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1 Introduction

The purpose of this paper is to attract attention to the subject of statistical dis-
tribution of deterministic sequences. In quantum chaos problems they can be the
eigenvalues of a quantum mechanical problem, in number theory the natural choice
is the imaginary parts of non-trivial zeros of zeta functions, etc.

The important point that makes this field interesting is the observation that
statistical distributions of completely different sequences are, to a large extent,
universal depending only on very robust properties of the system considered. The
origin of such universal laws remains unclear.

In the fifties Wigner and later Dyson (see articles in [1] and the review [2]),
based on a physical idea that ‘complicated’ means ‘random’, have proposed to
consider the Hamiltonian of heavy nuclei as a random matrix taken from a certain
ensemble characterized only by symmetry properties. The duality: ‘Hamiltonian
←→ random matrix’ has been proved very useful [3], [4] and stimulated the de-
velopment of random matrix theory [5]. Later it was understood that the same
idea can also be applied to low-dimensional quantum systems and the accepted
conjectures are: (i) local statistical behaviour of energy levels of classically inte-
grable systems is close to the Poisson distribution [7], (ii) energy levels of classically
chaotic systems are distributed as eigenvalues of random matrices from the stan-
dard random matrix ensembles [6]. One of these ensembles (Gaussian Unitary
Ensemble (GUE)) seems to describe the local spectral distribution of non-trivial
zeros of zeta functions of number theory [8]-[11].

The volume of numerical evidences in the favor of these conjectures is im-
pressive (see e.g. [3], [9], [4]) but the full mathematical proof even in the simplest
cases is still lacking.

In this paper we shall discuss a straightforward method to attack this problem
based on trace formulae.
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2 Trace formulae

The Gutzwiller trace formula [12] states that the density of eigenvalues for a quan-
tum system can be written as a sum of a smooth (d̄) term and an oscillating part

d(osc)(E) =
∑

ppo

∞
∑

n=1

Ap,n exp(
i

h̄
nSp(E)) + c.c. , (1)

given by a sum over primitive periodic orbits and their repetitions. Here Sp is the
classical action calculated along one of such orbits,

Ap,n =
Tp

2πh̄|Det(Mn
p − 1)|1/2 exp(−iπ

2
nµp),

Mp is the monodromy matrix around the orbit, Tp is its period, and µp is the
Maslov index. For the motion on constant negative curvature surfaces generated
by discrete groups this formula coincides with the Selberg trace formula but for
generic systems it represents only the first term of a formal expansion on the
Planck constant.

Similar expresion exists also for the Riemann zeta function. For the density
of nontrivial Riemann zeros (assuming sn = 1

2 + iEn)

d(osc)(E) = − 1

π

∞
∑

n=1

1√
n
Λ(n) cos(E log n), (2)

where Λ(n) = log p, if n is a power of a prime p, and Λ(n) = 0 otherwise.

3 Correlation functions

The n-point correlation function of energy levels is defined as the probability of
having n levels at prescribed positions

Rn(ǫ1, ǫ2, . . . , ǫn) =< d(E + ǫ1)d(E + ǫ2) . . . d(E + ǫn) >, (3)

where the brackets < . . . > denote the smoothing over an energy window

< f(E) >=

∫

f(E′)σ(E − E′)dE′, (4)

with an appropriate weighting function σ(E) centered near zero.
In particular, the 2-point correlation function has the form

R2(ǫ1, ǫ2) = d̄2 +
∑

pi,ni

Ap1,n1
A∗

p2,n2
< exp(

i

h̄
(n1Sp1

(E)− n2Sp2
(E))) >

× exp(
i

h̄
(n1Tp1

(E)ǫ1 − n2Tp2
(E)ǫ2)) + c.c. (5)

The terms with the sum of actions are assumed to be washed out by the smoothing
procedure.
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4 Diagonal approximation

Berry in [13] proposed to estimate the above sum by taking into account only
terms with exactly the same actions which leads to the following expression for
the two-point correlation form factor (the Fourier transform of R2)

K(diag)(t) = 2π
∑

p,n

|Ap,n|2δ(t− nTp(E)) + c.c., (6)

where the sum is taken over all periodic orbits with exactly the same action.
Using the Ruelle-Bowen-Sinai measure on periodic orbits (called in physical

literature the Hannay-Ozorio de Almeida sum rule [14]) one finds that for ergodic
systems

K(diag)(t) = g
t

2π
, (7)

where g is the mean multiplicity of periodic orbits. For generic systems without
time reversal invariance g = 1 and for systems with time reversal invariance g = 2
and this result coincides with the small-t behaviour of form factor of classical
ensembles.

Unfortunately, K(diag)(t) grows with t but the exact form factor for systems
without spectral degeneracies should tend to d̄ when t → ∞. This contradiction
clearly indicates that the diagonal approximation cannot be correct for all values
of t and more complicated tools are needed to obtain the full form factor.

5 Beyond the diagonal approximation

We begin to discuss the calculation of off-diagonal terms on the example of the
Riemann zeta function where more information is available and then we shall
generalize the method to dynamical systems.

The connected two-point correlation function of the Riemann zeros is

R2(ǫ1, ǫ2) =
1

4π2

∑

n1,n2

Λ(n1)Λ(n2)√
n1n2

< eiE log(n1/n2)+i(ǫ1 logn1−ǫ2 logn2) > +c.c. (8)

The diagonal terms correspond to n1 = n2 and

R
(diag)
2 (ǫ) = − 1

4π2

∂2

∂ǫ2
log(|ζ(1 + iǫ)|2Φ(diag)(ǫ)), (9)

where ǫ = ǫ1 − ǫ2 and the function Φ(diag)(ǫ) is given by a convergent sum over
prime numbers

Φ(diag)(ǫ) = exp(−
∑

p

∞
∑

m=1

m− 1

m2pm
eim log pǫ + c.c.). (10)

When ǫ→ 0, R2(ǫ)→ −(2π2ǫ2)−1 which agrees with the smooth GUE result.
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The term exp(iE log(n1/n2)) oscillates quickly if n1 is not close to n2. De-
noting n1 = n2 + h and expanding smooth functions on h one gets

R
(off)
2 (ǫ) =

1

4π2

∑

n,d

Λ(n)Λ(n+ h)

n
< eiE(h/n)+iǫ logn > +c.c. (11)

The main problem is clearly seen here. The function F (n, h) = Λ(n)Λ(n + h)
changes irregularly as it is nonzero only when both n and n+h are powers of prime
numbers. Fortunately, the dominant contribution to the two-point correlation
function comes from the mean value of this function

α(h) = lim
N→∞

1

N

N
∑

n=1

Λ(n)Λ(n+ h), (12)

and its explicit expression follows from the famous Hardy–Littlewood conjecture
[15]

α(h) =
∑

(p,q)=1

e−2πi p

q
h

(

µ(q)

ψ(q)

)2

, (13)

where the sum is taken over all coprime integers q and p < q, µ(n) and ψ(n) are
the Mobius and the Euler functions respectively.

Using this expression for α(h) and performing the sum over all h one obtains

R
(off)
2 (ǫ) =

1

4π2
|ζ(1 + iǫ)|2e2πid̄ǫΦ(off)(ǫ) + c.c., (14)

where function Φ(off)(ǫ) is given by a convergent product over primes

Φ(off)(ǫ) =
∏

p

(1− (1− piǫ)2
(p− 1)2

). (15)

In the limit of small ǫ, R
(off)
2 (ǫ) → (e2πid̄ǫ + e−2πid̄ǫ)/(2πǫ)2 which corresponds

exactly to the GUE result.
The above calculations demonstrate how one can compute the two-point cor-

relation function through the knowledge of pair-correlation function of periodic
orbits. For the Riemann case one can prove under the same conjectures1 that all
n-point correlation functions of Riemann zeros tend to the corresponding GUE
results [16].

The interesting consequence of the above formula is the expression for the
two-point form factor

K(off)(t) =
1

4π2

∑

(p,q)=1

(

µ(q)

ψ(q)

)2

(
q

p
)δ(t− 2πd̄− log

q

p
), (16)

which means that the off-diagonal two-point form factor is a sum over δ-functions
in special points equal the Heisenberg time (TH = 2πd̄) plus a difference of periods

1Really only a smoothed version of the Hardy-Littlewood conjecture is needed.
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of two pseudo-orbits (linear combinations of periodic orbits). This set is dense but
the largest peaks correspond to the shortest pseudo-orbits. Similarly the two-point
diagonal form factor is the sum of δ functions at the positions of periodic orbits

K(diag)(t) =
1

4π2

∑

p,m

log2 p

pm
δ(t−m log p). (17)

The smooth values corresponding to the random matrix predictions appear only
after a smoothing of these functions over a suitable interval of t.

6 Arithmetical systems

Similar behavior has been observed in a completely different model, namely for
the distribution of eigenvalues of the Laplace–Beltrami operator for the modular
domain [17]. It was shown that in this model the two-point correlation form factor
can be written in the following form

K(t) =
1

π3k

∑

(p,q)=1

∣

∣

∣

∣

q

p
β(p, q)

∣

∣

∣

∣

2

δ(t− tp,q), (18)

where

tp,q =
2

k
ln
kq

πp
, and β(p, q) =

S(p, p; q)

q2
∏

ω|q(1− ω−2)
.

The product is taken over all prime divisors of q and S(p, p; q) is the Kloosterman
sum

S(n,m; c) =

c−1
∑

d=1

exp(2πi(nd+md−1)/c).

This model belongs to the so-called arithmetical models corresponding to the mo-
tion on constant negative curvature surfaces generated by arithmetic groups. For
all these models due to the exponential multiplicities of periodic orbits one expects
[18] that the spectral statistics will tend to the Poisson distribution though from a
classical point of view all these models are the best known examples of classically
chaotic motion. Using the above expression one can prove this statement for the
modular group.

7 Construction of the density of states from finite number of pe-

riodic orbits

The main difficulty in using trace formulae is their divergent character. The di-
agonal approximation consists, in some sense, on computing the density of states
from a sum over a finite number of periodic orbits but this sum cannot produce
δ-function singularities. There exists an artificial method [19] which permits to
avoid this difficulty. Its main ingredient is the Riemann-Siegel form of the zeta
function

ζ(1/2− iE) = zT (E) + e2πiN̄(E)z∗T (E), (19)
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where instead of the correct Riemann-Siegel expansion one uses a truncated prod-
uct over periodic orbits

zT (E) =
∏

log p<T

(1− p−1/2+iE)−1.

The density of zeros for function (19) takes the form

DT (E) = dT (E)

∞
∑

k=−∞

(−1)ke2πikN̄(E)

(

z∗T (E)

zT (E)

)k

, (20)

where dT (E) is the density of state truncated at log p < T .
Assuming that T is of the order of the Heisenberg time, TH = 2πd̄, and d̄→∞

after some algebra we get

R
(off)
2 (ǫ1, ǫ2) = d̄2e2πid̄ǫ <

z∗T (E + ǫ1)zT (E + ǫ2)

zT (E + ǫ1)z∗T (E + ǫ2)
> +c.c. (21)

The last step consists in performing the energy average of this expression. As
logarithms of primes are not commensurable, the energy average of any smooth
function of exp(iE log pj) equals its phase average

< f >=

∫ 2π

0

. . .

∫ 2π

0

f(eiφ1 , . . . , eiφM )

M
∏

j=1

dφj
2π

. (22)

This is essentially equivalent to the random phase approximation, or to the ergodic
theorem for quasi-periodic functions with non-commensurable periods, or to the
strict diagonal approximation.

For the Riemann zeta function the total contribution equals

R2(ǫ) = C2 exp(2πid̄ǫ)|ζ(1 + iǫ)|2Φ(off)(ǫ) + c.c. , (23)

where

Φ(off)(ǫ) =
∏

p

(1− (1− piǫ)2
(p− 1)2

), (24)

ǫ = ǫ2 − ǫ1, and C = d̄
∏

p(1 − 1/p). All products in these expressions include
prime numbers up to ln p = T . The first two products converge when T →∞ and
only the last one requires a regularization. But our parameter T has not yet been
fixed. Let us choose it in such a way that

2πd̄
∏

ln p<T

(1− 1

p
) = 1. (25)

The same factor appears in the statistical approach to prime numbers (see dis-
cussion in [15]) and can be considered as a renormalisation of formally divergent
sums. After this renormalization we get exactly the same formula (14) as has been
derived in the previous section using the Hardy-Littlewood conjecture about the
pairwise distribution of prime numbers.
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8 Off-diagonal terms for dynamical systems

For 2-dimensional dynamical systems the only difference with the Riemann case
is that the truncated zeta function zT (E) contains now an infinite product over m

zT (E) =
∏

Tp<T

∞
∏

m=0

(1− eiSp(E)/h̄−iπµp/2

|Λp|1/2Λm
p

), (26)

where Λp is the largest eigenvalue of the monodromy matrix.

The simplest and most natural assumption is that in generic systems with-
out time-reversal invariance periodic orbits up to period T are linearly non-
commensurable (as primes). Under this conjecture after some algebra we obtain
that when T →∞

R2(ǫ) =
e2πid̄ǫ

4π2
|γ−1Zcl(iǫ)|2

∏

p

< Rp >

∣

∣

∣

∣

Zp(iǫ)

Zp(0)

∣

∣

∣

∣

2

+ c.c. (27)

and

< Rp >=

∞
∑

n=0

(a; q)2n
(q; q)2n

yn, (28)

where (a; q) = (1− a)(1− aq) . . . (1− aqn−1), a = e−iτp , q = Λ−1
p , y = |Λp|−1eiτp ,

and τp = lpǫ/k. Zcl(s) is a classical zeta function, Zcl(s) =
∏

p Zp(s)
−1 with

Zp(s) = 1− eτps/|Λp|.
The maximum period T is determined from the condition

2πd̄
∏

Tp<T

Zp(0) =
1

|γ| , (29)

where γ is the residue of Zcl(s) at s = 0 (Zcl(s)→ γ/s when s→ 0). As above this
renormalization fixes T to be of the order of TH and ensures that, when ǫ → 0,
R2(ǫ) tends to the GUE result.

9 Random matrix universality

There exists another method of semiclassical calculation of off-diagonal part of
correlation functions which demonstrates that if such formulae exist they coincide
with the above obtained expressions.

According to the naive trace formula the density of states is

d(E) = d̃(E) + η(E), (30)

where d̃(E) is the truncated density of states computed from a set of short-period
orbits with period Tp < T (now we shall assume that T ≪ TH) and η(E) is
(unknown) part of the density constructed from high-period orbits.
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Let us try now to construct a random matrix ensemble which has the mean
density of eigenvalues exactly equals d̃(E). In principle, the necessary potential
can be computed from the Dyson equation

∫

d̃(t)

x− tdt =
1

2
V ′(x). (31)

But the explicit form of this potential is irrelevant as under quite general conditions
the resulting distribution does not depend on the explicit form of this function
(provided it corresponds to the so-called definite momentum problem [21]) and all
correlation functions depend only on the kernel KN (x, y) which in the bulk of the
spectrum in the limit N →∞ tends to

K(x, y) =
sinπ(N(x)−N(y))

π(x− y) , (32)

where N(x) =
∫ x

d̃(x′)dx′ is the mean staircase function.
Hence, the two-point correlation function will take the form

R2(ǫ1, ǫ2) =< d̃(E + ǫ1)d̃(E + ǫ2)−
sin2 π(Ñ(E + ǫ1)− Ñ(E + ǫ2))

π2(ǫ1 − ǫ2)2
> . (33)

As d̃(E) is known it is possible to perform the smoothing over the appropriate
energy window. Using the same transformations as above one can show that
under the assumption T ≪ TH the dependence of T will disappear and one gets
the same formulae as above.

10 Conclusion

The heuristic arguments presented in this paper demonstrate how, in principle,
the existence of the trace formula and certain natural conjectures about the dis-
tribution of periodic orbits (or primes) combine together to produce universal
local statistics. In particular, for systems without the time-reversal invariance
the assumption that low-period orbits are non-commensurable leads to the GUE
statistics (at least for 2-point correlation function). The close relation between
diagonal (9) and off-diagonal (14) terms (first observed for disordered systems in
[22]) suggests the existence of a certain unified principle. The best candidate for
it is the ‘unitarity’ property of the trace formula, namely, that the distribution of
periodic orbits should be such that the corresponding eigenvalues will be real. In
some sense certain long-period orbits are connected to the short ones and the in-
vestigation of this connection may clarify the origin of universal spectral statistics.
The interesting question is what conjectures about periodic orbits are necessary
to obtain correlation functions for systems with time-reversal invariance where
almost all periodic orbits appear in pairs with exactly the same action.
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91406 Orsay Cedex, France,
bogomol@ipno.in2p3.fr

Documenta Mathematica · Extra Volume ICM 1998 · III · 99–108


