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Phenomena of Compensation and Estimates

for Partial Differential Equations

Frédéric Hélein

Abstract. Quantities like the Jacobian determinant of a mapping play
an important role in several partial differential equations in Physics and
Geometry. The algebraic structure of such nonlinearities allow to improve
slightly the integrability or the regularity of these quantities, sometimes
in a crucial way. Focused on the instance of ∂a

∂x
∂b
∂y

− ∂a
∂y

∂b
∂x

, where a and

b ∈ H1(R2), we review some results obtained on that quantity for 30
years and applications to partial differential equations arising in Geome-
try, in particular concerning the conformal parametrisations of constant
mean curvature surfaces and the harmonic mappingss between Rieman-
nian manifolds.
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For 30 years, many remarkable properties concerning some nonlinear quan-
tities like Jacobian determinants of mappings or the scalar product of a diver-
gencefree vector field by the gradient of a function has been observed and used.
One instance is the continuity with respect to the weak convergence in L2. The
basic example is the following : if ak ⇀ a weakly and bk ⇀ b weakly in H1(Rm),
then {ak, bk}αβ := ∂ak

∂xα
∂bk
∂xβ − ∂ak

∂xβ

∂bk
∂xα converges to {a, b}αβ in the distribution

sense. The discovery and the study of such properties is the subject of the theory
of compensated compactness of F. Murat and L. Tartar [Mu], which became a
powerful tool in the theory of homogeneisation and the study of quasiconvex
functionals. These technics has been recently enlarged, after R. Di Perna, by P.
Gérard [Gé] and L. Tartar [Ta2] independentely in a microlocal context.

We want to tell here a story parallel to compensated compactness’ one.

1 H-surfaces

It began with the study of surfaces of constant mean curvature H in the Eu-
clidean space R

3. Let D2 be the unit disk in the plane R
2. A local conformal

parametrisation X ∈ H1(D2,R3) satisfies

∆X = 2H
∂X

∂x
× ∂X

∂y
weakly in H1(D2,R3), (1)
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where V ×W is the standard vectorial product in R
3. H. Wente proved that each

weak solution of (1) is smooth (C∞) [W1]. The crucial step of his proof this to
prove that a solution of (1) is continuous. It relies on the particular structure of
the right-hand side of (1). For instance, the first component :

∆X1 = 2H

(

∂X2

∂x

∂X3

∂y
− ∂X2

∂y

∂X3

∂x

)

is a Jacobian determinant. Later in the the beginning of the eighties, in papers
from H. Wente [W2] and H. Brezis, J.-M. Coron [BrC], it became clear that the
main point in Wente’s proof relies on the following. Let a, b ∈ H1(D2,R) and
φ ∈ L1(D2,R) be a weak solution of







−∆φ = {a, b} :=
∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
on D2

φ = 0 on ∂D2.
(2)

Then φ is actually in H1(D2) ∩ C0(D2) and we have the following : there exist
some positive constants C∞ and C2 such that

||φ||L∞ ≤ C∞||da||L2 ||db||L2 , (3)

||dφ||L2 ≤ C2||da||L2 ||db||L2 . (4)

Both estimations are not true in general if we replace the right hand side of (2)
by an arbitrary bilinear function of a and b : we would then only obtain that
φ ∈ W 1,p ∩ Lq with 1 ≤ p < 2 and 1 ≤ q < ∞. Here the algebraic structure of
{a, b} is very important and allows us to do many manipulations such as

{a, b} =
∂

∂x

(

a
∂b

∂y

)

− ∂

∂y

(

a
∂b

∂x

)

- the basic trick in the proof.

Remark Estimates (3) and (4) lead to other inequalities, similar to the isoperi-
metric inequality in R

3, see [BrC].

2 Estimates in refined spaces

In the beginning of the eighties, L. Tartar observed other nice properties on {a, b}
in the framework of fluid dynamics [Ta1]. And in 1989, S. Müller showed that if
u is any function in W 1,m(Rm,Rm) such that det(du) is nonnegative a.e. , then,
det(du)log(1 + det(du)) ∈ L1(Rm), which improves slightly the naive observation
that det(du) ∈ L1(Rm) [Mü]. We say that det(du) is in L1logL1(Rm). The proof
of that fact relies also on the use of the isoperimetric inequality in R

m. Notice
that if m = 2 and u = (a, b), then det(du) is just {a, b}.

A few time later, R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes proved
actually that if u is any function in W 1,m(Rm,Rm), then det(du) belongs to the
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generalized Hardy space H1(Rm) [CLMS]. It includes S. Müller’s result, for it
was known that any nonnegative function in H1(Rm) is in L1logL1(Rm). These
authors obtained similar results: for instance, if B ∈ L2(Rm,Rm) is a divergence
free vector field and V ∈ H1(Rm,R), then

∇V.B ∈ H1(Rm), (5)

the exact analog of the “div-curl lemma” of F. Murat and L. Tartar [Mu].

To make sense it is worth to say what is the generalized Hardy space (see
[St]). Several definition coexists. One is the following. Let f ∈ L1(Rm), define

f⋆(x) := sup
t>0

∣

∣

∣

∣

∫

Rm

f(x− y)φ(
y

t
)
dy

tm

∣

∣

∣

∣

,

where φ ∈ C∞
c (Rm) is a function such that

∫

Rm fφ = 1. Then

H1(Rm) := {f ∈ L1(Rm)/f⋆ ∈ L1(Rm)}.

We endow this space with the norm

||f ||H1 = ||f ||L1 + ||f⋆||L1 .

Notice that, through as theorem of C. Fefferman and E. Stein, BMO(Rm) is
the dual space of H1(Rm) ([F], [FSt]). The main property of H1(Rm) is that there
exists many linear operators (like the Riesz transform) which are continuous on
Lp spaces for 1 < p < ∞, but not on L1. But these operators are continuous on
H1(Rm).

3 Applications to partial differential equations in geometry

Many applications of these properties have been obtained in the theory of har-
monic maps.

Harmonic maps into a sphere

A first example is my result on the regularity of weakly harmonic maps between
a two dimensional domain Ω and the two-sphere S2 ⊂ R

3 [H1]. These are maps
u ∈ H1(Ω, S2) := {v ∈ H1(Ω,R3)/|v| = 1 a.e. } which are weak solutions of

∆u+ u|du|2 = 0, weakly in H1(Ω,R3). (6)

Here, no Jacobian determinant appears at first glance and the knowledge that
u|du|2 ∈ L1 is unuseful. The point is to use another equivalent form of the equation
which is the conservation law
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∂

∂x

(

u× ∂u

∂x

)

+
∂

∂y

(

u× ∂u

∂y

)

= 0, weakly in H1(Ω,R3). (7)

This relation was already observed and used independentely by several authors
([Che], [Sh], [KRS]). Assume without loss of generality that Ω is simply connected.
We can “integrate” this equation and we deduce that ∃B ∈ H1(Ω,R3) such that











∂B

∂x
= u× ∂u

∂y
∂B

∂y
= −u× ∂u

∂x
.

(8)

Now, using the fact that |u|2 = 1 a.e., which implies that 〈u, ∂u
∂x

〉 = 〈u, ∂u
∂y

〉 = 0,

we can rewrite (6) as

−∆ui = 〈ui ∂u

∂x
,
∂u

∂x
〉+ 〈ui ∂u

∂y
,
∂u

∂y
〉

= 〈ui ∂u

∂x
− u

∂ui

∂x
,
∂u

∂x
〉+ 〈ui ∂u

∂y
− u

∂ui

∂y
,
∂u

∂y
〉.

We recognize in the last expression components of u× ∂u
∂x

and u× ∂u
∂y

. Thus, using

(8),

−∆ui = −{uj , Bk} − {Bj , uk}, (9)

for any (i, j, k) which is a circular permutation of (1, 2, 3). Now equation (9) is
similar to (1) and allows us to prove continuity of u using Wente’s estimate. The
smoothness of u follows from the classical elliptic theory.

This result generalizes in a straightforward way if we replace the target man-
ifold S2 by a sphere of arbitrary dimension or a homogeneous manifold, once one
realized that the conservation law (7) is a consequence of the symmetries of S2,
using Noether’s theorem (see [H2]).

This result has also been extended to to the case where the domain Ω is also
of higher dimension by L. C. Evans [E]. He proved that, if Ω is an open subset of
R

m is a weakly stationary map into a sphere, then u is smooth in Ω \ S, where
S is a closed subset whose Hausdorff measure of dimension m − 2 vanishes - a
weakly stationary map is a weakly harmonic map satisfying the extra condition
that

∫

Ω
|d(u ◦ φt)|2 =

∫

Ω
|du|2 + o(t), for all smooth family of diffeomorphisms φt

acting on Ω, such that φ0 is the identity mapping.
Evans’ proof relies on the same arguments, plus the following: the extra

condition leads to a monotonicity formula which provides an estimate in BMO.
On the other hand, equations like (9) gives estimates in Hardy spaces, through
the results of [CLMS]. These estimates complete exactly because of the duality
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between H1 and BMO.

Remark It is possible to avoid to use the difficult duality result about H1 and
BMO by direct estimates obtained by S. Chanillo [Cha]. Even more recently,
more direct proofs without using that duality has been constructed by P. Hajlasz,
P. Strzelecki [HS] and A. Chang, L. Wang, P. Yang [CWY].

Harmonic maps into arbitrary manifolds

It has been possible to extend the previous results for weakly harmonic maps into
arbitrary manifolds N . The difficulty is that in general N is not symmetric and
we cannot apply Noether’s theorem to construct conservation laws. In dimension
2, I did prove that weakly harmonic maps on a surface, into an arbitrary smooth
compact manifold without boundary is smooth, generalizing the preceeding results
for spheres [H3]. After, F. Bethuel generalized Evans’ result to weakly stationary
maps into arbitrary manifolds [Be].

Let N be a smooth compact Riemannian manifold without boundary. Thanks
to the Nash-Moser theorem, we can assume that N is isometrically embedded in
R

N . We define H1(Ω,N ) to be the set of functions u in H1(Ω,RN ) such that
u ∈ N a.e. Then weakly harmonic maps u ∈ H1(Ω,N ) are the solutions in the
distribution sense of the system

∆u+A(u)(du, du) = 0, (10)

where A(u)(., .) is the second fundamental form of the embedding of N in R
N . It is

a bilinear form on the tangent space to N at u, with values in the normal subspace
to N at u. Such maps are critical points of the restriction of the functional

E(u) =

∫

Ω

|du|2dx

on H1(Ω,N ). In proving regularity results, the point is to exploit the Euler-
Lagrange equation with suitable test-functions, which in some sense are able to
measure, to calibrate the possible wild behaviour of a given weak solution. One
instance of wild behaviour we have in mind is like the map (x, y) 7−→ (cos(log(r)),

sin(log(r)),0), from R
2 to S2, where r =

√

x2 + y2 : it is harmonic on R
2 \{0} and

its image turns along a great circle faster and faster as (x, y) goes to 0. One would
like to prove that such a singularity (or something which looks asymptotically
like that) does not exists (it actually has an infinite energy). So how to measure
such a wild winding ? If N is S2, we just take the test function u × φ, where
φ ∈ H1∩L∞(Ω,R3) and we recover the trick given by Noether’s theorem in writing
the equation as the conservation law (7). In other cases, we need to construct test
functions doing the same job, namely calibrating the possible winding of u. This
obtained by using an orthonormal frame on N , moving along u in the “more
parallel way”. This last requirement means that, although it is not possible in
general to construct a covariantly parallel moving frame, it is possible to minimize
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the covariant derivative of that moving frame along u. The good news are that
the obstruction for constructing a covariantly parallel moving frame along u is the
curvature of N or more precisely the pull-back of the curvature two-form by u.
But this pull-back is just a combination of two-order minors of the kind {a, b}, in
the Hardy space! This is done by the following construction.

We start with a given smooth orthonormal moving frame ẽ(m) =
(ẽ1, ..., ẽn)(m) defined globally on N (m being here a point on N ), a smooth sec-
tion of the bundle F of orthonormal tangent frames over N . In many cases, such a
section does not exists globally, because of topological obstructions. Nevertheless,
it is possible to reduce ourself to such a situation, through some geometrical
argument. Then, for any map u ∈ H1(Ω,N ), we consider the composed moving
frame ẽ ◦ u, a section of the pull-back bundle u⋆F , together with all the gauge
transformations of ẽ ◦u, i.e. for all R ∈ H1(Ω, SO(n)), we consider the new frame
eR(z) = ẽ ◦ u(z).R(z) for a.e. z ∈ Ω, or

eRa (z) =
n
∑

b=1

ẽb[u(z)].R
b
a(z).

We choose among all eR’s those who minimize the functional

F (eR) :=

∫

Ω

n
∑

a,b=1

[〈∂e
R
a

∂x
, eRb 〉2 + 〈∂e

R
a

∂y
, eRb 〉2]dxdy.

We call a Coulomb moving frame such a frame. It satisfies the Euler-Lagrange
equation

∂

∂x
〈∂e

R
a

∂x
, eRb 〉+

∂

∂y
〈∂e

R
a

∂y
, eRb 〉 = 0, (11)

another conservation law. This equation can be used as (7): some manipulations
shows that ∃Aa

b ∈ H1(Ω) such that















∂Ab
a

∂x
= 〈∂e

R
a

∂y
, eRb 〉

∂Ab
a

∂y
= −〈∂e

R
a

∂x
, eRb 〉,

and that ∆Ab
a is a sum of Jacobian determinants of the type {a, b}. Namely ∆Ab

a

times the volume form on Ω is the pull-back by u of a closed two-form on N related
to the curvature form. This improves slightly the regularity of eR. In particular,

we deduce that the L2 connection coefficients 〈∂e
R
a

∂x
, eRb 〉 and 〈∂e

R
a

∂y
, eRb 〉 are in fact

in the Lorentz space L(2,1), a slight refinement of the usual L2 space (actually it is
the dual space to L(2,∞), known as weak L2) (see [StW], [Hu], [BL]). Notice that
the above construction did not use at all the hypothesis that u is weakly harmonic.

Now, if we assume that u is weakly harmonic, we will work with the pro-
jection of equation (10) on the Coulomb moving frame. We hence get a first
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order, Cauchy-Riemann system ∂αa

∂z
=

∑n
b=1 ω

a
bα

b, where the αa’s are complex
numbers representing the derivatives of u and the ωa

b ’s are also complex numbers
representing connection coefficients. The preliminary work on the Coulomb
moving frame ensures us that the ωa

b ’s are in L(2,1), instead of L2. This is enough
to prove that u is locally Lipschitz and then that u is smooth.

The regularity theorem of F. Bethuel combines in a delicate way these
arguments and Evans’ ones. For more details on all of that, see [Be] and [H4].

Conformal parametrisations of surfaces

In her thesis, T. Toro, proved the surprising (and difficult) result that the graph of
a map φ in H2(Ω,R), where Ω is an open subset of R2, is a Lipschitz submanifold,
i.e. that there exists local bilipschitz parametrisations of the graph of φ. Actually
she proved the more general result that this is true for any surface Σ whose mean
curvature is a L2 function on Σ [Tor]. Then, a simpler approach has been found
by S. Müller and V. Švérak [MüŠ]. They proved that if Σ is a surface whose mean
curvature function belongs to L2(Σ), then a conformal parametrisation of Σ is a
bilipschitz function. Their result follows from the observation that, for a local
conformal parametrisation X : D2 −→ Σ, if we denote (e1, e2) an orthonormal
frame such that dX = ef (e1dx+ e2dy), then

∆f = u⋆Ω, (12)

where Ω is the curvature two-form on Σ. Thus ∆f looks like a Jacobian determi-
nant {a, b} and the Wente estimate, or the Coifman, Lions, Meyer, Semmes results
implies boundedness of f in L∞, meaning that X is Lipschitz.

4 The best constants

Going back to Wente’s result on the disk D2, it is natural to generalize this in-
equality to arbitrary two-dimensional domain Ω in the plane, or on a Riemannian
surface (M, g) and to look for the best constants in (3) and (4). If

−∆gφ = {a, b} on M, (13)

we call

C∞(M, g) = inf{osc(φ)/φ is a solution of (13),

where (a, b) ∈ H1(M,R2), ||da||2L2 + ||db||2L2 = 2},

C2(M, g) = inf{||dφ||2L2/φ is a solution of (13),

where (a, b) ∈ H1(M,R2), ||da||2L2 + ||db||2L2 = 2}.
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A priori, C∞(M, g) and C2(M, g) should depend on M and on the metric g.
A first observation is that (13) is invariant under conformal transformations of
(M, g). Thus C∞(M, g) and C2(M, g) depend only on the conformal structure of
(M, g). Moreover, F. Bethuel and J.-M. Ghidaglia proved that these constants
were bounded by a universal one [BeG]

Recently the precise evaluation of these constants were completed by S.
Baraket and P. Topping for C∞(M, g) [Ba], [Top] and by Y. Ge for C2(M, g)
[Ge]. We have that

• C∞(M, g) = 1
2π , for all (M, g).

• C2(M, g) =
√

3
16π if ∂M is non empty and C2(M, g) =

√

3
32π if ∂M is

empty.

Both result relies on the optimal isoperimetric inequality (on the plane for C∞(Ω)
and in R

3 for C2(Ω)).

Back to the beginning

The search for the optimal constant C2(M, g) leads to a variational prob-
lem very similar to the search for the optimal constant in Sobolev embedding of

H1(Rm) in L
2m

m−2 (Rm). First this problem is invariant under conformal transfor-
mations. Moreover critical points of the functional ||dφ||2L2 under the constraint
that ||da||2L2 + ||db||2L2 = 2, satisfies the following Euler-Lagrange equation: there
exists a Lagrange multiplier λ ∈ (0,∞) such that

u =





√
λa√
λb
λφ





is a weak solution of

∆u = 2
∂u

∂x
× ∂u

∂y
,

the equation of conformal parametrisations of constant mean curvature surfaces
(see [H4], [Ge]). Hence we are led to another variational formulation of that
geometrical problem. Y. Ge obtained several existence results on this problem, by
constructing minimizing and non-minimizing solutions [Ge].
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