian of either DxFω (in the expanding case) or of the restriction of DxFω to
the random expanding subbundle (in the hyperbolic case).

3. Limit theorems for random transformations

In this section I shall formulate the LD, CLT, and LIL results for random transfor-
mations Fω belonging to one of the specific classes considered in the previous sec-

tion. Set Ig(ν) = Qτ (g)−
∫

gdν−h
(r)
ν (τ) if ν ∈ PP (X) and ν is τ−invariant, while

Ig(ν) = ∞, otherwise, and put Jg,q(r) = inf{Ig(ν) :
∫

qdν = r} if a ν ∈ PP (X)
satisfying conditions in brackets exists and Jg,q(r) = ∞, otherwise.

3.1. Theorem. (cf.[Ki2]) Suppose that Ω is a locally compact space. Let µ ∈
PP (X) with desintegrations dµ(x, ω) = dµω(x)dP (ω) be the unique equilibrium
state for a function g satisfying conditions of the corresponding RPF-theorem (i.e.

(2.4) holds true). Set ζnx,ω = 1
n

∑n−1
k=0 δτk(x,ω), where δz is the Dirac measure at z,

and Snq(x, ω) = n
∫

qdζnx,ω =
∑n−1

k=0 q◦τk(x, ω). Then for each bounded continuous
function q and any numbers r1 < r2,

(3.1) − inf
r∈[r1,r2]

Jg,q(r) ≥ lim sup
n→∞

1

n
log µω{x ∈ Xω :

1

n
Snq(x, ω) ∈ [r1, r2]}

≥ lim inf
n→∞

1

n
log µω{x ∈ Xω :

1

n
Snq(x, ω) ∈ (r1, r2)} ≥ − inf

r∈(r1,r2)
Jg,q(r)

P−a.s. The large deviations estimates for occupational measures ζnx,ω, i.e. the

upper and lower bounds for the limits of n−1 log µω{x ∈ Xω : ζnx,ω ∈ G}, (with G

being a closed or open set of probability measures on X×Ω) hold true, as well, with
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814 Yuri Kifer

the rate functional Ig(ν). In the case of random expanding in average transforma-
tions of a compact Riemannian manifold M or random Anosov diffeomorphisms
the results remain true if µω is replaced by the normalized Riemannian volume m

on M and one takes gω(x) = ϕu
ω(x).

Observe, that Ig(ν) = 0 and Jg,q(r) = 0 if and only if ν = µ and r =
∫

qdµ.

Therefore, (3.1) estimates large deviations from the ergodic theorem, i.e. it de-
scribes the decay of µ−measure of points having irregular with respect to µ be-
havior.

In the case of random subshifts of finite type Theorem 3.1 can be modified
to become a combinatorial statement on random networks (see [Ki5]). For α =
(α0, ..., αn) with aαi,αi+1

(θiω) = 1∀i = 0, ..., n − 1 set Cω
α = {x ∈ Xω

A : xi =
αi ∀i = 0, 1, ...n} which is called an n−cylinder set. Denote by Πω

n(a, b) the set
of all n−cylinders Cω

α0,...,αn
with α0 = a ∈ V (ω) and αn = b ∈ V (θnω) and by

|R| the cardinality of a set R. Let I(ν) = I0(ν) = h
(r)
top(τ) − h

(r)
ν (τ) if ν ∈ PP (X)

and ν is τ−invariant, while I(ν) = ∞, otherwise, and put Jq(r) = J0,q(r). Then
for any bounded continuous function q, a ∈ V (ω), bn ∈ V (θnω), xα ∈ Cω

α , and
numbers r1 < r2 with probability one as n → ∞, |Πω

n(a, bn)|−1|{Cω
α ∈ Πω

n(a, bn) :
n−1(Snq)(xα, ω) ∈ (r1, r2)}| ≍ exp(−n infr∈(r1,r2) Jq(r)). Here ≍ means that both
sides of the formula have the same logarithmic asymptotical behavior in the sense
of inequalities in (3.1). In particular, if I assign to each edge e of the network N (ω)
its length lω(e) and set qω(x) = lω(x0, x1), which gives a continuous function,
then this yields large deviations for the average length of paths with n vertices.
The corresponding second level of large deviations estimates |Πω

n(a, bn)|−1|{Cω
α ∈

Πω
n(a, bn) : ζnxα,ω ∈ G}| ≍ exp(−n infν∈G I(ν)) for occupational measures holds

true, as well.
Next, I formulate the CLT and the LIL from [Ki6]. Let µ be as in Theorem

3.1 and ϕ = ϕω(x) satisfying
∫

ϕωdµ
ω = 0 be a Hölder continuous in x random

function with an exponent κ > 0 and a random variable Kϕ, i.e. ϕ satisfies (2.4).
For a random variable L = L(ω) and a constant C set QL,C = {ω : L(ω) ≤ C} and
kL,C(ω) = min{n : θnω ∈ QL,C}. I say that the L,C integrability condition for ϕ

holds true if
∫

(
∑kL,C−1

i=0 (‖ϕ‖+Kϕ) ◦ θi)2dP < ∞ where ‖ϕ‖ω = supx |ϕω(x)|.
3.2. Theorem. There exist a random variable L = L(ω) and a constant C (which
can be written explicitly for specific models above) such that if the L,C integrability

condition holds true then P−a.s. the limit σ2 = limn→∞
1
n

∫

(
∑n−1

j=0 ϕθjω◦F j
ω)

2dµω

exists and for P−a.a. ω and any number a,

(3.2) lim
n→∞

µω

{

x ∈ Xω : n−1/2
n−1
∑

i=0

(ϕ ◦ τ i)(x, ω) ≤ a

}

=
1

σ
√
2π

∫ a

−∞
e−

u2

2σ2 du

where in the case σ = 0, the normal distribution in the right hand side of (3.2)
should be understood as the Dirac measure at 0.

Assuming that σ > 0 the invariance principle for the LIL holds true. Namely,

if ζ(t) = (2t log log t)1/2 and ηn(t) = (ζ(σ2n))−1(
∑k−1

j=0 ϕ ◦ τ j + (nt − k)ϕ ◦ τk)

for t ∈ [ kn ,
k+1
n ), k = 0, 1, ..., n− 1 then µ−a.s. the set of limit points in C[0, 1] of
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functions ηn(t) as n → ∞ coincides with the set of absolutely continuous η ∈ C[0, 1]

with
∫ 1

0
(η̇(t))2dt ≤ 1.

The role of L = L(ω) emerging in Theorem 3.2 is to offset the nonuniformity
in ω of the models above so that, for instance, Fn

ω will be uniformly expand-
ing for n ≥ L(ω) or, in the case of random subshifts of finite type, all matrices
A(ω)A(θω) · · ·A(θnω) will be positive for any n ≥ L(ω). In addition, L(ω) bounds
some parameters related to the functions gω and ϕω appearing in Theorem 3.2.

Observe that Theorem 3.2 yields fiber-wise CLT and LIL for some deterministic
skew product transformations. For instance, consider an expanding map of the
3-dimensional torus T3 = T

1 × T
2 given by the formula τ(x, y) = (Fyx, θy) where

θ is an ergodic automorphism of T
2 and Fyx = γ(y) + n(y)x (mod 1) where

γ(y) ∈ R, n(y) ∈ Z+ are measurable functions with 0 <
∫

T2 log n(y)dy < ∞.

Since both θ and Fy’s preserve the Lebesgue measures (denoted Leb below) on T
2

and on T
1, respectively, I can view Fy’s as ”random” expanding maps of T1 with

Ω = T
2, P =Leb, M = T

1, and µy =Leb (which is a ”random” Gibbs measure
corresponding to the function gy = log n(y)). Theorem 3.2 yields now that for

Leb-a.a.y, Leb{x : 1√
n

∑n−1
l=0 ϕ ◦ τ l(x, y) ≤ a} converges as n → ∞ to the right

hand side of (3.2) and the corresponding LIL follows, as well.

4. Fractal dimensions of random sets

Any x ∈ [0, 1) can be represented in the form of a ”random base expansion”

(4.1) x =

∞
∑

i=0

xi(ω)

ℓ(ω)ℓ(θω) · · · ℓ(θiω) , xi(ω) ∈ {0, 1, ..., ℓ(θiω)− 1}

where, again, ℓ is a Z+−valued random variable satisfying 0 <
∫

log ℓdP < ∞.

To make this representation unique one can forbid the tails of the form xi(ω) =
ℓ(θiω)−1∀i ≥ n. Identify 0 and 1 then Fωx = ℓ(ω)x (mod 1) can be considered as
a random expanding transformation of the unit circle T

1. If τ(x, ω) = (Fωx, θω)
is the skew product transformation and φ(x, ω) = x0(ω) then

(4.2) xi(ω) = (φ ◦ τ i)(x, ω).

Observe that all Fω preserve the Lebesgue measure m on [0, 1) and the corre-
sponding measure m × P is τ−invariant, has the (maximal) relativized entropy
∫

log ℓdP, and it is the unique equilibrium state for the function − log ℓ. Moreover,

it is ergodic, and so m× P−a.s., limn→∞
1
n

∑n−1
i=0 xi(ω) =

1
2

∫

(ℓ− 1)dP assuming
that the right hand side exists. In view of (4.2) and Theorem 3.1 one has the large

deviations estimates for m{x : 1
n

∑n−1
i=0 xi(ω) ∈ [r1, r2]}. Furthermore, by Theorem

3.2 P−a.s. for any number a, limn→∞ m{x : n−1/2
∑n−1

i=0 (xi(ω)− 1
2 (ℓ(θ

iω)−1)) ≤
a} = 1

σ
√
2π

∫ a

−∞ e−
u2

2σ2 du. Moreover, σ can be computed here precisely since, when

ω is fixed, x0(ω), x1(ω), ... are independent random variables (with stationarily
changing distributions) on the space ([0, 1],m), which gives σ2 = 1

12

∫

(ℓ2 − 1)dP
provided the right hand side exists.
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816 Yuri Kifer

Consider the sequence space Xω = {x = (x0, x1, ...) : xi ∈ {0, 1, ..., ℓ(θiω)− 1}}
and the map πω : [0, 1) → Xω, πω(x) = (x0(ω), x1(ω), ...) then Fωπ

ω = πωfω
where fω is the left shift on Xω. Thus πω is a semi-conjugacy and, in fact, this
symbolic representation comes from the random Markov partition of [0, 1) into
ℓ(ω) equal subintervals.

A measurable set G ⊂ T
1 × Ω is τ−invariant iff FωG

ω = Gθω where Gω =
{x : (x, ω) ∈ G}. Such sets can be obtained, for instance, considering x whose
expansion (4.1) does not contain certain prescribed digits which may be called
random Cantor sets. Assuming that all Gω are compact one has the following
formula for their Hausdorff dimension (see [Ki4]),

(4.3) HD(Gω) =
h
(r)
top(τ,G)
∫

log ℓdP
P − a.s.

where h
(r)
top(τ,G) is the relativised tological entropy of τ restricted to G. Next,

I consider another class of random invariant sets which are dense in [0, 1). Set
Nω

kl(x, n) = |{j ≥ 0, j < n : ℓ(θjω) = k, xj(ω) = l − 1}| and Nω
l (x, n) =

∑

k∈Z+
Nω

kl(x, n) where |{·}| denotes the cardinality of a set {·}. Let r = (rk, k ∈
Z+) be an infinite probability vector and A = (akl, k, l ∈ Z+) be an in-
finite probability matrix such that akl = 0 unless l ≤ k. Define the sets
Uω
r =

{

x ∈ [0, 1) : limn→∞
1
nN

ω
l (x, n) = rl ∀l ∈ Z+

}

(i.e. prescribing frequencies

of digits) and V ω
A =

{

x ∈ [0, 1) : limn→∞
1
nN

ω
kl(x, n) = qkakl ∀k, l ∈ Z+

}

where
qk = P{ℓ = k}.
4.1. Theorem. ([Ki4]) With probability one,

(4.4) HD(V ω
A ) =

−∑k∈Z+
qk
∑

l≤k akl log akl
∫

log ℓdP

def
= HA,

and so HD(V ω
A ) = 1 iff akl = k−1 for all l ≤ k and any k ∈ Z+ such that qk 6= 0. In

the last case with probability one V ω
A has also the Lebesgue measure one. The sets

Uω
r have the Lebesgue measure one for P -a.a.ω iff rl =

∑

k≥l qkk
−1 for all l ∈ Z+

(which is a random version of Borel’s normal number theorem). Furthermore, for

P -a.a.ω, HD(Uω
r ) = supA∈Aqr

HA
def
= H, where the supremum is taken over the

set Aqr of all infinite probability matrices A = (akl) such that akl = 0 unless l ≤ k

and qA = r with q and r considered as the row vectors. The set Aqr is nonempty
iff
∑

l∈F ql ≥
∑

l∈F rl for any filter F ∈ F in Z+, (i.e. if l ∈ F and l ≤ k then
k ∈ F ). If Aqr is empty then with probability one Uω

r is empty too.

The expression in the numerator of the right hand side of (4.4) is the fiber en-
tropy of certain random Bernoulli measure which emerges naturally in the proof.
Computations of dimensions of different other invariant sets of random tranfor-
mations, as well as multidimensional generalizations, can be found in [Ki4].

5. ”Random” random walks on groups

Markov chains with random transition probabilities emerge directly from random
subshifts of finite type taken with random Markov measures but also they are
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closely related ideologically to random transformations (cf. [Ki6]). In this sec-
tion I consider random walks with stationarily changing distributions on discrete
groups and demonstrate how a relativized entropy like characteristic describes
their asymptotic behavior.

Let G be a discrete group and µω, ω ∈ Ω be a measurable family of probability
measures on G. Next, I consider the Markov chain Xω

n with random transitions
on G, which I call ”random” random walk, with n−step transition probabilities

(5.1) Pω(n, g1, g2) = µω ∗ µθω ∗ · · · ∗ µθn−1ω(g2g
−1
1 )

where ∗ denotes the usual convolution of measures on groups. Following [Rub] call
a measurable in ω and x function h random harmonic if

(5.2)
∑

r∈G

Pω(1, g, r)hθω(r) =
∑

r∈G

hθω(rg)µ
ω(r) = hω(g).

The next natural goal is to describe spaces of random harmonic functions which
is related to the asymptotic behavior of Xω

n .

Suppose that h is random harmonic and c(ω) = supx |hω(x)| < ∞. Since I
assume that θ is ergodic it follows from (5.2) that c is constant P−a.s., and so
h is bounded. Let e be the identity of G and Pω be the path distribution of
the Markov chain Xω

n , n ≥ 0, Xω
0 = e. Is is easy to see that hθnω(gX

ω
n ) is a

martingale under Pω, and so for all g ∈ G and Pω−a.a. paths ξ ∈ GZ+ the limit
limn→∞ hθnω(gX

ω
n ) = ϕω(gξ) exists where gξ = (gξ0, gξ1, ...) for ξ = (ξ0, ξ1, ...)

determines the action of G on paths ξ ∈ GZ+ . Moreover, for any g ∈ G, P−a.a.ω,
and Pω−a.a.ξ one has ϕω(gξ) = ϕθω(gσξ) where σ is the left shift. Let τ(ξ, ω) =
(σξ, θω) and F be the σ−algebra of τ−invariant measurable sets from GZ+ × Ω.
Set Fω = {Aω = {ξ : (ξ, ω) ∈ A} : A ∈ F} and let πω be the factorizing
map of (GZ+ , Pω) to the quotient space corresponding to the measurable partition
attached to Fω. Then one has a Poisson type representation hω(g) =

∫

ϕω◦πωdgν
ω

where νω = πωP
ω satisfying µω ∗ νθω = νω is naturally to call a random harmonic

measure.
For any probability measure η on G set H(η) = −∑g∈suppη η(g) log η(g) and

assume that
∫

H(µω)dP (ω) < ∞. Let µω
n = µω ∗µθω ∗ · · ·µθn−1ω and h

ω
n = H(µω

n).

Then h
ω
n+m ≤ h

ω
n + h

θnω
m and by the subadditive ergodic theorem P−a.s. the

limit, called the fiber (or relativized) Avez entropy, h(G,µ) = limn→∞
1
nh

ω
n exists

and it is not random. Let Gω be the support of the measure
∑∞

n=1 2
−nµω

n and
assume that Gω = G P−a.s.

5.1. Theorem. (i) For P−a.a.ω Pω−a.s., limn→∞
1
n log µω

n(X
ω
n ) = −h(G,µ);

(ii) h(G,µ) = 0 iff there are no random bounded harmonic functions except µ−a.s.
constants (where dµ(ξ, ω) = dµω(ξ)dP (ω)).

In some cases, for instance, whenG is a free group, one can also obtain Hausdorff
dimensions of random harmonic measures via h(G,µ) and the speed of convergence
of Xω

n to infinity. Other results concerning this set up will appear in a forthcoming
paper joint with Kaimanovich and Rubshtein. Results on ”random” random walks
on continuous groups, in particular, products of independent random matrices with
stationarily changing distributions will appear elsewhere.
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[Bo] T. Bogenschütz, Entropy, pressure, and a variational principle for random dynamical

systems, Random&Comp.Dyn. 1 (1992), 99-116.
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