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Minimal Regularity Solutions

of Nonlinear Wave Equations

Hans Lindblad

Abstract.

Inspired by the need to understand the complex systems of non-linear wave
equations which arise in physics, there has recently been much interest in
proving existence and uniqueness for solutions of nonlinear wave equations
with low regularity initial data.

We give counterexamples to local existence with low regularity data for the
typical nonlinear wave equations. In the semi-linear case these are sharp, in
the sense that with slightly more regularity one can prove local existence.

We also present join work with Georgiev and Sogge proving global existence
for a certain class of semi-linear wave equation. This result was a conjec-
ture of Strauss following an initial result of Fritz John. We develop weighted
Strichartz estimates whose proof uses techniques from harmonic analysis tak-
ing into account the symmetries of the wave equation.
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Introduction.

Recently there has been much interest in proving existence and uniqueness of
solutions of nonlinear wave equations with low regularity initial data. One reason
is that many equations from physics can be written as a system of nonlinear wave
equations with a conserved energy norm. If one can prove local existence and
uniqueness assuming only that the energy norm of initial data is bounded then
global existence and uniqueness follow. Therefore it is interesting to find the
minimal amount of regularity of the initial data needed to ensure local existence
for the typical nonlinear wave equations.

We give counterexamples to local existence with low regularity data for the
typical nonlinear wave equations. In the semi-linear case the counterexamples are
sharp, in the sense that with slightly more regularity one can prove local existence.
It is natural to look for existence in Sobolev spaces, since the Sobolev norms are
more or less the only norms that are preserved for a linear wave equation. The
counterexamples involve constructing a solution that develops a singularity along
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a characteristic for all positive times. In the quasi-linear case it also involves con-
trolling the geometry of the characteristic set. The norm is initially bounded but
becomes infinite for all positive times, contradicting the existence of a solution in
the Sobolev space. The counterexamples are half a derivative more regular than
what is predicted by a scaling argument. The scaling argument use the fact that
the equations are invariant under a scaling to obtain a sequence of solutions for
which initial data is bounded in an appropriate Sobolev norm. The counterexam-
ples were not widely expected since for several nonlinear wave equations one does
obtain local existence down to the regularity predicted by scaling.

On the other hand, the classical local existence theorems for nonlinear wave
equations are not sharp in the semi-linear case. These results were proved us-
ing just the energy inequality and Sobolev’s embedding theorem. Recently they
were improved using space-time estimates for Fourier integral operators known as
Strichartz’ estimates, and generalizations of these. There are many recent results in
this field, for example work by Klainerman-Machedon[13-15], Lindblad-Sogge[24],
Grillakis[6] Ponce-Sideris[26] and Tataru. In particular, Klainerman-Machedon
proved that for equations satisfying the ‘null condition’, one can go down to the
regularity predicted by the scaling argument mentioned above. In joint work with
Sogge[24] we prove local existence with minimal regularity for a simple class of
model semi-linear wave equations. There are related results for KdV and nonlinear
Schrödinger equations, for example in work by Bourgain and Kenig-Ponce-Vega.

Whereas the techniques of harmonic analysis were essential in improving the
local existence results, the Strichartz estimates are not the best possible global
estimates since they do not catch the right decay as time tends to infinity if the
initial data has compact support. The classical method introduced by Klainerman
[11,12] to prove global existence for small initial data is to use the energy method
with the vector fields coming from the invariances of the equation. However, this
method requires much regularity of initial data and also the energy method alone
does not give optimal estimates for the solution since it is an estimate for deriva-
tives. We will present joint work with Georgiev and Sogge giving better global
estimates using techniques from harmonic analysis taking into account the invari-
ances or symmetries of the wave equation. We obtain estimates with mixed norms
in the angular and spherical variables, with Sogge[24], and weighted Strichartz’
estimates with Georgiev and Sogge[4]. Using these new estimates we prove that
a certain class of semi-linear wave equations have global existence in all space
dimensions. This was a conjecture by Strauss, following an initial result by John.

1. Counterexamples to local existence.

We study quasi-linear wave equations and ask how regular the initial data must
be to ensure that a local solution exists. We present counterexamples to local
existence for typical model equations. Greater detail of the construction can be
found in Lindblad [20-23]. In the semi-linear case the counter examples are sharp
in the sense that for initial data with slightly more regularity a local solution exists.
This was shown recently in Klainerman-Machedon [13-15], Ponce-Sideris[26] and
Lindblad-Sogge[24] using space time estimates know as Strichartz’ estimates and
refinements of these. However for quasi-linear equations it is still unknown what
the optimal result is; there is a gap between the counterexamples and a recent
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Minimal Regularity Solutions of Nonlinear Wave Equations 41

improvement on the existence result by Tataru[42] and Bahouri-Chemin[1].
Consider the Cauchy problem for a quasi-linear wave equation:

(1.1)
�u = G(u, u′, u′′), (t, x) ∈ ST = [0, T )× R

n,

u(0, x) = f(x), ut(0, x) = g(x),

where G is a smooth function which vanishes to second order at the origin and
is linear in the third variable u′′. (Here � = ∂2

t −∑n
i=1 ∂

2
xi
.) Let Ḣγ denote the

homogeneous Sobolev space with norm ‖f‖Ḣγ = ‖ |Dx|γf‖L2 where |Dx| =
√
−∆x

and set

(1.2) ||u(t, ·)||2γ =

∫

(∣

∣ |Dx|γ−1ut(t, x)
∣

∣

2
+
∣

∣ |Dx|γu(t, x)
∣

∣

2)
dx.

We want to find the smallest possible γ such that

(f, g) ∈ Ḣγ(Rn)× Ḣγ−1(Rn),(1.3)

supp f ∪ supp g ⊂ {x; |x| ≤ 2}(1.4)

implies that we have a local distributional solution of (1.1) for some T > 0, satis-
fying

(1.5) (u, ∂tu) ∈ Cb

(

[0, T ]; Ḣγ(Rn)× Ḣγ−1(Rn)
)

.

To avoid certain peculiarities concerning non-uniqueness we also require that u
is a proper solution:

Definition 1.1. We say that u is a proper solution of (1.1) if it is a distributional
solution and if in addition u is the weak limit of a sequence of smooth solutions
uε to (1.1) with data (φε ∗ f, φε ∗ g), where φε(x) = φ(x/ε)ε−n for some function
φ satisfying φ ∈ C∞

0 ,
∫

φ dx = 1.

Even if one has smooth data and hence a smooth solution there might still be
another distributional solution which satisfies initial data in the space given by
the norm (1.2). In fact, u(t, x) = 2H(t − |x|)/t satisfies �u = u3 in the sense of
distribution theory. If γ < 1/2 then ||u(t, ·)||γ → 0 when t → 0 by homogeneity.
Since u(t, x) = 0 is another solution with the same data it follows that we have
non-uniqueness in the class (1.5) if γ < 1/2. Definition 1.1 picks out the smooth
solution if there is one.

Our main theorem is the following:

Theorem 1.2. Consider the problem in 3 space dimensions, n = 3, with

(1.6)
�u =

(

Dl u
)

Dk−lu, D = (∂x1
− ∂t),

u(0, x) = f(x), ut(0, x) = g(x),

where 0 ≤ l ≤ k − l ≤ 2, l = 0, 1. Let γ = k. Then there are data (f, g) satisfying
(1.3)-(1.4), with ‖f‖Ḣγ + ‖g‖Ḣγ−1 arbitrarily small, such that (1.6) does not have
any proper solution satisfying (1.5) in ST = [0, T )× R

3 for any T > 0.

Remark 1.3. It follows from the proof of the theorem above that the problem is
ill-posed if γ = k. In fact there exists a sequence of data fε, gε ∈ C∞

0 ({x; |x| ≤ 1})
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with ‖fε‖Ḣγ + ‖gε‖Ḣγ−1 → 0 such that if Tε is the largest number such that (1.6)
has a solution uε ∈ C∞([0, Tε)×R

3), we have that either Tε → 0 or else there are
numbers tε → 0 with 0 < tε < Tε such that ‖uε(tε, ·)‖γ → ∞. It also follows from
the proof of the Theorem that either there is no distributional solution satisfying
(1.5) with γ = k or else we have non-uniqueness of solutions in (1.5).

Remark 1.4. By a simple scaling argument one gets a counterexample to well-
posedness, but it has lower regularity than our counterexamples:

(1.7) γ < k +
n− 4

2
.

Indeed, if u is a solution of (1.6) which blows up when t = T then uε(t, x) =
εk−2u(t/ε, x/ε) is a solution of the same equation with lifespan Tε = εT and
‖uε(0, ·)‖γ = εk−2+n/2−γ‖u(0, ·)‖γ → 0 if γ satisfies (1.7). By contrast, our coun-
terexamples are designed to concentrate in one direction, close to a characteristic.
It appears that our construction has a natural generalization to any number of
space dimensions n, with the initial data lying in Ḣγ ,

(1.8) γ < k +
n− 3

4
.

Remark 1.5. In Klainerman-Machedon[13,15] it was proved that for semi-linear
wave equations satisfying the “null condition” one can in fact get local existence
for data having the regularity (1.7) predicted by the scaling argument.

Now, there is a unique way to write (1.6) in the form

(1.9)

3
∑

j,k=0

gjk(u)∂xj
∂xk

u = F (u,Du)

where x0 = t and gjk(u) are symmetric. In the semi-linear case gjk = mjk, where
mjk is given by (1.10). We now define the notion of a domain of dependence.

Definition 1.6. Assume that Ω ⊂ R+ × R
3 is an open set equipped with a

Lorentzian metric gjk ∈ C(Ω) such that inverse gjk satisfies

(1.10)
3

∑

j,k=0

|gjk −mjk| ≤ 1/2, where

{

m00 = 1, mjj = −1, j > 0

mjk = 0, if j 6= k
.

Then Ω is said to be a domain of dependence for the metric gij if for every compact
subset K ⊂ Ω there exists a smooth function φ(x) such that the open set H =
{(t, x); t < φ(x)} satisfies

(1.11) H ⊂ Ω, K ⊂ H
and ∂H is space-like, i.e.

(1.12)
3

∑

j,k=0

gjk(t, x)Nj(x)Nk(x) > 0, if t = φ(x), N(x) =
(

1,−▽xφ(x)
)

.

Since a solution u to (1.6) gives rise to a unique metric g jk we say that Ω is a
domain of dependence for the solution u if it is a domain of dependence for gjk.
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Lemma 1.7. There is an open set Ω ⊂ R+ × R
3 and a solution u ∈ C∞(Ω) of

(1.6) such that Ω is a domain of dependence and writing

(1.13) Ωt = {x; (t, x) ∈ Ω},
we have that ∂Ω0 is smooth,

∫

Ωt

(

(∂x1
− ∂t)

ku(t, x)
)2

dx = ∞, t > 0, and(1.14)

∑

|β|≤k

∫

Ωt

(

∂βu(t, x)
)2

dx < ∞, when t = 0, where(1.15)

β = (β0, ..., β3) and ∂β = ∂β0/∂xβ0

0 · · · ∂β3/∂xβ3

3 . Furthermore in the quasi-linear
case, k − l = 2, the norms ‖Dlu‖L∞(Ω) can be chosen to be arbitrarily small.

Proof of Theorem 1.2. By Lemmas 1.7 we get a solution u in a domain of depen-
dence Ω with initial data u(0, x) ∈ Hk(Ω0) and ut(0, x) ∈ Hk−1(Ω0). We can
extend these to f ∈ Hk(R3) and g ∈ Hk−1(R3), see Stein[36]. If there exist a
proper solution u of (1.6) in ST = [0, T ] × R

3 with these data, it follows from
Definition 1.1 and Lemma 1.8 that u is equal to u in ST ∩ Ω, contradicting (1.5).

Lemma 1.8. Suppose u ∈ C∞(Ω) is a solution to (1.6) where Ω is a domain of
dependence. In the quasi-linear case, k− l = 2, assume also that ‖Dlu‖L∞(Ω) ≤ δ.

Suppose also that uε ∈ C∞(ST ), where ST = [0, T ) × R
3, and uǫ are solutions

of (1.6) with data (fε, gε) where fε → f and gε → g in C∞(K0) for all compact
subsets of K0 of Ω0 = {x; (0, x) ∈ Ω}. Then uε → u in Ω ∩ ST .

It is essential that Ω is a domain of dependence for Lemma 1.8 to be true; one
needs exactly the condition (1.12) in order to be able to use the energy method.

Let us now briefly describe how to construct the solution u and the domain of
dependence Ω in Lemma 1.7. First we find a solution u1(t, x1) for the correspond-
ing equation in one space dimension, (1.16), which develops a certain singularity
along a non time like curve x1 = µ(t), with µ(0) = 0. The initial data (1.17)-(1.18)
has a singularity when x1 = 0 and because of blow-up for the nonlinear equations,
the singularity that develops for t > 0 is stronger than the singularity of data.
Then u(t, x) = u1(t, x1) is a solution of (1.6) in the set {(t, x); x1 > µ(t)}. The
singularity of data is however too strong for the integral in (1.15) over this set to
be finite when t = 0. Therefore we will construct a smaller domain of dependence,
Ω, satisfying (1.20), such that the curve x1 = µ(t), x2 = x3 = 0, still lies on ∂Ω.

One can find rather explicit solution formulas for the one dimensional equations;

(1.16) (∂x1
+∂t)(∂x1

−∂t)u1(t, x1)+(∂x1
−∂t)

lu1(t, x1)(∂x1
−∂t)

k−lu1(t, x1) = 0.

By choosing particular initial data

(1.17)

u1(0, x1) = χ′′(x1), ∂tu1(0, x1) = 0, if k = 0, l = 0,

u1(0, x1) = −χ′(x), ∂tu1(0, x1) = χ′′(x1) + χ′(x1)
2, if k = 1, l = 0,

u1(0, x1) = 0, ∂tu1(0, x1) = −χ(3−k)(x1), if k ≥ 2,

(1.18) where χ(x1) =

∫ x1

0

−ε| log |s/4||α ds, 0 < α < 1/2, ε > 0

we get a solution
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(1.19) u1 ∈ C∞(Ω1), where Ω1 = {(t, x1);µ(t) < x1 < 2− t} ⊂ R+ × R
1

for some function µ(t) with µ(0) = 0, such that Ω1 is a domain of dependence
and such that u1(t, x1) has a singularity along x1 = µ(t). One sees this from
the solution formulas which can be found in Lindblad[22,23]. Essentially what is
happening is that the initial data (1.17)-(1.18) has a singularity when x1 = 0. For
the linear equation, utt − ux1x1

= 0, the singularity would just have propagated
along a characteristic, however the nonlinearity causes the solution to increase
and this strengthens the singularity for t > 0. (This is the same phenomena that
causes blow-up for smooth initial data.)

Define Ω ⊂ R+ × R
3 to be the largest domain of dependence for the metric

obtained from the solution u(t, x) = u1(t, x1) (see (1.9)), such that

(1.20) Ω ⊂ Ω1 × R
2, Ω0 = {x; (0, x) ∈ Ω} = B0 = {x; |x− (1, 0, 0)| < 1}.

(It follows from Definition 1.6 that the union and intersection of a finite number
of domains of dependence is a domain of dependence so indeed a maximal domain
exists.) It follows that u(t, x) = u1(t, x1) is a solution of (1.6) in Ω satisfying (1.17)
in Ω0. The initial data (1.17)-(1.18) was chosen so that (1.15) just is finite if t = 0

Let Ωt be as in (1.13) and

(1.21) St(x1) = {(x2, x3) ∈ R
2; (x1, x2, x3) ∈ Ωt}, at(x1) =

∫

St(x1)

dx2 dx3.

With this notation the integral in (1.14) becomes

(1.22)

∫ 2−t

µ(t)

at(x1)
(

(∂x1
− ∂t)

ku1(t, x1)
)2

dx1.

The proof that this integral is infinite consists of estimating the two factors in the
integrand from below, close to x1 = µ(t).

In the semi-linear case the metric gjk is justmjk so Ω1 is a domain of dependence
if and only if µ′(t) ≥ 1 and it follows that Ω = Ω1×R

2∩Λ, where Λ = {(t, x); |x−
(1, 0, 0)| + t < 1}. Hence for x1 > µ(t); St(x1) = {(x2, x3); (x1 − 1)2 + x2

2 + x2
3 <

(1− t)2} so then at(x1) = π(2− t−x1)(x1− t). Also, the specific solution formulas
are relatively simple. In particular if k − l = l = 1 then its easy to verify that

(1.23) (∂x1
− ∂t)u1(t, x1) =

χ′(x1 − t)

1 + tχ′(x1 − t)
, u1(0, x) = 0

satisfies (1.16)-(1.17) when 1 + tχ′(x1 − t) > 0. Since χ′(0+) = −∞ and χ′′ > 0
it follows that there is a function µ(t), with µ′(t) > 1 and µ(0) = 0, such that
1 + tχ′(x1 − t) = 0, when x1 = µ(t). Hence 1 + tχ′(x1 − t) ≤ C(t)(x1 − µ(t)) so

(1.24)

∫ 1/2

µ(t)

at(x1)
(

(∂x1
− ∂t)u1(t, x1)

)2
dx1 ≥

∫ 1/2

µ(t)

(x1 − t) dx1

C(t)2(x1 − µ(t))2
= ∞.

However, in the quasi-linear case, estimating a t(x1) from below requires a de-
tailed analysis of the characteristic set ∂Ω for the operator (1.25), see Lindblad[23].

(1.25) ∂2
t −

3
∑

i=1

∂2
xi

− V (∂x1
− ∂t)

2, where V = (∂x1
− ∂t)

lu1.
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2. Global Existence

We will present sharp global existence theorems in all dimensions for small-
amplitude wave equations with power-type nonlinearities. For a given “power”
p > 1, we shall consider nonlinear terms Fp satisfying

(2.1)
∣

∣ (∂/∂u)jFp(u)
∣

∣ ≤ Cj |u|p−j , j = 0, 1.

The model case, of course, is Fp(u) = |u|p. If R1+n
+ = R+ × R

n, and if f, g ∈
C∞

0 (Rn) are fixed, we shall consider Cauchy problems of the form

(2.2)

{

�u = Fp(u), (t, x) ∈ R
1+n
+

u(0, x) = εf(x), ∂tu(0, x) = εg(x),

where � = ∂2/∂t2 − ∆x. Our goal is to find, for a given n, the range of powers
for which one always has a global weak solution of (2.2) if ε > 0 is small enough.

In 1979, John [9] showed that for n = 3, (2.2) has global solutions if p > 1+
√
2

and ε > 0 is small. He also showed that when p < 1+
√
2 and Fp(u) = |u|p there is

blow-up for most small initial data, see also [17]. It was shown later by Schaeffer

[28] that there is blowup also for p = 1+
√
2. After Johns work, Strauss made the

conjecture in [38] that when n ≥ 2, global solutions of (2.2) should always exist if
ε is small and p is greater than a critical power p c that satisfy

(2.3) (n− 1)p2c − (n+ 1)pc − 2 = 0, pc > 1.

This conjecture was shortly verified when n = 2 by Glassey [5]. John’s blowup
results were then extended by Sideris [30], showing that for all n there can be
blowup for arbitrarily small data if p < p c. In the other direction, Zhou [43]
showed that when n = 4, in which case pc = 2, there is always global existence for
small data if p > p c. This result was extended to dimensions n ≤ 8 in Lindblad
and Sogge [25]. Here it was also shown that, under the assumption of spherical
symmetry, for arbitrary n ≥ 3 global solutions of (2.2) exist if p > pc and ε is small
enough. For odd spatial dimensions, the last result was obtained independently
by Kubo [16]. The conjecture was finally proved in all dimensions by Georgiev-
Lindblad-Sogge[4]. Here we will present that argument.

We shall prove Strauss conjecture using certain “weighted Strichartz estimates”
for the solution of the linear inhomogeneous wave equation

(2.6)

{

�w(t, x) = F (t, x), (t, x) ∈ R
1+n
+

w(0, · ) = ∂tw(0, · ) = 0.

This idea was initiated by Georgiev [3]. We remark that we only have to consider
powers smaller than the conformal power pconf = (n + 3)/(n − 1) since it was
already known that there is global existence for larger powers. See, e.g., [24].

Let us, however, first recall the inequality for (2.6), that John [9] used;

‖t(t− |x|)p−2w‖L∞(R1+3
+ ) ≤ Cp‖tp(t− |x|)p(p−2)F‖L∞(R1+3

+ ),

if F (t, x) = 0, t− |x| ≤ 1, and 1 +
√
2 < p ≤ 3.

Unfortunately, no such pointwise estimate can hold in higher dimensions due to
the fact that fundamental solutions for � are no longer measures when n ≥ 4.
Despite this, it turns out that certain estimates involving simpler weights which
are invariant under Lorentz rotations (when R = 0 ) hold;
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Theorem 2.1. Suppose that n ≥ 2 and that w solves the linear inhomogeneous
wave equation (2.6) where F (t, x) = 0 if |x| ≥ t+R− 1, R ≥ 0. Then

(2.7) ‖((t+R)2 − |x|2)γ1w‖Lq(R1+n
+ ) ≤ Cq,γ‖((t+R)2 − |x|2)γ2F‖Lq/(q−1)(R1+n

+ ),

provided that 2 ≤ q ≤ 2(n+ 1)/(n− 1) and

(2.8) γ1 < n(1/2− 1/q)− 1/2, and γ2 > 1/q.

One should see (2.7) as a weighted version of Strichartz [39,40] estimate;

(2.9) ‖w‖L2(n+1)/(n−1)(R1+n
+ ) ≤ C‖F‖L2(n+1)/(n+3)(R1+n

+ ).

If one interpolates between this inequality and (2.7), one finds that the latter
holds for a larger range of weights (see also our remarks for the radial case below).
However, for the sake of simplicity, we have only stated the ones that we will use.

Let us now give the simple argument showing how our inequalities imply the
proof of Strauss conjecture. Let u−1 ≡ 0, and for m = 0, 1, 2, 3, . . . let um be
defined recursively by requiring

{

�um = Fp(um−1)

um(0, x) = εf(x), ∂tum(0, x) = εg(x),

where f, g ∈ C∞
0 (Rn) vanishing outside the ball of radius R − 1 centered at the

origin are fixed. Then if pc < p ≤ (n+ 3)/(n− 1), we can find γ satisfying

(2.10) 1/p(p+ 1) < γ < ((n− 1)p− (n+ 1))/2(p+ 1).

Set

(2.11) Am = ‖((t+R)2 − |x|2)γum‖Lp+1(R1+n
+ ).

Because of the support assumptions on the data, domain of dependence con-
siderations imply that um, and hence Fp(um), must vanish if |x| > t + R − 1. It
is also standard that the solution u0 of the free wave equation �u0 = 0 with the
above data satisfies u0 = O(ε(1+ t)−(n−1)/2(1+ |t− |x||)−(n−1)/2). Using this one
finds that A0 = C0ε < ∞. It follows from (2.10) that

(2.12) γ < n(1/2− 1/q)− 1/2, and pγ > 1/q, if q = p+ 1,

so if we apply (2.7) to the equation �(um − u0) = Fp(um−1) we therefore obtain

‖((t+R)2 − |x|2)γum‖Lp+1

≤ ‖((t+R)2 − |x|2)γu0‖Lp+1 + C1‖((t+R)2 − |x|2)pγ |um−1|p‖L(p+1)/p

= ‖((t+R)2 − |x|2)γu0‖Lp+1 + C1‖((t+R)2 − |x|2)γum−1‖pLp+1 ,
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i.e. Am ≤ A0+C1A
p
m−1. From this we can inductively deduce that Am ≤ 2A0, for

all m, if A0 = C0ε is so small that C1(2A0)
p ≤ A0. Similarly, we can get bounds

for differences showing that {um} is a Cauchy sequence in the space associated
with the norm (2.11), so the limit exists and satisfies (2.2).

The proof of Theorem 2.1 uses a decomposition into regions, where the weights
(t2 − |x|2) are essentially constant, together with the invariance of the norms
and the equation under Lorentz transformations. In each case we get the desired
estimate by using analytic interpolation, Stein[35], between an L1 → L∞ and an
L2 → L2 estimate with weights, for the Fourier integral operators associated with
the wave equation. See [4] for the complete proof and further references. In [4]
we also prove a stronger scale invariant weighted Strichartz estimate under the
assumption of radial symmetry. This assumption was later removed by Tataru[41]

Theorem 2.2. Let n be odd and assume that F is spherically symmetric and
supported in the forward light cone {(t, x) ∈ R

1+n : |x| ≤ t}. Then if w solves
(2.6) and if 2 < q ≤ 2(n+ 1)/(n− 1)

(2.13) ‖(t2 − |x|2)−αw‖Lq(R1+n
+ ) ≤ Cγ‖(t2 − |x|2)βF‖Lq/(q−1)(R1+n

+ ),

if β < 1/q, α+ β + γ = 2/q, where γ = (n− 1)(1/2− 1/q).
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