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0. Introduction

Inverse boundary problems are a class of problems in which one seeks to deter-
mine the internal properties of a medium by performing measurements along the
boundary of the medium. These inverse problems arise in many important physi-
cal situations, ranging from geophysics to medical imaging to the non-destructive
evaluation of materials.

The appropriate mathematical model of the physical situation is usually given
by a partial differential equation (or a system of such equations) inside the medium.
The boundary measurements are then encoded in a certain boundary map. The
inverse boundary problem is to determine the coefficients of the partial differential
equation inside the medium from knowledge of the boundary map.

In this paper we will survey part of the significant progress which has been
made in the last twenty years in this area. Many of the advances have been a
consequence of the construction of complex geometrical optics solutions for the
class of partial differential equations under consideration. The prototypical ex-
ample of an inverse boundary problem is the inverse conductivity problem, also
called electrical impedance tomography, first proposed by A. P. Calderón [7]. In
this case the boundary map is the voltage to current map; that is, the map assigns
to a voltage potential on the boundary of a medium the corresponding induced
current flux at the boundary of the medium. The inverse problem is to recover
the electrical conductivity of the medium from the boundary map.
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We will also discuss in this paper other examples of inverse boundary prob-
lems, including examples associated to the Schrödinger equation in the presence
of a magnetic field, Maxwell’s equations and the Lamé system of elasticity. The
unifying theme of the paper is the role of complex geometrical optics solutions in
inverse boundary value problems and our selection of problems reflects this choice.
We list a series of basic open problems in the field. For an account of the close con-
nection between inverse boundary value problems and inverse scattering problems
at a fixed energy see [40]. Another important omission is the discussion of inverse
boundary value problems for hyperbolic equations, in particular the Boundary
Control Method. See the review paper [4] for more details.

1. The inverse conductivity problem for an isotropic conductivity

Let Ω ⊆ R
n be a bounded domain with smooth boundary (many of the results are

valid for Lipschitz boundaries). We denote by γ the conductivity of Ω, which we
assume is in L∞(Ω) and strictly positive. The potential u in Ω with voltage f on
∂Ω satisfies

(1.1) Lγu = div(γ∇u) = 0 in Ω; u|∂Ω = f.

The voltage to current map, or Dirichlet to Neumann map (DN), is defined by

(1.2) Λγ(f) =

(
γ
∂u

∂ν

)∣∣∣∣
∂Ω

,

where u is the solution of (1.1), and ν denotes the unit outer normal to ∂Ω.
The inverse problem is to determine γ knowing Λγ . More precisely we want to

study properties of the map

(1.3) γ
Λ−−−−−→Λγ .

Note that Λγ : H
1

2 (∂Ω) → H− 1

2 (∂Ω) is bounded. We can divide this problem
into several parts.
a) Injectivity of Λ (identifiability).
b) Continuity of Λ and its inverse if it exists (stability).
c) What is the range of Λ? (characterization problem).
d) Formula to recover γ from Λγ (reconstruction).
e) Give a numerical algorithm to find an approximation. of the conductivity given

a finite number of voltage and current measurements at the boundary (numer-
ical reconstruction).
In this section we outline the proof of the following identifiability result proven

in [36].

1.1 Theorem. Let n ≥ 3. Let γ1, γ2 ∈ C2(Ω) be strictly positive functions in Ω̄
such that Λγ1

= Λγ2
. Then γ1 = γ2 in Ω̄.

Sketch of the proof. Using Green’s thorem it is easy to prove that

(1.4) Qγ(f) :=

∫

Ω

γ|∇u|2dx =

∫

∂Ω

Λγ(f)fdS,
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where u is the solution of (1.1). In other words Qγ(f) is the quadratic form
associated to the selfadjoint linear map Λγ(f), i.e., to know Λγ(f) or Qγ(f) for

all f ∈ H
1

2 (∂Ω) is equivalent. Qγ(f) measures the energy needed to maintain the
potential f at the boundary.

Formula (1.4) suggests that instead of prescribing voltage measurements at the
boundary to determine the conductivity in the interior, we find solutions of the
equation (1.1). This is the point of view of Calderón [7] in his analysis of the
linearized problem at a constant conductivity.

To find these solutions we first reduce the problem to studying the Schrödinger
equation at zero energy. Let γ ∈ C2(Ω) be a positive function. We have

(1.5) γ−
1

2Lγγ
− 1

2u = (∆− q)u, q =
∆
√
γ

√
γ
.

For any q ∈ L∞(Ω) we can define the set of Cauchy data

Cq = {(f, g); f = u|Ω, g =
∂u

∂ν
|Ω, u ∈ H1(Ω) solution of (1.1)}

If 0 is not a Dirichlet eigenvalue of ∆− q then Cq is the graph of a map which is,
by definition, the DN map. Theorem 1.1 follows from Theorem 1.2 and the fact
that Λγ determines both γ at the boundary and the normal derivative of γ at the
boundary (see [15], [37]).

1.2 Theorem. Assume qi ∈ L∞(Ω), i = 1, 2 and Cq1 = Cq2 . Then q1 = q2.

Sketch of the proof of Theorem 1.2. The key result is the construction of complex
geometrical optics solutions to the Schrödinger equation. This was motivated by
Calderón’s analysis of the linearized problem at a constant conductivity [7].

1.1 Lemma. Let q ∈ L∞(Rn) with compact support. Let ρ ∈ C
n with ρ · ρ = 0.

Let −1 < δ < 0. Then if |ρ| ≥ C(δ)supx∈Rn |(1 + |x|2)q(x)| for some C(δ) > 0,
there exists a unique solution of (∆− q)u = 0 in R

n of the form

(1.6) u = ex·ρ(1 + ψq(x, ρ))

with ψq(·, ρ) ∈ L2
δ(R

n). Moreover ‖ψq(·, ρ)‖L2

δ
(Rn) goes to 0 as |ρ| goes to infinity.

A more precise estimate is proven in [36]. (Here L2
δ(R

n) denotes the weighted L2

space with norm ‖f‖2
L2

δ
(Rn)

=
∫
(1 + |x|2)δ|f(x)|2dx.)

Let qi ∈ L∞(Ω) as in the statement of Theorem (1.2). We define qi = 0 in
R

n−Ω. Let ρi, i = 1, 2 as in Lemma (1.1) with ρ1 = η+i(k+l), ρ2 = −η+i(k−l)
with η, k, l ∈ R

n satisfying 〈η, k〉 = 〈k, l〉 = 〈η, l〉 = 0, |η|2 = |k|2 + |l|2 and
|l| ≥ Ri, with Ri sufficiently large so that Lemma 1.1 is valid for qi, i = 1, 2 (here
we use n ≥ 3). We take

(1.7) ui = ex·ρi(1 + ψqi(x, ρi)), i = 1, 2.

The next important ingredient is the following identity which follows easily from
Green’s theorem.
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1.2 Lemma. Let qi ∈ L∞(Ω) , i = 1, 2 and Cq1 = Cq2 . Then

(1.8)

∫

Ω

(q1 − q2)u1u2 = 0

for every solution ui ∈ H1(Ω) of (∆− qi)ui = 0 in R
n.

Now we plug (1.7) into (1.8). Taking the limit as |l| → ∞, we easily conclude that
the Fourier transform of q1 and q2 coincide.

In order to construct ψq as in (1.6) we solve the equation

(1.9) ∆ρψq = q(1 + ψq) with ∆ρf = e−x·ρ∆(ex·ρf).

We note that the characteristic variety of ∆ρ is a codimension two real submani-
fold. We can construct an inverse ∆ρ that satisfies the following estimate proven
for n ≥ 3 in [36] and for n = 2 in [35].

(1.10) ‖∆−1
ρ ‖δ+1,δ ≤ C

|ρ|

with −1 < δ < 0, C is a positive constant, and ‖ ‖δ+1,δ denotes the operator norm.
Using the complex geometrical optics solutions of Lemma 1.1 Alessandrini

proved stability estimates for the map (1.3). A reconstruction method using these
solutions was proposed in [19], [25]. We remark that the construction of the solu-
tions (1.6) is in the whole of Rn. Complex geometrical solutions in compact sets
have been constructed in [8], [10].

Theorem 1.1 extends to non-linear conductivities [29]. Theorem 1.2 extends
to the non-linear Schrödinger equation under some additional assumptions on the
potential [14]. These results use a linearization procedure due to Isakov [11].

Maxwell’s equations.

One obtains the conductivity equation (1.1) if one neglects the time variation of
the electromagnetic field in Maxwell’s equations. We now describe the boundary
map in this case.

Let Ω ⊆ R
3 be a bounded domain with smooth boundary. The electromagnetic

field (E,H) satisfies the frequency domain Maxwell’s equation which are given by

(1.11) rotE = iωµH, rotH = (−iωε+ σ)E in Ω

where ω > 0 is the time-harmonic frequency of the field, ε > 0 denotes the electrical
permittivity, µ > 0 the magnetic permeability, and σ ≥ 0 the conductivity. We
assume that all the functions are smooth. The boundary map is given by

Λε,µ,σ(ω) : ν ∧ E|∂Ω → ν ∧H|∂Ω

where E,H satisfies (1.11). A global identifiability result was proven in this case in
[26]. The proof was simplified in [27], where the problem is reduced to constructing
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geometrical optics solutions for a Schrödinger equation with q an 8 × 8 matrix.
Lemma 1.1 applies also in this case.

Open problem 1. How much smoothness should one assume on the conductivity
for Theorem 1.1 to be valid? R. Brown extended Theorem 1.1 to conductivities in
C

3

2
+ǫ(Ω), with ǫ any positive number. The natural conjecture is that the theorem

holds for Lipschitz conductivities since unique continuation is valid in this case.
There are no known counterexamples for rough conductivites. Kohn and Vogelius
proved identifiability for piecewise real-analytic conductivities [16]. In [12] the case
of a conductivity having a jump discontinuity across the boundary of a subdomain
is considered.
Open problem 2. Is Theorem 1.1 valid if we measure the DN map only on part
of the boundary?
Open problem 3. Is it possible to characterize the boundary values of the com-
plex geometrical optics solutions (1.6)? This might have implications in the char-
acterization and reconstruction problem.
Open problem 4. Is it possible to develop the reconstruction method based on
the complex geometrical optics solutions into a convergent numerical algorithm?
Open problem 5. (The anisotropic case.) Conductivities may depend also on
direction. Muscle tissue in the human body is an example. In this case the conduc-
tivity is represented by a positive definite matrix. It seems like a difficult problem
to find complex geometric optics solutions in the anisotropic case. Moreover, it
is not true that the DN map in this case determines uniquely the conductivity.
See [38] for a discussion of the obstruction to identifiability in this case. The
case of real analytic conductivities was considered in [17]. The case of quasilinear
real-analytic anisotropic conductivities is discussed in [31]. For further results see
[38].

2. The two dimensional case

Nachman proved in [20] that, in the two dimensional case, one can uniquely
determine conductivities in W 2,p(Ω) for some p > 1 from Λγ . An essential part
of Nachman’s argument is the construction of the complex geometrical optics so-
lutions (1.6) for all complex frequencies ρ ∈ C

2, ρ · ρ = 0, for potentials of the
form (1.5). Then he applies the ∂-method in inverse scattering, pioneered in one
dimension by Beals and Coifman [2] and extended to higher dimensions by sev-
eral authors (see [25] for further discussions and applications of the ∂ method).
The analog of Theorem 1.2 is open, in two dimensions, for a general potential
q ∈ L∞(Ω). We outline a different approach to [20] that allows less regular con-
ductivities.

The inverse conductivity problem.

We describe here an extension of Nachman’s result to W 1,p(Ω), p > 2, conduc-
tivities by Brown and the author [6]. We follow an earlier approach of Beals and
Coifman [3], who studied scattering for a first order system whose principal part

is

(
∂ 0
0 ∂

)
.
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2.1 Theorem. Let n = 2. Let γ ∈ W 1,p(Ω), p > 2, γ strictly positive. Assume
Λγ1

= Λγ2
. Then γ1 = γ2 in Ω.

We first reduce the conductivity equation to a first order system. We define the
scalar potential q and matrix potential Q by

(2.1) q = −1

2
∂ log γ, Q =

(
0 q

q 0

)
.

We let D be the operator

(2.2) D =

(
∂ 0
0 ∂

)
.

An easy calculation shows that if u satisfies the conductivity equation div(γ∇u) =
0, then

(2.3) D

(
v

w

)
−Q

(
v

w

)
= 0 with

(
v

w

)
= γ

1

2

(
∂u

∂u

)
.

In [6] matrix solutions of (2.3) are constructed which have the form

(2.4) uk = m(z, k)

(
eizk 0
0 e−izk

)
,

where z = x1 + ix2, k ∈ C, with m → 1 as |z| → ∞ in a sense to be described
below. To construct m we solve the integral equation

(2.5) m−D−1
k Qm = 1

where, for a matrix-valued function A,

DkA = E−1
k DEkA; EkA = Ad + Λ−1

k Aoff; Λk(z) =

(
ei(zk+zk) 0

0 e−i(zk+zk)

)
.

Here Ad denotes the diagonal part of A and Aoff the antidiagonal part.
The next result gives the solvability of (2.5) in an appropriate space.

2.1 Lemma. Let Q ∈ Lp(R2), p > 2, and compactly supported. Assume that Q is a
hermitian matrix. Choose r so that 1

p
+ 1

r
> 1

2 and then β so that βr > 2. Then the

operator (I − D−1
k Q) is invertible in Lr

−β. Moreover the inverse is differentiable
in k in the strong operator topology. Here Lr

β denotes a weighted Lr space.

Lemma 2.1 implies the existence of solutions of the form (2.4) with m − 1 ∈
Lr
−β(R

2) with β, r as in Lemma 2.1. The next step, following the ∂ method,

consists in relating ∂

∂k
m(z, k) and scattering data that in turn is determined from

the DN map. For more details see [6].
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Problem 5 has been solved in the anisotropic case in two dimensions for suf-
ficiently smooth conductivities. By using isothermal coordinates, one can reduce
the anisotropic case to the isotropic case, and therefore construct complex geo-
metrical optics solutions in this case (see [34].) The case of quasilinear anisotropic
conductivities is considered in [31].

Open problem 6: The potential case. Problems 1-4 are also open for the
inverse conductivity problem in two dimensions. As we mentioned at the beginning
of this section, the analog of Theorem 1.2 is unknown at present for a general
potential q ∈ L∞(Ω). By Nachman’s result it is true for potentials of the form q =
∆u
u

with u ∈ W 2,p(Ω), u > 0 for some p, p > 1. Sun and Uhlmann proved generic
uniqueness for pairs of potentials in [32]. The semilinear case, under additional
assumptions on the potential, was considered in [13]. In [33] it is shown that one
can determine the singularities of an L∞ potential from its Cauchy data.

3. First order perturbations of the Laplacian

There are several inverse boundary value problems associated to first order per-
turbations of the Laplacian. We consider briefly here an inverse boundary value
problem associated to the Lamé system in elasticity theory.

We first discuss how to construct complex geometrical optics solutions for any
scalar first order perturbation of the Laplacian.

Let LN = ∆ + N(x,D) with N(x,D) a first order differential operator in R
n

with smooth coefficients with compact support. We attempt to construct solutions
uρ of LNuρ = 0 of the form uρ = ex·ρmρ. The equation for m(x, ρ) is Mρmρ :=
(∆ρ +Nρ)mρ = 0 where Nρf = e−x·ρN(ex·ρf) and ∆ρ as in (1.9).

The difficulty in findingmρ is that the operator ∆
−1
ρ Nρ contain terms that don’t

decay in |ρ| in any reasonable norm. We get around this difficulty by conjugating
the operator ∆ρ + Nρ to an operator that behaves like a zeroeth order pertur-
bation of ∆ρ. This idea is motivated by formula (1.5). To do this we consider
pseudodifferential operators depending on a complex parameter [28]. For these
operators the variable ρ behaves like the variable ξ. More precisely, we define
Z = {ρ ∈ C

n − 0; ρ · ρ = 0} and A ∈ Lm(Rn, Z) if we can write

Af(x) =

∫
ei〈x,ξ〉aρ(x, ξ)f̂(ξ)dξ, f ∈ C∞

0 (Rn), where aρ ∈ Sm(Rn, Z), i.e.

.

sup
x∈K

|∂αx ∂βξ aρ(x, ξ)| ≤ Cα,β,K(1 + |ξ|+ |ρ|)m−|β|, ∀K ⊂⊂ R
n.

.

We have that ∆ρ ∈ L2(Rn, Z), Nρ ∈ L1(Rn, Z). The key result proved in [21] is
that one can conjugate ∆ρ +Nρ to ∆ρ + Cρ, with Cρ ∈ L0(Rn, Z).

3.1 Lemma. Let K ⊂⊂ R
n be a compact subset. LetMρ(x,D) be as defined above.

Then there exist Aρ, Bρ ∈ L0(Rn, Z) such that

(3.1) MρAρ = Bρ (∆ρ + Cρ) ,
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where Cρ ∈ L0(Rn, Z). Moreover φAρφ and φBρφ are invertible on L2(K) for
large |ρ| for all φ ∈ C∞

0 (Rn) with φ = 1 on K.

Now it is easy to construct many solutions lρ of (∆ρ+Cρ)lρ = 0 in any compact
set since the operator φCρφ is bounded on L2(Rn), with operator norm indepen-
dent of |ρ| being a pseudodifferential operator of order zero depending on the
parameter ρ (see [28] for more details on thiese operators.) Therefore, by the in-
tertwining property (3.1), mρ = Aρlρ is a solution of Mρmρ = 0. The construction
of Aρ, Bρ is quite explicit.

In the paper [23], building on early work of Sun [30], these complex geometrical
optics solutions were used to prove a global identifiability result for an inverse
boundary value problem associated to the Schrödinger equation in the presence
of smooth magnetic potential and electric potential. C. Tolmasky reduced the
regularity needed in [39] to just one derivative for the magnetic potential, and a
bounded electric potential, by using non-smooth symbols depending on the com-
plex parameter ρ. The paper [18] also uses these solutions to prove a global iden-
tifiability result for Maxwell’s equations in chiral media by reducing this case to a
first order system perturbation of the Laplacian.

An inverse boundary value problem for the elasticity system.

An inverse boundary value problem arising in the mechanics of materials is
to determine the elastic parameters of a medium by making displacement and
traction measurements at the boundary of the medium. We describe briefly below
the boundary map in this case.

Let Ω ⊆ R
n be a bounded open set with smooth boundary. We consider Ω

as an elastic, isotropic, inhomogeneous medium with Lamé parameters λ, µ. The
generalized Hooke’s law states that under the assumption of no body forces acting
on Ω, the displacement u satisfies

(3.2) (Lu)i = (Lλ,µu)i =
n∑

j,k,l=1

∂

∂xj
Cijkl

∂

∂xl
uk = 0 in Ω, i = 1, . . . , n,

u|∂Ω = f

where

(3.3) Cijkl = λδijδkl + µ(δikδij + δilδjk) (1 ≤ i, j, k, l ≤ n),

with δij the Kronecker delta and (Lu)i denotes the i-th component of Lu.
C = (Cijkl) is the elastic tensor. The boundary value problem (3.2) has a

unique solution under the strong convexity condition µ > 0, nλ+ 2µ > 0 in Ω̄.
The Dirichlet to Neumann map is defined in this case by

(3.4) (Λλ,u(f))i =
n∑

l,k,l=1

νjCijkl

∂uk

∂xl

∣∣∣∣
∂Ω

, i = 1, ..., n

where ν = (ν1, . . . , νn) is the unit outer normal to ∂Ω and u is the solution of (3.2).
Physically the DN map sends the displacement at the boundary to the traction at
the boundary. The following global identifiability result was proven in [21].
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3.1 Theorem. Let n ≥ 3. Let (λi, µi) ∈ C∞(Ω̄) × C∞(Ω̄), i = 1, 2 satisfy the
strong convexity condition (3.3). Assume Λ(λ1,µ1) = Λ(λ2,µ2). Then (λ1, µ1) =

(λ2, µ2) in Ω̄.

The proof of Theorem 3.1 follows the general outline of the proof of Theorem
1.2. Namely, one proves an identity similar to (1.8) by using Green’s theorem.
Second, one reduces the elasticity system to a first order system (a more direct
way to do this was given in [9]). Now one constructs geometrical optics solutions
for the elasticity system using Lemma 3.1, which also applies to the first order
system under consideration. The details of this outline can be found in [21].
Open problem 7. The analog of problems 1-5 are also open for the elasticity
system. The analog of Theorem 2.1 is not known for the elasticity system in two
dimensions. It is known that one can uniquely identify from the DN map Lamé
parameters close to constant (see [22].) The methods of section 2 might be useful
to prove a global identifiability result in this case.
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