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Abstract. In this paper, we review qualitative properties of solutions
of critical nonlinear Schrödinger and Zakharov equations which develop
a singularity in finite time.
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I. The Problem

We are interested in the formation of singularities in time, in Hamiltonian systems
of infinite dimension, and with infinite speed of propagation. A prototype is the
nonlinear Schrödinger equation

{

iut = −∆u− |u|p−1u,
u(0) = u0,

(1)

for (x, t) ∈ RN × [0, T ) and u=0 at infinity. This equation appears in various
situations in physics (plasma physics, nonlinear optics,. . .see [20] for example).
Because of its importance in physics, we are interested in the case where p− 1 =
4/N and N = 2. We will consider

iut = −∆u− |u|
4
N u. (2)

Equation (1) has Galilean, scaling, and translation invariances. In the case
p = 4

N + 1, the nonlinear equation has the same structure as the linear equation:
it has one more invariance (the conformal invariance): if u(t) is a solution of

(2) then v(t) = 1
tN/2 e

+i
|x|2

4t u
(

1
t ,

x
t

)

is also a solution of (2). Thus, there are
three invariants of the motion in this case: the mass |u|L2 , the energy E(u) =
1
2

∫

RN |∇u|2dx− 1
4
N +2

∫

RN |u|
4
N +2dx, and the energy of v, E(v).

A more refined physical model is also considered: the Zakharov equation
(nonlinear Schrödinger equation coupled with the wave equation). Because of the
coupling, all invariances disappear. The system is







iut = −∆u+ nu,
nt = −∇ · v,

1
c20
vt = −∇(n+ |u|2),

(3)

Documenta Mathematica · Extra Volume ICM 1998 · III · 57–66



58 Frank Merle

where (x, t) ∈ R2 × [0, T ).

We note formally that if c0 = +∞, system (3) reduces to equation (2) in dimension
two. There are two invariants: |u|L2 , and H(u, n, v) =

∫

|∇u|2dx +
∫

n|u|2dx +
1
2

∫

n2dx+ 1
2c02

∫

|v|2dx .

The first natural question concerns the local wellposedness of the equations
in time. The natural spaces for this equation are spaces where the conserved
quantities are defined. For the Schrödinger equation, H1 local wellposedness has
been proved in [10], [11], [14]. The use of Strichartz estimates (of space-time
nature, where the role of space and time are similar) leads to the result in L2 in
[8] (L2 is optimal in some sense, see [2]). This space will play a crucial role in the
analysis below. See [4],[5] in the periodic case.

For the system (3), the coupling between the two equations creates several diffi-
culties. In energy space, that is (u, n, nt) ∈ H1=H

1×L2×L2, the local wellposed-
ness was proved in [3],[9]. The problem to be solved in the analogue of L2 for the
Schrödinger equation is still open (an intermediate space was found in [9]).

The problem we are interested in concerns the description of solutions of
equations (2),(3) which develop a singularity in finite time (or blow up in finite
time). That is, solutions such that in the time dynamics, the nonlinear terms play
an important role. This question is important from the physical point of view.
Indeed, equations (2) or (3) appear as simplifications of more complex models. In
particular, one hopes that the simplification is relevant for regular solutions, and
that close to the singularity, the neglected terms will play a role . Blow up in
finite time means that the regular regime where the approximation is carried out
is unstable in time, and close to singularity, a transitory regime appears. From
the description of this transitory regime, one can hope to find the new dynamics
relevant from the physical point of view. In particular, a crucial question, after
the existence of singularity in finite time, is to describe how this singulary forms.

For equation (2), there are two elementary results about existence of blow-up
solutions.

On one hand, in 1972 Zakharov derived in [33] (see also [13],[28]) a Pohozaev type
identity for the nonlinear Schrödinger equation: let u0 ∈ Σ where Σ = H1 ∩
{xu0 ∈ L2}; then for all t, u(t) ∈ Σ and

d2

dt2

∫

|x|2|u|2dx = 16E(u0). (4)

It follows that if E(u0) < 0 then u(t) blows up in finite time. Note that the power
appearing in (2) is the smallest power such that blow-up occurs in H1.

On the other hand, the elliptic theory established in the 80’s ([1],[31],[17], [30])
yields the existence of one explicit solution of (2), periodic in time and of the form
P (t, x) = eitQ(x), where Q is the unique positive solution (up to translation) of
the equation

u = ∆u+ |u|
4
N u, (5)

whose L2 norm is characterized by the Gagliardo-Niremberg inequality
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∀v ∈ H1,
1

4
N + 2

∫

|v|
4
N +2dx ≤

1

2

∫

|∇v|2dx

(
∫

|v|2dx
∫

Q2dx

)

2
N

. (6)

From the conformal invariance, we have that

S(t, x) =
1

tN/2
e−

i
t+i

|x|2

4t Q
(x

t

)

(7)

is a blow-up solution of equation (2). This is in some sense the only explicit
blow-up solution for the critical Schrödinger equation.

Until the 90’s, no rigorous results on blow-up were known for the Zakharov
equation.

II. Results for Nonlinear Critical Schrödinger Equations.

II.1 Characterization of the minimal blow-up solution.
The first task is to define a notion of smallness such that u0 small implies no

blow-up. In the case u0 ∈ H1, energy conservation and (6) yield that if |u0|L2 <
|Q|L2 , the solution is globally defined. Moreover, we note that the blow-up solution
S(t) is such that |S(t)|L2 = |Q|L2 . The natural question is to characterize all
minimal blow-up solutions in L2 of equation (2).

a) The result.
We have the following theorem

Theorem 1 ([25]),([26])
Let u0 ∈ H1. Assume that |u(t)|L2 = |Q|L2 and that u(t) blows up in finite

time. Then, up to invariance of equation (2),

u(t) = S(t). (8)

That is, there are x0 ∈ RN , x1 ∈ RN ,T ∈ R, θ ∈ R, and ω ∈ R+ such that

u(t) = ei(−
ω2

t−T +
|x−x0|2

4(t−T )
)

(

ω

t− T

)
N
2

Q

(

(x− x0)ω

t− T
− x1

)

. (9)

Let us give some idea of the proof. Various arguments in the proof will apply in
other contexts, giving qualitative information about blow-up solutions. Consider
a blow-up solution of minimal mass u(t), and denote by T its blow-up time.

- Localization results on the singularity. Using rough variational estimates,

we show that there exist ρ̃, θ̃, x̃ such that as t → T, u(t) ∼ eiθ̃ρ̃
N
2 Q((x− x̃)ρ̃)

in H1. Then from refined geometrical estimates around Q, there are ρ(t), θ(t),

x(t) such that u(t)− eiθ(t)ρ(t)
N
2 Q((x− x(t))ρ(t)) is bounded in H1. In particular,

|u(t, x + x(t))|2 ⇀ |Q|2L2δx=0 as t → T. In the radial case, a different approach
can be used to show that for all radial blow-up solutions the behavior outside the
origin is mild.

- Local virial identities. Using time variation of
∫

ψ(x)|u(t, x)|
2
dx, where ψ

is a localized function, we then show that u(t) and u0 decay at infinity. That is,
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u(t) ∈ Σ and |x||u(t, x)| can be controlled in L2 at infinity, uniformly in time.
Moreover, it is shown that the singularity point x(t) has a limit as t→ T (for
example the origin).

- Conclusion using the minimality condition. Let us consider the polynomial
in time of degree two p(t) =

∫

|x|
2
|u(t, x)|

2
dx. From the previous steps, p(T ) = 0.

Using the minimality condition, we show that p′(T ) = 0. By explicit calculation,
we check that the energy of a transformation of the initial data u0 is zero with
an L2 norm equal to |Q|L2 , which is the variational characterization of Q up to
invariance of the elliptic equation. This concludes the proof.

b) Application to asymptotic behavior for globally defined solutions [26].
The conformal invariance and the nonblow-up result of Theorem 1 yield a

decay result in time for solutions defined for all time. Indeed, the nonlinear term
can be seen as a perturbation localized in time for the linear Cauchy problem, for
initial data such that u0 ∈ Σ and |u0|L2 ≤ |Q|L2 , except for the two solutions P (t)
and S(t) (and the ones related via the invariances). More precisely, as t → +∞,
the nonlinear solution behaves as a solution of the linear Schrödinger equation
(scattering theory can be carried out: u(t, x) ∼ U(t)u∞ as t → +∞, where U(t)
is the free semigroup).

Note that the set of initial data such that this behavior occurs is open, which
implies the following: for all u0 different from P (t) and S(t) such that |u0|L2 =
|Q|L2 , there is a ball in L2 such that if the initial data is inside the ball, the
solution does not blow up. It is optimal since the virial identity yields that for all
ǫ > 0, if u0 = (1 + ǫ)S(−1) or (1 + ǫ)P (−1) then the solution blows up in finite
time.
II.2 Qualitative properties of blow-up solutions
a) Concentration results in L2.
In this subsection, we show that the blow-up phenomena may be observed in L2

and do not depend on the space where the Cauchy theory is applied. Let us assume
first that u0 ∈ H1, then from [22], [12], we have

- Concentration in L2: there are x(t) and ρ(t) → +∞ such that

lim inf |u(t)|L2(|x−x(t)|≤ρ(t)−1) ≥ |Q|L2 . (10)

- asymptotic compactness in L2: for any sequence tn → T there is a subse-
quence tn and an H ∈ H1 with |H|L2 ≥ |Q|L2 such that in H1 − weak

ρ
N
2
n u(tn, (x− xn)ρn)⇀ H. (11)

We do not know if H or |H|L2 depends on the sequence (except for some partial
results in the radial case).

Let us now assume that u0 ∈ L2, and N = 1, 2; energy arguments no longer
apply in this case. Nevertheless, in [6], [27], refinement of Strichartz’ Inequality
(implying that the Cauchy problem can be solved in X ⊃ L2), harmonic analysis
techniques, and the use of the conformal invariance allow us to obtain concentra-
tion in L2 and asymptotic compactness properties in L2 up to the invariance of
the equation. That is, there is an α0 > 0 such that for a subsequence tn and an
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H ∈ L2 with |H|L2 ≥ α0, there are parameters an, bn, xn, ρn, where ρn → +∞,
such that in L2 − weak

eianx+ibn|x|
2

ρ
N
2
n u(tn, (x− xn)ρn)⇀ H. (12)

Note, from the invariance of the equation, the solution with initial data
eiax+ib|x|2c

N
2 H((x− d)c) can be written in terms of the solution with initial data

H .
It is an open problem to prove α0 = |Q|L2 .

b) Construction of blow-up solutions from S(t).
Here we describe constructions of solutions which behave like S(t) at the blow-

up point. Another problem will be to construct if possible other types of blow-up
solutions (with for example a different blow-up rate, see [18],[19]). Let x1, . . . , xn
be given points ofRN . In [21], a blow-up solution is constructed such that the blow-

up set is exactly the points x1, . . . , xn and as t→T, u(t) ∼ Σωi
N
2 S(t, (x − xi)ωi)

in L2, where the ωi are sufficiently large.
In the case N = 2, for u∗ very regular such that ∂αu∗(0) = 0 for |α| ≤ α0, in

[7] the existence of a solution u(t) is proved such that u(t) ∼ S(t, x) + u∗(x) in L2

at the blow-up. An open problem is to reduce α0 to 1 or 2.
c) Giving a sense to the equation after blow-up. [26]
We are interested in giving a sense to the equation after the blow-up time.

We consider the case of a minimal blow-up solution, that is, after renormalization
u(t) = S(t, x) for t < 0.
Let ǫ > 0, and set

uǫ(t, x) = (1− ǫ)S(−1, x) +O(ǫ2) in Σ.

We have that |uǫ|L2 < |Q|L2 , thus uǫ(t) is defined for all time. The question is
what happens in the limit as ǫ → 0 after the blow-up time (for t > 0). Using
the characterization of the minimal blow-up solution and a family of auxiliary
variational problems in Σ, we have the following result:

Theorem 2 ([26]) There is a θ(ǫ) ∈ R continuous in ǫ such that

uǫ(t) → S(t) in H1 for t < 0
|uǫ(0)|

2 ⇀ |Q|2L2δx=0

e−iθ(ǫ)uǫ(t) → S(t) in H1 for t > 0.

We then prove that as ǫ→ 0, the omega-limit set of eiθ(ǫ) is S1. From this result,
the omega limit set of uǫ is {uθ | θ ∈ S1}, where

uθ(t) = S(t) for t < 0 and uθ(t) = eiθS(t) for t > 0.

In particular, we first show that the singularity is unstable in time.
In addition, from the blow-up, the physical phenomenon loses its deterministic
character (but just up to one parameter in S1). In addition, this result seems
in some sense independent of the approximation. Therefore, the physics (which
is not understood close to the singularity) has in some sense no influence on the
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behavior of the solution after the blow-up, at least in the case of the minimal
blow-up solution.

III. Results for the Zakharov System.

III.1 No blow-up under smallness conditions
As in the case of the critical Schrödinger equation, for initial data
(u0, n0, v0) in H1, if |u0|L2 < |Q|L2 , then there is no blow-up. Moerover for
any blow-up solution, as t goes to the blow-up time, u(t) concentrates in L2 to a
magnitude of at least |Q|L2 (see (11)).

At the critical mass level, |u0|L2 = |Q|L2 , there is still a periodic solution
(and the family it generates) given by

P̃ (t) = (u(t), n(t), v(t)) = (P (t),−Q2, 0). (13)

Using the coupling between the equations, one can prove ([12]) that there are no
blow-up solutions of (3) such that

|u0|L2 = |Q|L2 . (14)

III.2 Existence of a family of explicit blow-up solutions ([12]).
In fact the family of blow-up solutions of type S, for ω > 0

Sω(t, x) = ω
N
2 S(tω2, xω) (15)

does not disappear. From bifurcation type arguments at ω = +∞ and index
theory, we construct an explicit family of blow-up solutions of equation (3) of
structure similar to that of S(t) (where n and |u|2 are of the same order): for all
ω > 0,

(uω(t, x), nω(t, x)) =

(

(
ω

t
)e−

iω2

t +i
|x|2

4t Pω(
xω

t
),
ω2

t2
Nω(

xω

t
)

)

, (16)

where (Pω, Nω) are radial solutions of the following equation, where r = |x|

{

P +NP = ∆P,
1

c02ω2 (r
2 ∂2N

∂r2 + 6r ∂N∂r + 6N)−∆N = ∆P 2.
(17)

Note that when ω = +∞ (17) reduces to (5). It is then proved that {|Pω|L2} =
(|Q|L2 ,+∞) , which has several consequences:

- There are no minimal blow-up solutions in L2 for the Zakharov equation.
Indeed, for all ǫ > 0, there is a blow-up solution such that |u0|L2 = |Q|L2 + ǫ and
there are no blow-up solutions such that |u0|L2 ≤ |Q|L2 . The situation is different
from the Schrödinger equation.

- Any c > |Q|L2 can be a concentration mass: there is a blow-up solution such
that at the blow-up, |u(t, x)|2 ⇀ cδx=0.

- Using these explicit solutions as ω becomes large, we are able to prove that
the periodic solution P̃ (t) is unstable in the following sense: in all neighborhoods
of it, there is a blow-up solution.
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III.3 Existence of a large class of blow-up solutions [24].
As for the critical Schrödinger equation, a natural question to ask is, For

Hamiltonians H0 < 0, does the solution blow-up? (which will produce a large
class of blow-up solutions). No Pohozaev identity was known until recently. In
[24], the following identity was derived

d2

dt2
M(t) = 2H(u0, n0, v0) +

1

c02

∫

|v|2dx, (18)

where

M(t) =
1

4

∫

|x|2|u|2dx+
1

c02

∫

R2×[0,t]

n(x.v)dxdt. (19)

Note that if c0 = +∞ then relation (19) reduces to (4). The nature of the ob-
struction to global existence is slightly different from that in equation (2). Indeed,
in [23], it is shown that for any blow-up solution, M(t) → −∞ as t goes to the
blow-up time. Nevertheless, by localization techniques, it is proved in the radial
case that if H0 < 0, then the solution blows up in finite time or infinite time (and
is concentrated in L2 at the blow-up).

As a corollary, all periodic solutions of type (u, n) = (eitW (x),−W 2) where
W is a solution of (5) are unstable since H(eitW (x),−W 2, 0) = 0.

III.4 Toward the structural stability of S [23].
Let us measure the blow-up rate by the H1 norm |∇u(t)|L2 . An important

problem is to understand the type of rates at the blow-up time and their stability.
For equation (2), the blow-up of S (that is of the minimal blow-up solution) is 1

|t| .

We expect that minimality is related to stability. It seems not to be the case; in

[18], [19] a blow-up rate of the type |Log|log|t|||
1
2

|t|
1
2

is observed numerically.

Nevertheless, we show the following result for the Zakharov equation (relating
minimality to structural stability). Consider any blow-up solution of (3) (with any
finite c0), then

|∇u(t)|L2 ≥
c

|t|
. (20)

We note that this lower bound is optimal since the solution (uω, nω) blows
up with this rate. Therefore, if we consider the refined equation from the physical

point of view, the solution with blow-up rate |Log|log|t|||
1
2

|t|
1
2

disappears (even if c0 is

very large).
In [29], the same blow-up rate that was observed for S is seen, and seems nu-
merically stable. It is an open problem to prove that all blow-up solutions of the
Zakharov equation blow up with the same rate as S (the upper bound remains to
be proved).
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