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Counterexamples to

the Seifert Conjeture
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Abstract. Since H. Seifert proved in 1950 the existence of a periodic
orbit for a vector field on the 3-dimensional sphere S3 which forms small
angles with the fibers of the Hopf fibration, several examples of aperiodic
vector fields on S3 have been produced as well as results showing that in
some situations a compact orbit must exists. This paper surveys presently
known types of vector fields without periodic orbits on S3 and on other
manifolds.
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1 Introduction: The Seifert Conjecture.

A dynamical system or a flow on a metric space X is a topological group action
of the additive group of reals R on X, or equivalently a continuous map Φ :
R×X → X such that Φ(0, p) = p and Φ(t+s, p) = Φ(s,Φ(t, p)). If M is a smooth
or real analytic manifold and Φ is differentiable, then dΦ

dt
|t=0 is the vector field

of Φ and is in the same smoothness category as Φ. By a standard integration
theorem, a C1 vector field on a closed manifold can be integrated to produce a
corresponding dynamical system. A trajectory or an orbit of a point p is the image
of Φ(R× {p}) in X. A compact trajectory is periodic: either consisting of a fixed
point or homeomorphic to S1. A dynamical system, or equivalently a vector field,
is aperiodic if it contains no compact trajectories. A non-compact trajectory is a
one-to-one image of R. A compact non-empty set A is minimal , if A is the union of
trajectories, and no proper subset of A has these properties. A compact orbit is an
example of a minimal set. A minimal set is always the closure of a trajectory, but
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not every set containing a trajectory as a dense subset is minimal. Throughout
this paper, it is assumed that all considered vector fields are non-singular, or
equivalently, that the dynamical systems possess no fixed points.

Any closed 3-manifold has Euler characteristic zero and hence admits a non-
singular vector field. The Hopf fibration of the 3-dimensional sphere S3 yields a
dynamical system on S3 whose every trajectory is circular. A small perturbation
can easily eliminate all but one periodic orbit. In 1950, H. Seifert [34] proved the
following:

Theorem 1 Suppose that V is a continuous vector field on S3 satisfying the
uniqueness of solution condition. Then there is an ǫ > 0 such that if the vec-
tors of V form angles smaller than ǫ with the fibers of the Hopf fibration, then V
has a least one periodic solution.

Subsequently, Seifert asked whether every dynamical system on S3 has a
periodic trajectory. The conjecture that the answer is “yes,” under the natural
C1 differentiability assumption, became known as the Seifert conjecture. Further
developments resulted in a stronger statement of the problem, see [39] and [31]:

A modified Seifert conjecture: Every C1 dynamical system on S3 possesses
a minimal set of covering dimension 1.

The table below illustrates the existing counterexamples to the Seifert con-
jecture and the modified Seifert conjecture:

flows on S3 not volume preserving volume preserving

discrete circular Cω (F. W. Wilson) C∞ (G. Kuperberg)
trajectories
aperiodic, C1 (P. A. Schweitzer) C1 (G. Kuperberg)

1-dimensional C3−ǫ (J. Harrison)
minimal sets
2-dimensional Cω (G. Kuperberg, —
minimal sets K. Kuperberg)

2 Discrete closed orbits and the application of plugs.

The presently known examples of aperiodic dynamical systems on S3 are based on
constructions of aperiodic plugs which are used to locally modify a given dynamical
system with discrete periodic orbits in order to break these orbits without forming
new ones. An example of an n-dimensional Cr plug, 1 ≤ r ≤ ∞, can be described
as follows. Let V be a constant vector field on R

n parallel to a given line L. Suppose
that F is an (n − 1)-dimensional compact connected manifold with boundary
allowing an embedding of the Cartesian product of F and the interval I, F × I, in
R

n in such a way that for p ∈ F , {p}×I is a straight line segment parallel to L. A
plug is a Cr vector field F on F×I which coincides with V in a neighborhood of the
boundary ∂(F × I) and satisfies two additional conditions: 1. there is a trajectory
whose positive limit set is inside the set F×I (trapped trajectory); 2. if a trajectory
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of F passes through F×I, then it contains a pair of points (p, 0) and (p, 1) (matched
ends). The definition of a twisted plug is similar, but the requirement on F on the
side boundary is relaxed so that F is tangent to (∂F )×I and there are no minimal
sets in the side boundary. A chart in a manifold containing a set homeomorphic to
F×I on which the vector field is conjugate to a constant vector field parallel to the
fiber I is replaced by an aperiodic plug matching the end points of its trajectories
to the end points of trajectories in the chart. If a segment of a circular orbit is
replaced by a trapped orbit, then the periodicity is removed.

Plugs are also defined for real analytic vector fields, piecewise linear folia-
tions, and higher dimensional foliations, see [31], [20] and [21]. As remarked by
W. Thurston [35], by the Morrey-Grauert theorem asserting that two analytic
manifolds which are diffeomorphic are analytically diffeomorphic, real analytic
plugs can be used to alter vector fields and foliations on real analytic manifolds.

One of the two basic properties of a plug, the “trapped trajectory,” dates to
a classical example of a fixed point free homeomorphism of an acyclic compact
subset of R3 given by K. Borsuk [1] in 1935. In 1966, in a fundamental paper
[39] F. W. Wilson introduced a special kind of symmetry of vector fields which
implies the other important property of plugs, the “matched ends.” He proved the
following:

Theorem 2 (Wilson) Every C∞ n-manifold without boundary, of Euler charac-
teristic zero or non-compact, admits a C∞ dynamical system with a discrete col-
lection of minimal sets. Each of the minimal sets is an (n−2)-torus S1×· · ·×S1,
and every trajectory originates (resp. limits) on one of these tori.

Wilson’s theorem is actually valid in the Cω category and it implies that
a Cω analogue to the Seifert conjecture for higher dimensional spheres of odd
dimensions does not hold. The minimal sets are of codimension 2 and hence the
resulting flows in higher dimensions are aperiodic. In a subsequent paper [28], he
and P. B. Percell consider another use of a plug in a flow on a closed manifold: a
single plug can capture all trajectories.

The method of “chopping up” trajectories was also used in [22] (see also [23])
to demonstrate the existence of flows with uniformly bounded orbits, specifically:

Theorem 3 There exists an aperiodic dynamical system on R
3 with each orbit of

diameter smaller than 1.

In dimension 3, Wilson’s plug has circular orbits. His theorem asserts the
existence of a real analytic vector field with finitely many circular orbits on any
closed 3-manifold. A different method is used by G. Kuperberg in [21] to establish a
similar fact for volume preserving dynamical systems. He constructs a twisted plug
with two circular trajectories on a set homeomorphic to the solid torus S1 ×D2,
copies of which he inserts into the torus S1×S1×S1 furnished with the irrational
flow whose every orbit is dense. By the Wallace-Lickorish theorem, any closed
orientable 3-manifold can be obtained from any other closed orientable 3-manifold
by an integral surgery on a finite link of tori S1 × D2. Surgery on non-compact
manifolds is handled on a locally finite link. The insertion of each of the Dehn
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twisted plugs introduces two circular orbits. The constructions of [21] are volume
preserving and yield the following:

Theorem 4 Every orientable boundaryless 3-manifold possesses a C∞ volume
preserving dynamical system with a discrete collection of circular trajectories.

3 Counterexamples to the Seifert Conjecture.

This section lists the known examples of aperiodic flows on S3 with respect to the
degree of differentiability and other properties. In each case a plug is constructed
and inserted into a dynamical system on S3 with one circular orbit. The plug
breaks the orbit.

3.1 Schweitzer’s vector field.

The first counterexample to the Seifert conjecture came from P. A. Schweitzer in
1972 (published in 1974, see [31]). Schweitzer’s construction of an aperiodic C1

plug is very geometric and astonishing in its simplicity. Unlike Wilson’s plug, this
vector field is defined on F × I, where F is a non-planar punctured torus. The
symmetry guaranteeing the matched ends condition is modeled on two parallel
Denjoy minimal sets on which the flow moves in the opposite directions.

Theorem 5 (Schweitzer) S3 admits an aperiodic C1 vector field.

3.2 Harrison’s diamond circles.

Since the Denjoy vector field on a smooth surface S1 × S1 cannot be of class
C2, it seemed impossible to improve the degree of differentiability of Schweitzer’s
example. J. Harrison [11] embeds the torus S1 × S1 in dimension 3 sacrificing the
smoothness of the embedding in order to improve the differentiability of the flow
on the minimal set. The Denjoy homeomorphism on one of the S1 factors follows
the “diamond circle” pattern.

Theorem 6 (Harrison) S3 admits an aperiodic C3−ǫ vector field.

Harrison’s construction is limited by the dimension of S3; thus her method
cannot produce a C3 counterexample to the Seifert conjecture.
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3.3 A real analytic counterexample.

The idea behind a smooth aperiodic plug [19] (see also [7]) is to reinsert a Wilson-
type plug in itself to cause a recursive breaking of the periodic trajectories. A sim-
ple condition prevents the formation of new circular trajectories, even if subjected
to the repetitious process of recursion. In [20], G. Kuperberg and K. Kuperberg
give specific polynomial formulas for self-insertion performed on a real analytic
plug. One of the more interesting features of this construction is that the only
minimal set is 2-dimensional, thus the vector field is aperiodic. Hence:

Theorem 7 There is a Cω counterexample to the modified Seifert conjecture.

3.4 Volume preserving aperiodic flows.

H. Hofer [13] proved that a C1 Reeb vector field on S3 possesses a closed orbit.
This result put a new light on questions related to Hamiltonian flows and volume
preserving flows on S3. In [21], G. Kuperberg adjusts the flow around the Denjoy
minimal set in Schweitzer’s C1 plug to make a volume preserving aperiodic C1

plug, even though the Denjoy dynamical system on S1×S1 is not area preserving.
This gives a volume preserving flow without periodic trajectories on S3, and by
Theorem 4, on other 3-manifolds:

Theorem 8 Every orientable 3-manifold without boundary admits an aperiodic
C1 volume preserving dynamical system.

At this moment, it is not known whether the differentiability of the volume
preserving counterexample to the Seifert conjecture can be improved in a similar
fashion as in Harrison’s work. However, the intricate formulas of [21] and elaborate
computations of [11] emphasize the difficulty in obtaining a C2 volume preserving
aperiodic 3-dimensional plug.

Although the method of self-insertion described [19] and [20] allows quite a lot
of flexibility and yields various flows with different degrees of Cr differentiability,
the resulting plugs are not volume preserving if r ≥ 1.

3.5 The structure of minimal sets.

The minimal sets in the counterexamples to the Seifert conjecture, [31], [11] and
[21], based on the Denjoy flow, are all homeomorphic to the Denjoy minimal set.
The mirror-image symmetry introduced by Wilson is very essential to these flows
and always creates two minimal sets. In effect, no example of an aperiodic volume
preserving plug with only one minimal set exists.

The plugs described in [19] and [20] contain only one minimal set and every
closed 3-manifold admits an analytic flow with only one minimal set. If the con-
struction is at least C1, then there is a large set of trajectories limiting on the
minimal set, preventing the flow from being volume preserving. In contrast to
Schweitzer’s example, the minimal set is not isolated in the sense of Matsumoto,
i.e., every neighborhood contains trajectories that do not belong to the minimal
set. It is not known if the minimal set in these constructions (C1 or better) can be
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of dimension 1. A C0 dynamical system of this type with a 1-dimensional minimal
set is given in [20]. In general, if the minimal set is 1-dimensional, then, like the
Denjoy sets and solenoids, it is locally homeomorphic to the Cartesian product of
the Cantor set and the interval.

In all of the above examples, each of the minimal sets is the inverse limit
of polyhedra. Thus a useful tool for classifying these minimal sets is the first
cohomology group.

3.6 Flows in higher dimensions.

By Theorem 2, differentiable n-manifolds of Euler characteristic zero or non-
compact without boundary, n ≥ 4, admit smooth aperiodic dynamical systems
whose minimal sets are of codimension 2. In particular, this is true for odd di-
mensional spheres Sn, n ≥ 5. [20] strengthens Wilson’s result:

Theorem 9 If M is a closed differentiable or Cω n-manifold, n ≥ 3, admitting a
dynamical system in the same smoothness category, then there exists an aperiodic
dynamical system on M , in the same smoothness category, with only one minimal
set whose dimension is n− 1.

Theorem 10 If M is a differentiable or Cω manifold without boundary, of dimen-
sion at least 3, admitting a dynamical system in the same smoothness category,
and U is an open cover of M , then there exists an aperiodic dynamical system on
M , in the same smoothness category, whose orbits are contained in the elements
of U , and whose minimal sets have codimension 1.

The Hamiltonian version of the Seifert conjecture in dimension 3 has not
been solved yet, but there are interesting examples in higher dimensions. In
1994, V. Ginzburg [8] and M. Herman [12] independently constructed examples
of smooth compact hypersurfaces without closed characteristics in R

2n, n ≥ 4,
resolving the case of Hamiltonian flows on spheres of dimension 7 or higher. At
the same time, M. Herman [12] found a C3−ǫ counterexample to the Hamilto-
nian Seifert conjecture in dimension 5 (i.e., for a compact hypersurface in R

6).
In 1997, V. Ginzburg [10] improved the previous results and obtained a smooth
proper function H : R2n → R, for 2n ≥ 6, with a regular level set on which the
Hamiltonian flow has no closed orbits.

3.7 Piecewise linear flows.

PL dynamical systems are thoroughly examined by G. Kuperberg in [21]. A mea-
sure on a PL manifold is simplicial relative to a triangulation T if on each simplex
the measure is given by a linear embedding of the simplex in Euclidean space.
The following analogue of Moser’s theorem [25], given in [21], demonstrates that
simplicial measures are the PL analogue of volume forms:

Theorem 11 Two simplicial measures on a connected PL manifold M with the
same total volume are equivalent by a PL homeomorphism. Moreover, any simpli-
cial measure is locally PL-Lebesgue.
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The results of [21] related to volume preserving PL flows are:

Theorem 12 Every orientable 3-manifold without boundary possesses a trans-
versely measured PL flow with discrete periodic trajectories.

Theorem 13 There is a PL, measured, integrally Dehn-twisted plug D with two
closed circular orbits.

Theorem 14 Every orientable 3-manifold without boundary possesses a trans-
versely measured PL dynamical system with a discrete collection of circular trajec-
tories.

The main result for PL dynamical systems in [20] is:

Theorem 15 Let M be a PL manifold of dimension n ≥ 3, 1 ≤ k ≤ n − 1, and
let U be an open cover of M . A PL flow on M can be modified in a PL fashion
so that the orbits are contained in the elements of U , there are no circular orbits,
and all minimal sets are k-dimensional.

As a corollary, in dimension 3 we have:

Theorem 16 For k = 1, 2, every orientable 3-manifold without boundary admits
an aperiodic PL flow such that all minimal sets are k-dimensional.

4 Higher dimensional foliations.

A k-foliation on an n-manifold M is an atlas of charts in R
n that preserve the

parallel k-plane foliation of Rn, which is a partition of Rn into translates of flat
R

k ⊂ R
n. M is then a k-foliated manifold . The foliation structure is in a given cat-

egory, such as smooth, if the gluing maps are simultaneously in the same category
and preserve k-planes.

In [20], G. Kuperberg and K. Kuperberg generalize Theorems 9, 10 and 15 to
higher dimensional foliations as follows:

Theorem 17 If M is a continuous, C∞, Cω, or PL closed manifold of dimension
≥ 3 admitting a dynamical system in the same smoothness category, then there
exists an aperiodic dynamical system on M in the same smoothness category, with
exactly one minimal set which is of codimension 1.

Theorem 18 If M is a continuous, C∞, Cω, or PL manifold without boundary
of dimension ≥ 3 admitting a dynamical system in the same smoothness category,
and U is an open cover of M , then there exists an aperiodic dynamical system on
M in the same smoothness category, whose orbits are contained in the elements of
U , and whose minimal sets have codimension 1.

The above theorems do not carry much information for codimension 1 folia-
tions. There are many results relating to opening closed leaves of such foliations.
In particular, S. P. Novikov [27] proved that every C2 codimension 1 foliation of S3

has a closed leaf (later extended to continuous foliations), while P. A. Schweitzer
[32] showed that it is always possible to modify any codimension 1 foliation in
dimension 4 or higher in a C1 fashion so that it has no compact leaf.
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5 Existence of closed orbits

A sequence of fundamental results related to contact forms, Hamiltonian dynam-
ics, and periodic orbits was preceded by a paper of H. Seifert [33] who established
the existence of periodic solutions on a fixed energy surface for some Hamiltoni-
ans. J. Martinet proved in [24] that every smooth compact 3-manifold possesses
a contact form. A tremendous amount of work in this field was done by J. Moser
[26], I. Ekeland and J.-M. Lasry [3], A. Weinstein [37], [38], P. Rabinowitz [29],
[30], C. Viterbo, Y. Eliashberg, W. Thurston, H. Hofer, E. Zehnder, and others
(see [4], [5], [14], [15], [17], [18] for multiple papers and authors). Of particular
importance is the 1987 paper by C. Viterbo [36] with a proof of the Weinstein
conjecture in R

2n: a hypersurface of contact type carries a closed characteristic;
and, in relation to both the Seifert and the Weinstein conjectures, the 1993 result
of H. Hofer [13] who proved the existence of a closed orbit for a C1 Reeb vector
field on S3. Subsequently, H. Hofer, K. Wysocki, and E. Zehnder [16] proved that
every Reeb vector field on S3 has an unknotted periodic orbit. K. Cieliebak [2] and
V. Ginzburg [9] studied both the existence of periodic orbits and opening closed
orbits. J. Etnyre and R. Ghrist [6] proved the Seifert conjecture in hydrodynamics:
the Cω plug [20] cannot be parallel to its curl under any metric.
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