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Visosity Solutions

of Ellipti Partial Differential Equations

Robert R. Jensen

Abstract. In my talk and its associated paper I shall discuss some re-
cent results connected with the uniqueness of viscosity solutions of non-
linear elliptic and parabolic partial differential equations. By now, most
researchers in partial differential equations are familiar with the definition
of viscosity solution, introduced by M. G. Crandall and P. L. Lions in their
seminal paper, “Condition d’unicité pour les solutions generalisées des
équations de Hamilton-Jacobi du premier order,” C. R. Acad. Sci. Paris
292 (1981), 183–186. Initially, the application of this definition was
restricted to nonlinear first order partial differential equations—i.e.,
Hamilton-Jacobi-Bellman equations—and it was shown that viscosity so-
lutions satisfy a maximum principle, implying uniqueness. In 1988 an
extended definition of viscosity solution was applied to second order par-
tial differential equations, establishing a maximum principle for these
solutions and a corresponding uniqueness result. In the following years
numerous researchers obtained maximum principles for viscosity solutions
under weaker and weaker hypotheses. However, in all of these papers it
was necessary to assume some minimal modulus of spatial continuity in
the nonlinear operator, depending on the regularity of the solution, and
to assume either uniform ellipticity or strong monotonicity in the case
of elliptic operators. The results I shall discuss are related to attempts
to weaken these assumptions on the partial differential operators—e.g.,
operators with only measurable spatial regularity, and operators with
degenerate ellipticity.
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1 Viscosity solutions: a brief history

Although the history of viscosity solutions begins in 1981/83, depending on your
individual bias, an important precursor is found in the work of S. N. Kruzkov.
In fact, it’s noted in [12] that, “analogies with S. N. Krukov’s theory of scalar
conservation laws ([29]) provided guidance for the notion [of viscosity solutions]
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and its presentation.” In this context one should also mention L. C. Evans [16],
which developed techniques that serendipitously anticipated the introduction of
viscosity solutions.

M. G. Crandall and P. L. Lions announced the discovery of viscosity solu-
tions in 1981 ([10]). Complete proofs and details were presented shortly after this
in their landmark paper [11]. However, the definition of viscosity solution used
in this paper bears little resemblance to any of those we now employ. It is in
M. G. Crandall, L. C. Evans and P. L. Lions [9] where we first see a systematic
use of one of the now familiar definitions of viscosity solutions. P. L. Lions was
quick to grasp the potential in extending the notion of viscosity solutions to more
general PDEs—[10] and [11] only deal with first order Hamilton-Jacobi-Bellman
equations. His papers, [30] and [31], are the first attempts to extend the first order
results of [11] to second order equations. Using stochastic control theory, he was
able to prove a maximum principle for viscosity solutions of convex (or concave)
nonlinear second order Hamilton-Jacobi equations.

It was five years later that methods were developed which extended the theory
of viscosity solutions to fully nonlinear second order elliptic PDEs. In the first of
these papers R. Jensen [24] proved a maximum principle for Lipschitz viscosity
solutions to the fully nonlinear second order elliptic PDE on a bounded domain
Ω ⊂ R

n

F (u,Du,D2u) = 0 in Ω (1)

Next, in a short note R. Jensen, P. .L. Lions, and P. E. Souganidis [28] removed
the hypothesis of Lipschitz continuity from the viscosity solution. At about the
same time, using the ideas in [24], N. Trudinger proved C1,α regularity for viscosity
solutions of uniformly elliptic problems ([35]), and a maximum principle for such
solutions ([36]). Then H. Ishii [20] made an important contribution by removing
the assumption of spatial independence in the PDE. I.e., the maximum principle
could now be applied to viscosity solutions of

F (x, u,Du,D2u) = 0 in Ω (2)

Finally, in concurrently developed papers H. Ishii and P. L. Lions [22], and
R. Jensen [25] significantly extended [20] giving very general (and in [25], a rather
complicated technical) conditions under which a maximum principle holds for vis-
cosity solutions of (2). In particular, suppose the functions F (x, t, p,M) appearing
in (2) is given by the formula

F (x, t, p,M) = min
β∈B

{

max
γ∈C

{

aβγil (x)aβγjl (x)mij + bβγi (x)pi − cβγ(x)t− hβγ(x)
}

}

(3)
where M = (mij), p = (p1, . . . , pn) and summation is implicit over the indices
i, j, and l. Then we have from [25]

Corollary 5.11. Let F be the function defined by (3) and assume
{(

aβγrs (x)
)}

are uniformly Lipschitz continuous in Ω,
{(

bβγi (x)
)}

are uniformly Lipschitz con-

tinuous in Ω, and
{(

cβγ(x)
)}

and
{(

hβγ(x)
)}

are equicontinuous in Ω. If u is a
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viscosity subsolution of (2), v is a viscosity supersolution of (2), and

F (x, t, p,M)−F (x, s, q,N) ≤ max {K1trace(M −N),K2(s− t)}+K3|p− q| (4)

then

sup
Ω

(u− v)+ ≤ sup
∂Ω

(u− v)+ (5)

We also have two other corollaries from [25] which demonstrate the link between
the spatial dependence of F and the regularity of the viscosity solution.

Corollary 5.14. Let F be the function defined by (3) and assume
{(

aβγrs (x)
)}

are uniformly Hölder continuous with exponent γ(> 1/2) in Ω,
{(

bβγi (x)
)}

are

uniformly Hölder continuous with exponent 2γ − 1 in Ω, and
{(

cβγ(x)
)}

and
{(

hβγ(x)
)}

are equicontinuous in Ω. If u is a viscosity subsolution of (2), v is
a viscosity supersolution of (2), either u or v is Hölder continuous with exponent
α > 2− 2γ, and (4) holds, then

sup
Ω

(u− v)+ ≤ sup
∂Ω

(u− v)+ (6)

Corollary 5.16. Let F be the function defined by (3) and assume
{(

aβγrs (x)
)}

are uniformly Hölder continuous with exponent γ(≤ 1/2) in Ω,
{(

bβγi (x)
)}

are

equicontinuous in Ω, and
{(

cβγ(x)
)}

and
{(

hβγ(x)
)}

are also equicontinuous in

Ω. If u is a viscosity subsolution of (2), v is a viscosity supersolution of (2), either
u or v is in C1,α(Ω) for some α ≥ 1−2γ

1−γ
, and (4) holds, then

sup
Ω

(u− v)+ ≤ sup
∂Ω

(u− v)+ (7)

While the preceding results are not sharp, they do indicate how the assumption
of greater regularity of the viscosity solution allows us to reduce the regularity in
the spatial dependence of F necessary to prove a maximum principle. Specifically,
in conjunction with regularity results about the gradient (e.g., [35]), one obtains
a fairly general maximum principle (compare [36]).

It was also during this period that L. Caffarelli’s famous paper [3] on in-
terior a priori estimates for viscosity solutions appeared. It was in this paper
that Caffarelli extended the classical W 2,p, C1,α, andC2,α interior estimates, us-
ing the Aleksandov-Bakelman-Pucci maximum principle, the Calderon-Zygmund
decomposition lemma, and an extremely clever application of the Krylov-Safonov
Harnack inequality. By eschewing the traditional approach used for linear PDEs—
singular integral operator theory—he obtains results which are powerful enough
to apply to fully nonlinear uniformly elliptic operators.
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2 Viscosity solutions: recent results

The two most exciting (or depressing, depending on your point of view) recent
results are a pair of counterexamples due to N. Nadirashvili. The first ([32]), is
an example of nonuniqueness for linear uniformly elliptic PDEs with bounded,
measurable coefficients. I.e., consider the equation

n
∑

i,j=1

aij(x)
∂2u

∂xi∂xj

= f(x) in Ω ⊂ R
n

u|∂Ω(x) = g(x)











(8)

If (aij(x)) are bounded, measurable and uniformly elliptic, f is bounded and
measurable, and g is bounded and continuous we may define a solution of (8)
as a limit of solutions of

n
∑

i,j=1

akij(x)
∂2uk

∂xi∂xj

= f(x) in Ω ⊂ R
n

uk|∂Ω(x) = g(x)











(9)

where
{(

akij(x)
)}

are smooth and converge almost everywhere to (aij(x)). The se-

quence
{

uk
}

is equicontinuous due to Krylov’s Hölder continuity estimates. Hence,
the sequence has accumulation points. We may view these accumulation points as
“good” solutions of (8). If there is only one accumulation point no matter what
approximating sequence we use, then (in some sense) the “good” solution of (8) is
unique.

Under certain conditions it is possible to prove that “good” solutions of (8) are
unique. For example, M. C. Cerutti, L. Escauriaza, and E. B. Fabes [6] prove this
if the set of discontinuities of (aij(x)) is countable with at most one accumulation
point. M. Safonov [34] proves uniqueness if the set of discontinuities of (aij(x)) has
sufficiently small Hausdorff dimension. In this connection R. Jensen [27] defines a
measure theoretic notion of viscosity solution and proves that viscosity solutions
and “good” solutions are equivalent. A continuous function u ∈ C(Ω) is a viscosity
subsolution of (8) if for any φ ∈ C2(Ω) such that (u−φ)(x) ≥ (u−φ)(y) for all y ∈
Ω and for all η > 0

lim sup
ε→0

1

εn

∫

B(x,ε)





n
∑

i,j=1

aij(y)

(

∂2φ

∂xi∂xj

(x) + ηδij

)

− f(y)





+

dy > 0 (10)

it’s a viscosity supersolution if for any φ ∈ C2(Ω) such that (u − φ)(x) ≤ (u −
φ)(y) for all y ∈ Ω and for all η > 0

lim sup
ε→0

1

εn

∫

B(x,ε)





n
∑

i,j=1

aij(y)

(

∂2φ

∂xi∂xj

(x)− ηδij

)

− f(y)





−

dy > 0 (11)

and it’s a viscosity solution if it’s both a subsolution and a supersolution. It’s
relatively easy to see that a “good” solution is always a viscosity solution. Amaz-
ingly, it’s also possible to show that if u is a viscosity solution of (8), then there is
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a sequence of coefficients
{(

akij(x)
)}

converging to (aij(x)) such that the solutions
{

uk
}

of (9) converge to u.

It follows that viscosity solutions is the “right” or “natural” space to work in
when studying solutions of (8). The counterexample of [32] shows that multiple
viscosity solutions of (8) do can exist. I.e., viscosity solutions of (8) are not unique.
Still, [27] has some interesting consequences. For example, suppose (aij(x)) are
continuous. Then we know from the general theory of linear PDEs that there is a
solution w ∈ W 2,p(Ω)∩C(Ω) for any p > n. Such solutions are unique and stable.
It now follows from [27] that if u is a viscosity solution of (8), then u = w. Thus,
if (aij(x)) are continuous, then viscosity solutions of (8) are in W 2,p(Ω). In a pair
of papers related to [27], [5] and [8], L. Caffarelli, , M. G. Crandall, M. Kocan,
P. Soravia, and A. Świ

‘
ech examine the notion of a Lp-viscosity solutions. In the

context of (8) a function u ∈ W 2,p(Ω) for p > n/2 is a Lp-viscosity subsolution of
(8) if for any φ ∈ W 2,q

loc (Ω) such that q > p and (u−φ)(y) has a local max at y = x
then

ess lim sup
y→x







n
∑

i,j=1

aij(y)
∂2φ

∂xi∂xj

(y)− f(y)







≥ 0 (12)

it’s a Lp-viscosity supersolution if for any φ ∈ W 2,q
loc (Ω) such that q > p and

(u− φ)(y) has a local min at y = x then

ess lim inf
y→x







n
∑

i,j=1

aij(y)
∂2φ

∂xi∂xj

(y)− f(y)







≤ 0 (13)

and it’s a Lp-viscosity solution if it’s both a subsolution and a supersolution. The
authors prove a variety of interesting results concerning such solutions. In par-
ticular they they show that that such solutions are twice differentiable almost
everywhere, they examine the relationship between various definitions of viscosity
solutions (in the measurable context), and they extend and generalize the results
in [27]. One of the tools in their analysis is the interesting paper of L. Escau-
riaza ([15]), which extends the classical Aleksandrov-Bakelman-Pucci maximum
principle.

Nadirashvili’s second counterexample, [33], shows that there is a smooth func-
tion F such that the solution of (2) is not C2. This is important because this result
shows that the C2,α regularity theory—the Schauder estimates—of linear PDEs
doesn’t hold for fully nonlinear PDEs, underscoring the importance of the theory
of viscosity solutions to elliptic PDEs. Applications of viscosity solutions to de-
generate elliptic and parabolice PDEs also underscore their importance. One of
the more widely known applications has been to the problem of motion by mean
curvature. The idea of embedding the hypersurface as a level set of some initial
value and evolving the initial data by the appropriate degenerate parabolic PDE
goes back to L. C. Evans and J. Spruck [19], and Y. G. Chen, Y. Giga, and S. Goto
[7]. Showing that the level set’s evolution was independent of the particular initial
data used, they were able to prove existence and uniqueness results for the motion
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by mean curvature problem. These results have been expanded on and generalized
in L. C. Evans [18], and H. Ishii, and P. E. Souganidis [23].

In a different vein R. Jensen [26] studied a highly nonlinear degenerate ellip-
tic PDE in the context of L∞ minimization and the limit of the p-Laplacian as
p goes to infinity. Recently this operator has also been connected to the Monge-
Kantorovich problem of optimal transport, and (I have been told) to image pro-
cessing. The problem studied in [26] is to find the “best” Lipschitz extension into
Ω of the boundary data g(x). This is reduced to the problem of existence and
uniqueness of the nonlinear PDE

∑

i,j=1

∂u
∂xi

|Du|
(x)

∂u
∂xj

|Du|
(x)

∂2u

∂xi∂xj

= 0 in Ω ⊂ R
n

u|∂Ω(x) = g(x)











(14)

It is easy to see that (14) is both degenerate elliptic and singular at Du(x) = 0.
Never the less, it was shown that viscosity solutions of (14) exist and also satisfy a
maximum principle. Hence, they are unique. Furthermore, for this problem there
are also counterexamples to the existence of classical solutions. In fact, the best
regularity for this problem appears to be C1,α, but a proof of this remains open.
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