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Vorties in Ginzburg-Landau Equations

Fabrice Bethuel

Abstract. GL models were first introduced by V.Ginzburg and
L.Landau around 1950 in order to describe superconductivity. Similar
models appeared soon after for various phenomena: Bose condensation,
superfluidity, non linear optics. A common property of these models is
the major role of topological defects, termed in our context vortices.

In a joint book with H.Brezis and F.Helein, we considered a simple model
situation, involving a bounded domain Ω in R2, and maps v from Ω to
R2. The Ginzburg-Landau functional, then writes

Eǫ(v) =
1

2

∫

Ω

|∇v|2 + 1

4ǫ2

∫

Ω

(1− |v|2)2

Here ǫ is a parameter describing some characteristic lenght. We are
interested in the study of stationary maps for that energy, when ǫ is
small (and in the limit ǫ goes to zero). For such map the potential forces
|v| to be close to 1 and v will be almost S1-valued. However at some
point |v| may have to vanish, introducing defects of topological nature,
the vortices. An important issue is then to determine the nature and
location of these vortices.

We will also discuss recent advances in more physical models like super-
conductivity, superfluidity, as well as for the dynamics: as previously the
emphasis is on the behavior of the vortices.
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1 Introduction

Ginzburg-Landau functionals were introduced around 1950 by V.Ginzburg and
L.Landau in order to model energy states of superconducting materials and their
phase transitions. Related functionals appeared soon therafter in various fields
as superfluidity, Bose condensation, nonlinear optics, fluid mechanics and parti-
cle physics. A common feature of these models is that they involve non convex
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potentials, which allow the existence of topological defects for stationary states:
here we will mainly focus on two-dimensional situations, where theses defects are
often termed vortices. In recent years, very importants efforts have been devoted
to their study from a mathematical point of view: we will try here to survey parts
of these works.

We begin with a simple model, which was studied extensively, in particular
in a joint book with H.Brezis and F.Helein [BBH]. Consider a smooth bounded
domain in R2 (for instance a disk), and complex valued functions v on Ω ( i.e maps
v from Ω to R2). The simplest possible Ginzburg-Landau functional then takes
the form, for these functions

Eǫ(v) =
1

2

∫

Ω

|∇v|2 + 1

4ǫ2

∫

Ω

(1− |v|2)2 .

Here ǫ is a parameter describing some characteristic lenght and we will mainly be
interested in the case ǫ is small and in the limit ǫ tends to zero. The potential
V (v) = ǫ−2(1 − |v|2) forces |v|, for critical maps for Eǫ to be close to 1 and
therefore, stationnary (or low energy) maps will be almost S1-valued. However,
at some points |v| may have to vanish, introducing “defects”.

To have a well-posed mathematical problem, we prescribe next Dirichlet
boundary conditions: let g be a smooth map from ∂Ω to S1, and prescribe v
to be equal to g on ∂Ω. Therefore we introduce the Sobolev space

H1

g (Ω;R
2) = {v ∈ H1(Ω;R2), v = g on ∂Ω} .

It is then easy to verify that Eǫ is a C∞ functional on H1
g , and that its critical

points verify the Ginzburg-Landau equation

∆v =
1

ǫ2
v(1− |v|2) on Ω, v = g on ∂Ω. (1)

Standard elliptic estimate show that, any solution to (1) is smooth, that

|v| ≤ 1 on Ω (maximum principle), (2)

|∇v| ≤ C

ǫ
on Ω for C, some constant depending on g, (3)

1

4ǫ2

∫

Ω

(1− |v|2)2 ≤ C , provided Ω is starshaped. (4)

Since Eǫ is strictly positive, one easily verifies that it achieves its infimum kǫ on
H1

g and hence (1) possesses minimizing solutions (not necessarily unique). We will
denote uǫ these solutions.

2 Asymptotic analysis of minimisers

The winding number d of g ( as map from ∂Ω to S1) is crucial in this analysis,
forcing, when d 6= 0, vortices to appear.
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2.1 The case d = 0.

In this case, there exists ψ from ∂Ω to R such that g = exp iψ. Next let ϕ∗ be the
solution of ∆ϕ∗ = 0 on Ω, ϕ∗ = ψ on ∂Ω and consider u∗ = exp iϕ∗. Clearly u∗ is
S1-valued, so that

Eǫ(u∗) =
1

2

∫

Ω

|∇u∗|2 =
1

2

∫

Ω

|∇ϕ∗|2

is bounded independently on ǫ. Hence kǫ remains bounded as ǫ → 0. It is that
easy to show that uǫ → u∗ in H1. Finally in [BBH2] we carried out more refined
asymptotics, in particular

‖u∗ − u‖L∞ ≤ Cǫ2.

2.2 The case d 6= 0.

We may assume, for instance d > 0. In this case there are no maps in H1
g which

are S1-valued (the fact that there are no continuous S1-valued maps reduces
to standard degree theory). In particular kǫ −→ +∞, and we are facing a
singular limit. Since uǫ is smooth, the topology of the boundary data forces uǫ
to vanish somewhere in Ω. The points where uǫ vanishes play an important role:
the Dirichlet energy will concentrate in there neighborhood, accounting for the
divergence of kǫ. In [BBH], we established

Theorem 1 i) There exists a constant C > 0 depending only on g such that

|kǫ − πd| log ǫ|| ≤ C , ∀ 0 < ǫ < 1 . (5)

ii) The map uǫ has exactly d zeroes, provided ǫ is sufficiently small (these result
relies on a work by P.Baumann, N.Carlson and D.Philips [BCP] ) .
iii) There exists exactly d points a1, a2, · · · , ad in Ω such that up to a subsequence
, ǫn → 0,

uǫn −→ u∗, on any compact subset of Ω\
d
⋃

i=1

{ai} ,

where

u∗ =

d
∏

i=1

z − ai

|z − ai|
exp iϕ (ϕ being a harmonic function).

In particular, the winding number around each singularity is +1.
iv) The configuration ai is not arbitrary, but minimizes on Ωd\∆ (where ∆
denotes the diagonal) a renormalized energy which has the form

Wg(a1, · · · , ad) = π
∑

i6=j

log |ai − aj |+ boundary conditions. (6)

v) The energy has the expansion, as ǫ→ 0

kǫ = πd| log ǫ|+Wg(a1, · · · , ad) + dγ0 + o(1)

where γ0 is some absolute constant.
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Remarks 1) Theorem 1 was established in [BBH] under the additional as-
sumption that Ω is starshaped. This assumption was removed by M.Struwe [Str]
(see also Del Pino-Felmer [DF]).
2) Similar results have been obtained by André and Shafrir, when the potential
depends also on x, [AS], in [BR] for the abelian Higgs models, and in [HJS] for a
self-dual model.
3) Hardt and Lin have studied in [HL] a different singular limit problem, with the
same renormalized energy.
4) A three dimensional analog was studied by Rivière in [R].

3 Asymptotics for non minimizing solution

A similar analysis can be carried out for solution which are not necessarily mini-
mizing. Assume Ω is starshaped. Then, we have, [BBH], for vǫ solution to (1):

Theorem 2 i) There exists some constant C > 0, such that, for 0 < ǫ < 1

E(vǫ) ≤ C(| log ǫ|+ 1) .

ii) there exists a subsequence ǫn, l points a1, · · · , al and l integer d1, · · · , dl such
that

vǫn −→ v∗ =
l

∏

i=1

(

z − ai

|z − ai|

)di

exp iϕ, where ϕ is harmonic.

iii) The configuration (ai, di) is critical for the renormalized energy.

Note that an important difference between minimizing and non-minimizing solu-
tions is that, for the later one, the multiplicity of vortices has not to be +1, and
the vortices of opposite degree might coexist.

4 The existence problem

In view of Theorem 2, a natural question is to determine whether non-minimizing
solutions do really exist, and if one is able to prescribe the multiplicity of the
vortices. We begin with an elementary example.

4.1 An example:

Take Ω = D2 and g(θ) = exp idθ (here (r, θ) denote polar coordinate). In view of
the symmetries, one can find a solution v(r, θ) of the form vd(r, θ) = fd(r) exp idθ,
where fd verifies the ODE

r2f“ + rf
′ − d2f +

1

ǫ2
r2f(1− f2) = 0 , f(0) = 0 , f(1) = 1 .

Computing the energy of these solutions, one sees that they are of order πd2| log ǫ|:
hence, if |d| ≥ 2, and ǫ is sufficiently small they are non minimizing. [ In the case
d = 1, v is minimizing thanks to results by P. Mironescu [Mi] and Pacard and
Rivière [PaR] ].
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Vortices in Ginzburg-Landau Equations 15

Actually, for large d, there are much more solutions. Indeed, the Morse Index
of the solution vd is of order |d|2, for large d ( see [AB1], [BeH]). Therefore, using
symmetries and the index theory of Faddell and Rabinowitz [FR] (a Lyusternik-
Schnirelmann theory in the presence of compact group actions), one obtains the
existence of at least µ0|d|2 orbits of solutions, for large d, where µ0 is some positive
constant (the orbit of a solution v is the set {exp(−idα)v(exp iαz), α ∈ [0, 2π[ } ).

4.2 Variational methods

A complete Morse theory for (1) has yet to be constructed. In view of (6), one
might expect that the level sets for Eǫ are related to the level sets of Wg on
Σ = Ωd \∆, and hence that the topologie of Σ might yield solution for (1). This
idea was introduced in [AB1], and then extended by Zhou and Zhou [ZZ]: they
proved that (1) has at least |d|+1 distinct solutions, for sufficiently small ǫ. They
are using crucially the fact that the cuplenght of Σ is (at least), |d| − 1, a result
due to V. Arnold [Ar].

We conjecture actually that the number of solutions is much higher. In order
to find solutions with vortices of higher multiplicity, one has also to take into
account vortices of opposite charges and also the fact that they might annihilate.
For that reason, Ωd \∆ is no longer the good model, and one has to turn to spaces
as studied by D.Mc. Duff [McD].

Remark: Another construction of (stable) solutions has been introduced in
[Li1].

5 Superconductivity

We turn now to the original model for superconductivity, as introduced by
Ginzburg and Landau. Here Ω represents a superconducting sample, hex denotes
the external applied magnetic field. The functional to minimize is now

Fǫ(u,A) =
1

2

∫

Ω

|∇Au|2 + |dA− hex|2 +
1

4ǫ2

∫

Ω

(1− |u|2)2 .

Here A = A1dx1 + A2dx2 is a connection accounting for electromagnetic effects,
and u represents a condensated wave function for Cooper pairs of electrons, the
carrier of superconductivity. In the above renormalized units, |u|2 represents the
density of Cooper pairs, so that if |u| ≃ 0 the sample is in the normal state, whereas
if |u| ≃ 1 the material is in the superconducting state. We will see that for certain
applied fields hex, the two states may coexist in the same sample (phase transition
of second order). This model leads therefore to many interesting mathematical
questions, often related to physical experiments.

5.1 Non simply connected domains

In this case, permanent currents have been observed, even when hex = 0. Jimbo,
Morita and Zhai [JMZ], Rubinstein and Sternberg [RS] and Almeida [Al1] have
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related this fact to the existence of configurations minimizing the energy in a
topological sector. The threshold energy between different sectors is established
in [Al2] and corresponds precisely to the energy of a vortex.

When the external field is non zero interesting phenomena occur (the Little-
Parks effect), which have been studied in particular by Berger and Rubinstein
([BgR]).

5.2 Critical fields

Suppose ǫ is small, and let Ω be an arbitrary domain. For hex = 0, the minimizing
solution is clearly (up to a gauge transformation) u = 1, A = 0. It is observed
that, until hex reaches a critical field Hc1 , the minimizing solution has no vortex
(called a Meissner solution). For hex > Hc1 , vortices appear, and their number
increases with hex. Finally, for hex > Hc2 , another critical field, superconductivity
dissapears, and the minimizing solution is u = 0.

Stable solutions near Hc1 have been thoroughly investigated by S. Serfaty [S1,
S2]. In particular the location of the vortices is determined, and it is proved that
many branches of solutions corresponding to various numbers of vortices, coexist
at the same time. For larger fields, homogenized equations for the vortex distribu-
tion have been proposed and studied (see for instance Chapman, Rubinstein and
Schatzman [CRS]).

Finally very precise estimates have been obtained in the one dimensional case
by C. Bolley and B. Helffer (see[BoH]), for different critical fields and values of ǫ.

6 Evolution equations

Various evolution equations corresponding to the Ginzburg-Landau system have
been studied. For the heat-flow equation related to (1), Lin [Li2] has shown that
the vortices evolve according to the gradient flow of the renormalised energy (see
also [JS]), in a suitable renormalized unit of time. The Schrödinger equation
(termed also Gross-Pitaevskii equation)

i
∂u

∂t
= ∆u+ u(1− |u|2) (7)

is of special importance, since it appears as a model for superfluids, Bose condensa-
tion, nonlinear optics. It is also related to fluid mechanics, because if u = ρ exp iϕ,
then ∇ϕ can be interpretated as the velocity in a compressible Euler equation, ρ2

being the density (with a suitable choice for the pressure).
The dynamics of vortices (on bounded domains) was derived by Colliander

and Jerrard [CJ], as the simplectic gradient for the renormalized energy (see also
[LX]).

When the domain is R2, Ovchinnikov and Sigal [OS1] have shown that when
the initial data has two vortices of the same sign (and hence infinite GL en-
ergy), radiation takes place and the vortices repulse. The existence and behavior
of travelling waves solutions to (7) has been widely considered in the physical
litterature (see for instance Jones, Putterman and Roberts [JPR], Pismen and
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Vortices in Ginzburg-Landau Equations 17

Nepomnyashchy [PN], Josserand and Pomeau [P]). This solutions have the forme
u(x, t) = U(x1 − ct , x2) where U is a function on R2. For 0 < c2 < 2, non con-
stant finite energy solutions exists (rigourous proofs are provided in [BS1], [BS2]).
When c is small, these solution possess two vortices with degrees +1 and −1, the
distance separating the vortices is proportional to the inverse of the speed c. The
limiting speed

√
2 represents the speed of sound (see [OS2], also for the role of

Cherenkov radiation). Stability of these travelling waves has been studied in the
physical literature: mathematical proofs are still to be provided as well as for the
three dimensional case (vortex rings).
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Linéaire 14 (1997), 597-614.

[BR] F. Bethuel and T. Rivière, A minimization problem related to supercon-
ductivity, Annales IHP, Analyse Non Linéaire, 12 (1995), 243-303.
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