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Rigidity and Inflexibility in Conformal Dynamis

Curtis T. McMullen1

1 Introduction

This paper presents a connection between the rigidity of hyperbolic 3-manifolds
and universal scaling phenomena in dynamics.

We begin by stating an inflexibility theorem for 3-manifolds of infinite volume,
generalizing Mostow rigidity (§2). We then connect this inflexibility to dynamics
and discuss:

• The geometrization of 3-manifolds which fiber over the circle (§2);

• The renormalization of unimodal maps f : [0, 1] → [0, 1] (§4),

• Real-analytic circle homeomorphisms with critical points (§5), and

• The self-similarity of Siegel disks (§6).

Chaotic sets for these four examples are shown in Figure 1. The snowflake
in the first frame is the limit set Λ of a Kleinian group Γ acting on the Riemann
sphere S2

∞ = ∂H3. Its center c is a deep point of Λ, meaning the limit set is very
dense at microscopic scales near c. Because of the inflexibility and combinatorial
periodicity of M = H

3/Γ, the limit set is also self-similar at c with a universal
scaling factor.

The remaining three frames show deep points of the (filled) Julia set for other
conformal dynamical systems: the Feigenbaum polynomial, a critical circle map
and the golden ratio Siegel disk. Our goal is to explain an inflexibility theory that
leads to universal scaling factors and convergence of renormalization for these
examples as well.

The qualitative theory of dynamical systems, initiated by Poincaré in his
study of celestial mechanics, seeks to model and classify stable regimes, where the
topological form of the dynamics is locally constant. In the late 1970s physicists
discovered a rich, universal structure in the onset of instability. One-dimensional
dynamical systems emerged as elementary models for critical phenomena, phase
transitions and renormalization.

In pure mathematics, Mostow and others have developed a rigidity theory for
compact manifolds Mn of constant negative curvature, n ≥ 3, and other quotients
of symmetric spaces. This theory showsM is determined up to isometry by π1(M)
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842 C. McMullen

Figure 1. Dynamical systems with deep points: a totally degenerate Kleinian group,

the Feigenbaum polynomial, a critical circle map and the golden mean Siegel disk.

as an abstract, finitely-presented group. Remarkably, rigidity of M is established
via the ergodic theory of π1(M) acting on the boundary of the universal cover of
M .

In our case, M = H
3/Γ is a hyperbolic 3-manifold, the boundary of its uni-

versal cover H
3 is isomorphic to S2, and the action of π1(M) ⊂ Isom+(H3) =

PSL2(C) on S
2 is conformal. Similarly, upon complexification, 1-dimensional dy-

namical systems give rise to holomorphic maps on the Riemann sphere Ĉ ∼= S2.
Hyperbolic space H

3 enters the dynamical picture as a means to organize geomet-
ric limits under rescaling (§3). The universality observed by physicists can then
be understood, as in the case of 3-manifolds, in terms of rigidity of these geometric
limits.

We conclude with progress towards the classification of hyperbolic manifolds
(§7), where geometric limits also play a central role.

2 Hyperbolic 3-manifolds and fibrations

A hyperbolic manifold is a complete Riemannian manifold with a metric of constant
curvature −1. Mostow rigidity states that any two closed, homotopy equivalent
hyperbolic 3-manifolds are actually isometric.

In this section we discuss a remnant of rigidity for open manifolds. Let
core(M) ⊂ M denote the convex core of M , defined as the closure of the set
of geodesic loops inM . The manifoldM satisfies [r,R]-injectivity bounds, r > 0, if
for any p ∈ core(M), the largest embedded ball B(p, s) ⊂M has radius s ∈ [r,R].
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Conformal Dynamics 843

Let f : M → N be a homotopy equivalence between a pair of hyperbolic
3-manifolds. Then f is a K-quasi-isometry if, when lifted to the universal covers,

diam(f̃(B)) ≤ K(diamB + 1) ∀B ⊂ M̃, and

diam(f̃−1(B)) ≤ K(diamB + 1) ∀B ⊂ Ñ .

A diffeomorphism f :M → N is an asymptotic isometry if f is exponentially close
to an isometry deep in the convex core. That is, there is an A > 1 such that for
any nonzero vector v ∈ TpM , p ∈ core(M), we have

∣∣∣∣log
|Df(v)|

|v|

∣∣∣∣ ≤ CA−d(p,∂ core(M)).

In [Mc2] we show:

Theorem 2.1 (Geometric Inflexibility) Let M and N be quasi-isometric
hyperbolic 3-manifolds with injectivity bounds. Then M and N are asymptotically
isometric.

Mostow rigidity is a special case: if M and N are closed, then any homotopy
equivalence M ∼ N is a quasi-isometry, injectivity bounds are automatic, and
∂ core(M) = ∅, so an asymptotic isometry is an isometry.

To sketch the proof of Theorem 2.1, recall any hyperbolic 3-manifoldM deter-
mines a conformal dynamical system, namely the action of its fundamental group
π1(M) on the sphere at infinity S2

∞ = ∂H3 for the universal cover M̃ ∼= H
3. The

limit set Λ ⊂ S2
∞ is the chaotic locus for this action; its convex hull covers the

core of M . The action is properly discontinuously on the rest of the sphere, and
the quotient ∂M = (S2

∞ − Λ)/π1(M) gives a natural Riemann surface at infinity
for M .

p
γ

∂M
∂KK = core(M)

Figure 2. An observer deep in the convex core sees a kaleidoscopic view of ∂M .

A quasi-isometric deformation ofM determines a quasiconformal deformation
v of ∂M , which in turn admits a (harmonic) visual extension V to an equivalent
deformation of M . The strain SV (p) is the average of the ellipse field Sv = ∂v
over all visual rays γ from p to ∂M . By our injectivity bounds, γ corkscrews
chaotically before exiting the convex core. Thus the ellipses of Sv on ∂M appear
in random orientations as seen from p (Figure 2). This randomness provides
abundant cancellation in the visual average, and we find the metric distortion
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844 C. McMullen

‖SV (p)‖ is exponentially small compared to ‖Sv‖∞. Thus V is an infinitesimal
asymptotic isometry.

In dimension 3, any two quasi-isometric hyperbolic manifolds are connected
by a smooth path in the deformation space, so the global theorem follows from
the infinitesimal version.

Inflexibility is also manifest on the sphere at infinity. Let us say a local
homeomorphism φ on S2

∞
∼= Ĉ is C1+α-conformal at z if the complex derivative

φ′(z) exists and

φ(z + t) = φ(z) + φ′(z) · t+O(|t|1+α).

We say x ∈ Λ ⊂ S2
∞ is a deep point if Λ is so dense at x that for some β > 0,

B(y, s) ⊂ B(x, r)− Λ =⇒ s = O(r1+β).

It is easy to see that a geodesic ray γ ⊂ H
3 terminating at a deep point in the

limit set penetrates the convex hull of Λ at a linear rate. ¿From the inflexibility
theorem we find:

Corollary 2.2 Let M and N satisfy injectivity bounds, and let φ : S2
∞ → S2

∞ be
a quasiconformal conjugacy between π1(M) and π1(N). Then φ is C1+α-conformal
at every deep point of the limit set of π1(M).

The inflexibility theorem is motivated by the following application to 3-
manifolds that fiber over the circle. Let S be a closed surface of genus g ≥ 2
and let ψ ∈ Mod(S) be a pseudo-Anosov mapping class. Let

Tψ = S × [0, 1]/{(x, 0) ∼ (ψ(x), 1)}

be the 3-manifold fibering over the circle with fiber S and monodromy ψ. By a
deep theorem of Thurston, Tψ is hyperbolic. To find its hyperbolic structure, let
V (S) denote the variety of representations ρ : π1(S) → Isom(H3), and define

R : V (S) → V (S)

by R(ρ) = ρ ◦ ψ−1
∗ . We refer to R as a renormalization operator, because it does

not change the group action on H
3, only its marking by π1(S).

Let QF (S)
Q∼= Teich(S)× Teich(S) ⊂ V (S) denote the space of quasifuchsian

groups, and define

M(X,ψ) = lim
n→∞

Q(X,ψ−nY ), for any (X,Y ) ∈ Teich(S)× Teich(S).

Then M =M(X,ψ) has injectivity bounds, its convex core is homeomorphic
to S× [0,∞), and the manifolds M and R(M) are quasi-isometric. By the inflexi-
bility theorem there is an asymptotic isometry Ψ :M →M in the homotopy class
of ψ, so the convex core of M is asymptotically periodic. As n tends to ∞, the
marking of Rn(M) moves into the convex core at a linear rate, and we find:
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Conformal Dynamics 845

Theorem 2.3 The renormalizations Rn(M(X,ψ)) converge exponentially fast to
a fixed-point Mψ of R.

Since R(Mψ) = Mψ, the map ψ is realized by an isometry α on Mψ, and the
quotient Tψ = Mψ/〈α〉 gives the desired hyperbolic structure on the mapping
cylinder of ψ.

This iterative construction of Tψ hints at a dynamical theory of the action of
Mod(S) on the variety V (S), as does the following result [Kap]:

Theorem 2.4 (Kapovich) The derivative DRψ is hyperbolic on the tangent
space to V (S) at Mψ for all pseudo-Anosov mapping classes on closed surfaces.

The snowflake in the first frame of Figure 1 is a concrete example of the limit
set Λ for a Kleinian group Γ = π1(M(X,ψ)) as above. In this example S is a
torus, made hyperbolic by introducing a single orbifold point p ∈ S of order 3;
and ψ = ( 1 1

1 2 ) ∈ SL2(Z) ∼= Mod(S) is the simplest pseudo-Anosov map. The
suspension of p ∈ S gives a singular geodesic γ ⊂ Tψ forming the orbifold locus of
the mapping torus of ψ.

The picture is centered at a deep point c ∈ Λ fixed by an elliptic element
of order 3 in Γ. The limit set Λ is a nowhere dense but very furry tree, with
six limbs meeting at c. By general results, Λ is a locally connected dendrite,
with Hausdorff dimension two but measure zero [CaTh], [Th1, Ch. 8], [Sul1],
[BJ1]; in fact by [BJ2] we have 0 < µh(Λ) < ∞ for the gauge function h(r) =
r2| log r log log log r|1/2.

One can easily construct a quasiconformal automorphism φ of Γ, with φ(c) = c
and φ ◦ γ = ψ∗(γ) ◦ φ for all γ ∈ Γ. By Corollary 2.2, φ is C1+α-conformal at c,
and we find:

Theorem 2.5 The limit set Λ is self-similar at each elliptic fixed-point in Λ, with
scaling factor φ′(c) = eL. Here L is the complex length of the singular geodesic γ
on Tψ.

In particular the self-similarity factor eL is inherited from the geometry of
the rigid manifold Tψ, and it is universal across all manifolds M(X,ψ) attracted
to Mψ under renormalization.

3 Geometric limits in dynamics

In this section we extend the inflexibility of Kleinian groups and their limit sets
to certain other conformal dynamical systems F and their Julia sets J , where we
will find:

The conformal structure at the deep points of J is determined by the
topological dynamics of F .

Consider the space H of all holomorphic maps f : U(f) → V (f) between

domains in Ĉ. Introduce a (non-Hausdorff) topology on H such that fn → f if

Documenta Mathematica · Extra Volume ICM 1998 · II · 841–855



846 C. McMullen

for any compact K ⊂ U(f), we have K ⊂ U(fn) for all n ≫ 0 and fn|K → f |K
uniformly.

A holomorphic dynamical system is a subset F ⊂ H. Given a sequence of
dynamical systems Fn ⊂ H, the geometric limit F = lim supFn consists of all
maps f = lim fni

obtained as limits of subsequences fni
∈ Fni

.

To bring hyperbolic space into the picture, identify Ĉ with the boundary of
the Poincaré ball model for H3, let FH3 be its frame bundle, and let ω0 ∈ FH3 be
a standard frame at the center of the ball. Given any other ω ∈ FH3, there is a
unique Möbius transformation g sending ω0 to ω, and we define

(F , ω) = g∗(F) = {g−1 ◦ f ◦ g : f ∈ F}.

In other words, (F , ω) is F as ‘seen from’ ω.
We say F is twisting if it is essentially nonlinear — for example, if there

exists an f ∈ F with a critical point, or if F contains a free group of Möbius
transformations.

Given a closed set J ⊂ Ĉ, we say (F , J) is uniformly twisting if lim sup(F , ωn)
is twisting for any sequence ωn ∈ F(hull(J)), the frame bundle over the convex
hull of J in H

3. Informally, uniform twisting means F is quite nonlinear at every
scale around every point of J .

For a Kleinian group, the pair (Γ,Λ(Γ)) is uniformly twisting iff M = H
3/Γ

has injectivity bounds. Thus geometric inflexibility, Corollary 2.2, is a special case
of [Mc2]:

Theorem 3.1 (Dynamic Inflexibility) Let (F , J) be uniformly twisting, and
let φ be a quasiconformal conjugacy from F to another holomorphic dynamical
system F ′. Then φ is C1+α-conformal at all deep points of J .

The next three sections illustrate how such inflexibility helps explain universal
scaling in dynamics.

4 Renormalization of interval maps

Let f : I → I be a real-analytic map on an interval. The map f is quadratic-like
if f(∂I) ⊂ ∂I and f has a single quadratic critical point c0(f) ∈ int(I). The basic
example is f(x) = x2 + c on [−a, a] with f(a) = a. We implicitly identify maps
that are linearly conjugate.

If an iterate fp|L is also quadratic-like for some interval L, with c0(f) ∈ L ⊂ I,
then we can take the least such p > 1 and define the renormalization of f by

R(f) = fp|L.

The order of the intervals L, f(L), . . . , fp(L) = L ⊂ I determines a permutation
σ(f) on p symbols.

The map f is infinitely renormalizable if the sequence Rn(f) is defined for all
n > 0. The combinatorics of f is then recorded by the sequence of permutations
τ(f) = 〈σ(Rn(f))〉. We say f has bounded combinatorics if only finitely many
permutations occur, and periodic combinatorics if τ(Rqf) = τ(f) for some q ≥ 1.
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Conformal Dynamics 847

Theorem 4.1 Let f : I → I be infinitely renormalizable, with combinatorics of
period q. Then Rqn(f) → F exponentially fast as n → ∞, where F is the unique
fixed-point of the renormalization operator Rq with the same combinatorics as f .

For example, the Feigenbaum polynomial f(x) = x2 − 1.4101155 · · · , arising
at the end of the cascade of period doublings in the quadratic family, has τ(f) =
〈(12), (12), (12), . . .〉. Under renormalization, Rn(f) converges exponentially fast
to a solution of the functional equation

F ◦ F (x) = α−1F (αx).

To formulate the speed of convergence more completely, extend f : I → I to
a complex analytic map on a neighborhood of I ⊂ C, and let F : W → C denote
the maximal analytic continuation of the renormalization fixed-point. Then we
find there is an A > 1 such that for any compact K ⊂W , we have

sup
z∈K

|Rn(f)(z)− F (z)| = O(A−n),

where Rn(f) is suitably rescaled.
Now suppose only that f has bounded combinatorics. Under iteration of f ,

all but countably many points in I are attracted to the postcritical Cantor set

P (f) =
⋃

n>0

fn(c0(f)) ⊂ I.

Theorem 4.2 Let f and g be infinitely renormalizable maps with the same
bounded combinatorics. Then f |P (f) and g|P (g) are C1+α-conjugate.

Thus quantitative features of the attractor P (f) (such as its Hausdorff di-
mension) are determined by the combinatorics τ(f).

These universal properties of quadratic-like maps were observed experimen-
tally and linked to renormalization by Feigenbaum and Coullet-Tresser in the late
1970s. A program for applying complex quadratic-like maps to renormalization
was formulated by Douady and Hubbard in the early 1980s. Sullivan introduced
a wealth of new ideas and established the convergence Rnq(f) → F [Sul3], [Sul4].
The inflexibility theory gives a new proof yielding, in addition, exponential speed
of convergence and C1+α-smoothness of conjugacies.

Our approach to renormalization is via towers [Mc2]. For simplicity we
treat the case of the Feigenbaum polynomial f . By Sullivan’s a priori bounds,
the sequence of renormalizations 〈Rn(f)〉 is compact, and all limits are complex
quadratic-like maps with definite moduli. Passing to a subsequence we can arrange
that Rn+i(f) → fi and obtain a tower

T = 〈fi : i ∈ Z〉 such that fi+1 = fi ◦ fi ∀i.

The Julia set J(T ) =
⋃
J(fi) is dense in C, and we deduce that T is rigid

— it admits no quasiconformal deformations. Convergence of renormalization,
Rn(f) → F , then easily follows.
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848 C. McMullen

The rapid speed of convergence of renormalization comes from inflexibility
of the one-sided tower T = 〈f, f2, f4, . . .〉. To establish this inflexibility, we first
show the full dynamical system F(f) = {f−i ◦ f j} contains copies of f2

n

near
every z ∈ J(f) and at every scale. Thus (F(f), J(f)) is uniformly twisting. Next
we use expansion in the hyperbolic metric on C − P (f) to show c0(f) is a deep
point of J(f). Finally by Theorem 3.1, a quasiconformal conjugacy φ from f to
R(f) = f ◦ f is actually C1+α-conformal at the critical point. At small scales
φ provides a nearly linear conjugacy from Rn(f) to Rn+1(f), and exponential
convergence follows.

The second frame of Figure 1 depicts the Julia set of the infinitely renormal-
izable Feigenbaum polynomial f , centered at its critical point. The Julia set J(f)
is locally connected [JH], [LS]; it is still unknown if area(J(f)) = 0.

Milnor has observed that the Mandelbrot set M is quite dense at the Feigen-
baum point c = −1.4101155 . . . ∈ ∂M and at other fixed-points of tuning [Mil],
and it is reasonable to expect that c is a deep point of M . Lyubich has recently
given an elegant proof of the hyperbolicity of renormalization at its fixed-points,
including a new proof of exponential convergence of Rn(f) via the Banach space
Schwarz lemma, and a proof of Milnor’s conjecture that blowups of M around the
Feigenbaum point converge to the whole plane in the Hausdorff topology [Lyu].

5 Critical circle maps

A critical circle map f : S1 → S1 is a real-analytic homeomorphism with a single
cubic critical point c0(f) ∈ S1. A typical example is the standard map

f(x) = x+Ω+K sin(x), x ∈ R/2πZ, Ω ∈ R

with K = −1 and c0 = 0. These maps arise in KAM theory and model the
disappearance of invariant circles [FKS], [Lan], [Rand], [Mak], [DGK]. Another
class of examples are the rational maps

f(z) = λz2
z − 3

1− 3z
, |λ| = 1, (5.1)

acting on S1 = {z : |z| = 1} with c0(f) = 1.
If f : S1 → S1 has no periodic points, then it is topologically conjugate to a

rigid rotation by angle 2πρ(f), where the rotation number ρ(f) is irrational [Y].
The behavior of f is strongly influenced by the continued fraction of its rotation
number,

ρ(f) = 1/(a1 + 1/(a2 + 1/(a3 + · · · ))), ai ∈ N.

By truncating the continued fraction we obtain rational numbers pn/qn → ρ(f).
We say ρ(f) is of bounded type if sup ai <∞.

Theorem 5.1 (de Faria-de Melo) Let f1, f2 be two critical circle maps with
equal irrational rotation numbers of bounded type. Then f1 and f2 are C1+α-
conjugate.
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We sketch the proof from [dFdM]. Consider a complex analytic extension of
f(z) to a neighborhood of S1. Let the Julia set J(f) be the closure of the set of
periodic points of f . As for maps of the interval, one finds the critical point c0(f)
is a deep point of J(f), and the full dynamical system (F(f), J(f)) is uniformly
twisting. Because of the good arithmetic of ρ(f), the forward orbit of the critical
point is spread evenly along S1, so in fact the Julia set is deep at every point
on the circle. To complete the proof, one constructs a quasiconformal conjugacy
between f1 and f2, and then applies the inflexibility Theorem 3.1 to deduce that
φ|S1 is C1+α.

To bring renormalization into the picture, it is useful to work on the universal
cover R of S1 = R/2πZ. One can then treat the lifted map f : R → R and the
deck transformation g(x) = x + 2π on an equal footing. The maps (f, g) form a
basis for a subgroup Z

2 ⊂ Diff(R), and any matrix
(
a b
c d

)
∈ GL2(Z) determines a

renormalization operator by

R(f, g) = (fagb, f cgd).

When the continued fraction of ρ(f) is periodic, one can choose R such that
Rn(f, g) converges exponentially fast to a fixed-point of renormalization (F,G).
For the more general case where ρ(f) is of bounded type, a finite number of
renormalization operators suffice to relate any two adjacent levels of the tower
T = 〈fqn〉.

The third frame in Figure 1 depicts the Julia set of the rational map f(z) given
by equation (5.1), with λ ≈ −0.7557− 0.6549i chosen so ρ(f) is the golden ratio.
The picture is centered at the deep point c0(f) ∈ J(f). Petersen has shown J(f)
is locally connected [Pet]; it is an open problem to determine if area(J(f)) = 0.

Levin has proposed a similar theory for critical circle endomorphisms such as
f(z) = λz3(z − 2)/(1− 2z) [Lev].

6 The golden-ratio Siegel disk

Let f(z) = λz + z2, where λ = e2πiθ.

Siegel showed that f is analytically conjugate to the rotation z 7→ λz on a
neighborhood of the origin when θ is Diophantine (|θ − p/q| > C/qn). The Siegel
disk D for f is the maximal domain on which f can be linearized. For θ of bounded
type, Herman and Świa̧tek proved that ∂D is a quasicircle passing through the
critical point c0(f) = −λ/2 [Dou1], [Sw]. In particular, the critical point provides
the only obstruction to linearization.

Now suppose θ is a quadratic rational such as the golden ratio:

θ =

√
5− 1

2
= 1/(1 + 1/(1 + 1/(1 + · · · ))).

Then the continued fraction of θ is preperiodic; there is an s > 0 such that an+s =
an for all n ≫ 0. Experimentally, a universal structure emerges at the transition
from linear to nonlinear behavior at ∂D [MN] [Wid]. In [Mc4] we prove:
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Theorem 6.1 If θ is a quadratic irrational, then the boundary of the Siegel disk
D for f is self-similar about the critical point c0(f) ∈ ∂D.

More precisely, there is a map φ : (D, c0) → (D, c0) which is a C1+α-conformal
contraction at the critical point, and locally conjugates fqn to fqn+s .

Theorem 6.2 Let f and g be quadratic-like maps with Siegel disks having the
same rotation number of bounded type. Then f |Df and g|Dg are C1+α conjugate.

For instance, let Da be the Siegel disk for fa(z) = λz + z2 + az3. Then the
Hausdorff dimension of ∂Da is constant for small values of a. As for the Julia set
we have:

Theorem 6.3 If θ has bounded type, then the Hausdorff dimension of the Julia
set of f(z) = e2πiθz + z2 is strictly less than two.

A blowup of the golden ratio Siegel disk, centered at the critical point c0(f) ∈
∂D, is shown in the final frame of Figure 1. The picture is self-similar with a
universal scaling factor 1.8166 . . . depending only on the rotation number. The
Julia set of f is locally connected [Pet]. Recently Buff and Henriksen have shown
that the golden Siegel disk contains a Euclidean triangle with vertex resting on
the critical point [BH]; empirically, an angle of approximately 120◦ will fit.

The mechanism of rigidity for Siegel disks is visible in the geometry of the filled
Julia set K(f) = {z : fn(z) remains bounded for all n > 0}. Under iteration,
every point in the interior ofK(f) eventually lands in the Siegel disk, and ∂K(f) =
J(f). The gray cauliflower forming the interior of K(f) in Figure 1 is visibly dense
at the critical point. In fact c0(f) is a measurable deep point of K(f), meaning

area(K(f) ∩B(c0, r))

area(B(c0, r))
= 1−O(rβ), β > 0. (6.1)

For the proof of Theorem 6.2, one starts with a quasiconformal conjugacy φ
from f to g furnished by the theory of polynomial-like maps [DH]. Since f and g
have the same linearization on their Siegel disks, we can assume φ is conformal on
Df . But then φ is conformal throughout intK(f). By (6.1) the conformal behavior
dominates near c0(f), and we conclude φ is C1+α-conformal at the critical point.
This smoothness is spread to all points of ∂Df using the good arithmetic of θ.

The self-similarity of ∂D is established similarly, using a conjugacy from fqn

to fqn+s .

The dictionary. Table 3 summarizes the parallels which emerge between hyper-
bolic manifolds, quadratic-like maps on the interval, critical circle maps and Siegel
disks. This table can be seen as a contribution to Sullivan’s dictionary between
conformal dynamical systems [Sul2], [Mc1].

7 Surface groups and their geometric limits

For a complete classification of conformal dynamical systems, one must go beyond
the bounded geometry of the preceding examples, and confront short geodesics,
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Siegel disks/

Hyperbolic manifolds Interval maps Circle maps

Discrete surface group R-quadratic polynomial Nonlinear rotation

Γ ⊂ PSL2(C) f(z) = z2 + c f(z) = λz + z2 or

M = H
3/Γ λz2(z − 3)/(1 − 3z)

Representation Quadratic-like map Holomorphic commuting

ρ : π1(S) → Γ f : U → V pair (f, g)

Ending lamination Tuning invariant Continued fraction

ǫ(M) ∈ GL(S) τ(f) = 〈σ(Rn(f))〉 θ = [a1, a2, · · · ], λ = e2πiθ

Inj. radius(M) > r > 0 Bounded combinatorics Bounded type

Cut points in Λ Postcritical set P (f) =
⋃

fn(c), f ′(c) = 0

=
⋃

∞

1
(Cantor sets) = (Cantor set) = (circle or quasi-circle)

(R-tree of ǫ(M), π1(S)) (proj limZ/pi, x 7→ x+ 1) (R/Z, x 7→ x+ θ)

Λ(Γ) is locally connected J(f) is locally connected J(f) is locally connected

areaΛ(Γ) = 0 area(J(f)) = 0?

Inj. radius ∈ [r, R] in core(M) (F(f), J(f)) is uniformly twisting

Mapping class ψ ∈ Mod(S) Kneading permutation Automorphism
(

a b
c d

)

of Z2

Renormalization Operators

R(ρ) = ρ ◦ ψ−1 R(f) = fp(z) R(f, g) = (fagb, fcgd)

Stable Manifold of Renormalization

M = asymptotic fiber f = limit of doublings θ = golden ratio

Elliptic points deep in Λ(Γ) Critical point c0(f) deep in J(f) or K(f)

ρ ◦ ψ−n, n = 1, 2, 3 . . . fn, n = 1, 2, 4, 8, 16, . . . fn, n = 1, 2, 3, 5, 8, . . .

Geometric limit of Rn(ρ) Quadratic-like tower Tower of commuting pairs

〈fi : i ∈ Z〉; fi+1 = fi ◦ fi

Hyperbolic 3-manifold S × [0, 1]/ψ Fixed-points of

fibering over the circle Renormalization

Conformal structure is C1+α-rigid at deep points =⇒

Renormalization converges exponentially fast

M is asymptotically rigid J(f) is self-similar at the critical point c0(f)

Table 3.
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unbounded renormalization periods and Liouville rotation numbers. We conclude
with an example of such a complete classification in the setting of hyperbolic
geometry.

Let S be the compact surface obtained by removing a disk from a torus. Let
AH(S) ⊂ V (S) be the set of discrete faithful representations such that ρ(π1(∂S))
is parabolic. A representation ρ : π1(S) → Γ in AH(S) gives a hyperbolic manifold
M = H

3/Γ homeomorphic to int(S)× R. To each end of M one can associate an
end invariant

E±(M) =

{
∂±(M) ∈ Teich(S) or

ǫ±(M) ∈ PML(S).
In the first case the end is naturally completed by a hyperbolic punctured torus
∂±(M); in the second case the end is pinched along a simple curve or lamination
ǫ±(M).

Identifying Teich(S) ∪ PML(S) with H = H ∪ R ∪∞, we may now state:

Theorem 7.1 (Minsky) The pair of end invariants establishes a bijection

E : AH(S) → H×H− R× R

with E−1 continuous.

Corollary 7.2 Each Bers’ slice of AH(S) is bounded by a Jordan curve natu-
rally parameterized by R ∪∞, with rational points corresponding to cusps.

Corollary 7.3 Geometrically finite manifolds are dense in AH(S).

Theorem 7.1 establishes a special case of Thurston’s ending lamination
conjecture [Mc1, §4]. We remark that E is not a homeomorphism, and indeed
AH(S) is not even a topological manifold with boundary [Mc3, Appendix].

The proof of Theorem 7.1 from [Min] can be illustrated in the case E(M) =
(τ, λ), with τ ∈ H and λ ∈ R an irrational number with continued fraction
[a1, a2, . . . ]. By rigidity of manifolds in ∂AH(S), it suffices to construct a quasi-
isometry

φ :M →M(a1, a2, . . . )

from M to a model Riemannian manifold explicitly constructed from the ending
invariant. The quasi-isometry is constructed piece by piece, over blocks Mi of M
corresponding to terms ai in the continued fraction.

The construction yields a description not only of manifolds in AH(S), but
also of their geometric limits, which we formulate as follows.

Theorem 7.4 Every geometric limit M = limMn, Mn ∈ AH(S), is determined
up to isometry by a sequence 〈ai, i ∈ I〉, where

• I ⊂ Z is a possibly infinite interval,

• ai ∈ Teich(S) ∪ {∗} if i is an endpoint of I; and

• ai ∈ {1, 2, 3, . . . ,∞} otherwise.
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Here 〈ai〉 should be thought of as a generalized continued fraction, augmented
by Riemann surface data for the geometrically finite ends ofM . (The special point
{∗} is used for the triply-punctured sphere.)

For example, the sequence 〈ai〉 = 〈. . . ,∞,∞,∞, . . .〉 determines the periodic
manifold

M∞
∼= int(S)× R−

(
⋃

Z

γi × {i}
)
,

where γi ⊂ S are simple closed curves and i(γi, γi+1) = 1. These curves enumerate
the rank two cusps of M∞. Geometrically, M∞ is obtained from the Borromean
rings complement S3 − B (itself a hyperbolic manifold) by taking the Z-covering
induced by the linking number with one component of B.

In general the coefficients 〈ai〉 in Theorem 7.4 specify how to obtain M by
Dehn filling the cusps of M∞. Compare [Th2, §7].

Corollaries 7.2 and 7.3 are reminiscent of two open conjectures in dynamics:
the local connectivity of the Mandelbrot set, and the density of hyperbolicity for
complex quadratic polynomials.

Quadratic polynomials, however, present an infinite variety of parabolic bi-
furcations, in contrast to the single basic type occurring for punctured tori. This
extra diversity is reflected in the topological complexity of the boundary of the
Mandelbrot set, versus the simple Jordan curve bounding a Bers slice.

Parabolic bifurcations can be analyzed by Ecalle cylinders [Dou2] and
parabolic towers [Hin], both instances of geometric limits as in §3. A complete
understanding of complex quadratic polynomials will likely entail a classification
of all their geometric limits as well.
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