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On the Problem of Stability

for Near to Integrable Hamiltonian Systems

Antonio Giorgilli

Abstract. Some recent applications and extensions of Nekhoroshev’s
theory on exponential stability are presented. Applications to physical
systems concern on the one hand realistic evaluations of the regions where
exponential stability is effective, and, on the other hand, the relaxation
time for resonant states in large, possibly infinite systems. Extensions
of the theory concern the phenomenon of superexponential stability of
orbits in the neigbourhood of invariant KAM tori.
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1. Overview

According to Poincaré ([26], tome I, chapt. I, § 13) the general problem of dynamics
is the investigation of a canonical system of differential equations with Hamiltonian

(1) H(p, q, ε) = h(p) + εf(p, q, ε) ,

where (p, q) ∈ G × T
n are action–angle variables, G ⊂ R

n is open, ε is a small
parameter and n is the number of degrees of freedom. The functions h and f are
assumed to be analytic in all arguments; in particular the perturbation f(p, q, ε)
can be expanded in power series of ε in a neighbourhood of ε = 0. Many physical
systems may be described by a Hamiltonian of the form above; the most celebrated
one is the planetary system with its natural and (which is of interest now) artificial
bodies.

My aim here is to illustrate some results concerning the stability of such
systems. The word “stability” is used here in a wide sense, which includes a
considerable weakening of the traditional concept investigated, e.g., by Lyapounov.
I will pay particular attention to quantities that remain almost constant for a time
that increases faster than any inverse power of ε as ε → 0. Following Littlewood,
I will refer to stability estimates of this kind as exponential stability.

It is well known that for ε = 0 the unperturbed system h(p) is trivially
integrable, since the orbits lie on invariant tori parameterized by the actions p,
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and the flow is typically quasiperiodic with frequencies ω(p) = ∂h
∂p . It has been

proven by Poincaré that for ε 6= 0 the system is generically non–integrable (see [26],
chapt. V). This is due to the existence of resonances among the frequencies, i.e.,
relations of the form 〈k, ω(p)〉 = 0 with 0 6= k ∈ Z

n.
It was only after the year 1954 that a significant advance of our knowledge

was made with the celebrated theorem of Kolmogorov[18], Arnold[1] and Moser[23].
They proved the existence of a set of invariant tori of large relative measure, thus
assuring stability in probabilistic sense. Almost at the same time, Moser[22] and
Littlewood[19][20] introduced the methods leading to exponential stability. Several
years later a general formulation was given by Nekhoroshev, who proved that the
action variables p remain almost invariant for a time that increases exponentially
with the inverse of the perturbation ε; more precisely, one has

(2)
∣

∣p(t)− p(0)
∣

∣ < Bεb for |t| < T∗ exp
(

(ε∗/ε)
a
)

for some constants B, T∗, ε∗, a ≤ 1 and b < 1 (see [24], [25], [3], [4], [21], [14]).
My purpose here is to report on some progress made during the last decade. I

will address in particular the following points: (a) the actual relevance of exponen-
tial stability for physical systems; (b) the extension of the concept of exponential
stability to systems with a very large number of degrees of freedom, and possibly to
infinite systems; (c) some relations between KAM and Nekhoroshev’s theory, and
in particular a stronger stability result that I will call superexponential stability.

Both KAM theorem and Nekhoroshev’s theorem apply provided the size ε of
the perturbation is smaller than a critical value, ε∗ say. On the other hand, the
problem of finding realistic estimates for the critical value ε∗ is generally a very
hard one: the analytical estimates available are useless for a practical application
to a physical model, and only in a few, very particular models realistic results have
been obtained. One such case concerns the stability of the Lagrangian point L4 of
the restricted problem of three bodies in the Sun–Jupiter case. I discuss in sect. 2
how realistic estimates may be obtained by complementing the analytical scheme
with explicit calculation of perturbation series.

For systems with a large number of degrees of freedom one is confronted with
the problem that all estimates seem to indicate that Nekhoroshev’s theorem looses
significance for n → ∞ because the constants T∗, ε∗ and a tend to zero. As a typ-
ical example let us consider a system of identical diatomic molecules moving on a
segment and interacting via a short range analytic potential; this may be consid-
ered as a one–dimensional model of a gas, the main simplification being that the
rotational degrees of freedom of the molecules are not taken into account. The
model admits a natural splitting into two subsystems, i.e., the translational mo-
tions and the internal vibrations of the molecules, with a coupling due to collisions.
According to the equipartition principle, every degree of freedom would get the
same average energy. However, it was already suggested by Boltzmann that this
should be true only if one considers time averages over a sufficiently long time
(relaxation time). Boltzmann’s suggestion was that such a time would increase
with the frequency of the internal vibrations, becoming of the order of days or
centuries (see [9]); a few years later Jeans suggested that the relaxation time could
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increase exponentially with the frequency, possibly becoming of the order of bil-
lions of years (see [17]). I discuss in sect. 3 how far the suggestion of Boltzmann
and Jeans may be dynamically justified if one relinquishes the request that all
actions be constant, and pays attention only to the transfer of energy between the
two subsystems. For a discussion of the relevance of the exponential stability in
statistical mechanics see [7] and [10] and the references therein.

Finally, it is interesting from the theoretical viewpoint to investigate the be-
haviour of the orbits in the neighbourhood of an invariant KAM torus. I discuss
this point in sect. 4 by illustrating how KAM theorem may be obtained by using
Nekhoroshev’s theorem as a basic iteration step. As a straightforward consequence
one gets the result that in most of the phase space the orbits are stable for a time
that is much longer than the exponential time predicted by Nekhoroshev. Indeed,
the exponential time in (2) is replaced by exp

(

exp(1/̺)
)

, where ̺ is the distance
from an invariant KAM torus. This is what I call superexponential stability.

2. The triangular Lagrangian equilibria

It is known that in a neighbourhood of an elliptic equilibrium the Hamiltonian
may be given the form

(3) H(x, y) =
1

2

n
∑

l=1

ωl

(

x2
l + y2l

)

+
∑

s>2

Hs(x, y) ,

where ω ∈ R
n is the vector of the harmonic frequencies and Hs is a homogeneous

polynomial of degree s in the canonical variables (x, y) ∈ R
2n. The stability of

the equilibrium x = y = 0 for the system (3) is a trivial matter if all frequencies
ω have the same sign, e.g., they are all positive. For, in this case the classical
Lyapounov’s theory applies since the Hamiltonian has a minimum at the origin.
This simple argument does not apply if the frequencies do not vanish but have
different signs.

The stability over long times has been investigated by Birkhoff using the
method of normal form going back to Poincaré (see [26], tome II, chapt. IX, § 125).
Assuming that there are no resonance relations among the frequencies ω, via a near
the identity canonical transformation (x, y) → (x′, y′) the Hamiltonian is given the
normal form up to a finite order r > 2

(4) H(r)(x′, y′) =
1

2

n
∑

l=1

ωlp
′
l + Z(r)(p′) +R(r)(x′, y′) ,

where p′l = (x′2
l +y′

2
l )/2 are the new actions, Z(r) is at least quadratic in p′ and the

unnormalized remainder R(r) is a power series starting with terms of degree r+1
in x′, y′. If we forget the remainder then the system is integrable and the motion
is quasiperiodic on invariant tori, since Z(r) depends only on the new actions.
Birkhoff’s remark was that the normalized Hamiltonian H(r) is convergent in a
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neighbourhood of the origin, e.g., in some polydisk of radius ̺ (that may depend
on r) and center at the origin, i.e.,

(5) ∆̺ =
{

(x, y) ∈ R
2n :

√

x2
j + y2j < ̺

}

.

Hence, the size of the remainder may be estimated by Cr̺
r+1, with some constant

Cr that Birkhoff did not try to evaluate. He concluded that the dynamics given
by the integrable part of the Hamiltonian is a good approximation of the true
dynamics up to a time of order O(̺−r); on this remark he based his theory of
complete stability (see [8], chapt. IV, § 2 and § 4).

It was pointed out by Poincaré that the series produced by perturbation
expansions have an asymptotic character (see [26], tome II, chapt. VIII). Now
this fact lies at the basis of the exponential stability. Indeed the constant Cr is
expected to grow at least as O(r!), so that the size of the remainder is O

(

r!̺r+1
)

.
Having fixed ̺ (i.e., the domain of the initial data) one chooses r ∼ 1/̺, and by a
straightforward use of Stirling’s formula one gets |R| = O

(

exp(−1/̺)
)

. By working
out the analytical estimates one gets for the unperturbed actions pl = (x2

l + y2l )/2
the following bound (see [13] or [12]):

Theorem: Let the frequencies ω satisfy the diophantine condition

(6)
∣

∣〈k, ω〉
∣

∣ ≥ γ|k|−τ for 0 6= k ∈ Z
n .

Then there exists a ̺∗ such that for all orbits satisfying
(

x(0), y(0)
)

∈ ∆̺ one has

∣

∣p(t)− p(0)
∣

∣ = O(̺3) for |t| < T = O
(

exp(1/̺1/(τ+1))
)

.

For a practical application the problem is that the estimated value of ̺∗ may
be ridiculously small. A better evaluation may be obtained by explicitly calculating
all series involved in the normalization process up to some (not too low) order.
This just requires some elementary algebra on computer.

The Hamiltonian is expanded in power series as in (3) up to some order r,
and then is given a normal form at the same order. The explicit transformation of
coordinates and the new action variables p′ as functions of the old coordinates can
be constructed, too. Moreover, in a polydisk ∆̺ we may evaluate the quantity

D(̺, r) = sup
(x′,y′)∈∆̺

∣

∣ṗ′
∣

∣ = sup
(x′,y′)∈∆̺

∣

∣

{

p′,R(r)
}∣

∣ ;

to this end, the expression of the lowest order term of the remainder R(r) may
be used. Having fixed a polydisk ∆̺0

containing the initial data we conclude
that the orbit can not escape from a polydisk ∆̺, with an arbitrary ̺ > ̺0, for
|t| < τ(̺0, ̺, r), where

(7) τ(̺0, ̺, r) =
̺2 − ̺20
2D(̺, r)

.
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This produces an estimate depending on the arbitrary quantities ̺ and r. Let
̺0 and r be fixed; then, in view of D(̺, r) ∼ Cr̺

r+1, the function τ(̺0, ̺, r),
considered as function of ̺ only, has a maximum for some value ̺r. This looks
quite odd, because one would expect τ to be an increasing function of ̺. However,
recall that (7) is just an estimate; looking for the maximum means only that we
are trying to do the best use of our poor estimate. Let us now keep ̺0 constant,
and calculate τ(̺0, ̺r, r) for increasing values of r = 1, 2, . . . , with ̺r as above.
Since Cr is expected to grow quite fast with r we expect to find a maximum of
τ(̺0, ̺r, r) for some optimal value ropt. Thus, we are authorized to conclude that
for every ̺0 we can explicitly evaluate the positive constants ̺(̺0) = ̺ropt and
T (̺0) = τ(̺0, ̺(̺0), ropt) such that an orbit with initial point in the polydisk ∆̺0

will not escape from ∆̺ for |t| < T (̺0).
In order to show that the method above may be effective let me consider

the triangular Lagrangian point L4 of the restricted problem of three bodies, with
particular reference to the Sun–Jupiter case. In the planar case the frequencies are
ω1 ∼ 0.99676 and ω2 ∼ −0.80464 × 10−1; hence the standard Lyapounov theory
does not apply.

The procedure above has been worked out by expanding all functions in power
series up to order 35. One may look in particular for a value of ̺0 such that T (̺0)
is the estimated age of the universe. The result is that ̺0 is roughly 0.127 times
the distance L4–Jupiter; this is certainly a realistic result. A comparison with
the known Trojan asteroids shows that four of them are inside the region which
assures stability for the age of the universe (see [16] for a complete report).

3. On the conjecture of Boltzmann and Jeans

Let us consider a canonical system with analytic Hamiltonian

(8) H(p, x, π, ξ) = ĥ(p, x) + hω(π, ξ) + f(p, x, π, ξ) ,

where

hω(π, ξ) =
1

2

ν
∑

l=1

(

π2
l + ω2

l ξ
2
l

)

, (π, ξ) ∈ R
2ν

is the Hamiltonian of a system of harmonic oscillators, ĥ(p, x) is the Hamiltonian of
a generic n–dimensional system, and f(p, x, π, ξ) a coupling term which is assumed
to be of order ξ, and so to vanish for ξ = 0.

This model was suggested by the numerical study of the system of diatomic
molecules mentioned in sect. 1 (see [5] and [6]). In that case ĥ(p, x) represents the
translational degrees of freedom, and hω(π, ξ) describes the internal vibrations of
the molecules. Since the molecules are identical, all frequencies coincide.

The identification of a perturbation parameter in the system (8) goes as fol-
lows. Write ω = λΩ with large λ and Ω of the same order of the inverse of a
typical time scale of the constrained system (for example the characteristic time
for the collision of two molecules, which is non zero if the interaction potential is
regular); then transform the variables according to π = π′

√
λΩ and ξ = ξ′/

√
λΩ,
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and assume the total energy of the subsystem hω to be finite, so that the variables
(π′, ξ′) turn out to be confined in a disk of size 1/

√
λ. Then the Hamiltonian may

be given the form, omitting primes,

H(p, x, π, ξ, λ) = ĥ(p, x) + λhΩ(π, ξ) +
1

λ
fλ(p, x, π, ξ)

hΩ(π, ξ) =
1

2

ν
∑

l=1

Ωl

(

π2
l + ξ2l

)

(here, a straightforward computation would give λ−1/2 in front of f , but f itself
turns out to be of order λ−1/2, since it vanishes for ξ = 0). Here too the main
technical tool is the reduction of the Hamiltonian to a normal form. Precisely,
via a near to identity canonical transformation (p, x, π, ξ) → (p′, x′, π′, ξ′) the
Hamiltonian is given the form

H ′(p′, x′, π′, ξ′, λ) = λhΩ(π
′, ξ′) + ĥ(p′, x′) +Z(p′, x′, π′, ξ′, λ) +R(p′, x′, π′, ξ′, λ) ,

where Z is in normal form in the sense that {hΩ, Z} = 0. Thus hΩ is an approxi-
mate first integral. The normalization process is performed until the remainder is
exponentially small in the parameter 1/λ. This requires an optimal choice of the
number of normalization steps, as in the case of the elliptic equilibrium.

Theorem: Assume that all frequencies ω are equal. Then there are positive
constants T∗ and λ∗ such that for every λ > λ∗ one has

(9)

∣

∣hΩ(π, ξ)− hΩ(π
′, ξ′)

∣

∣ = O(λ−2) ;

∣

∣hΩ(t)− hΩ(0)
∣

∣ = O(λ−1) for |t| < T∗ exp

(

λ

λ∗

)

.

The remarkable fact is that the exponent a that appears in the general form (2)
of the exponential estimate is 1, no matter of the number n of degrees of freedom.
This removes the worst dependence on n, and is in complete agreement with the
numerical calculations in [5].

In the case of the diatomic gas there is still a dependence on n in the constants
T∗ and λ∗, which turn out to be O(1/n2) (the number of two–body interaction
terms in the perturbation). Such a dependence could hardly be removed on a
purely dynamical basis, because the possibility that all molecules collide together
at all times may not be excluded. This is clearly unrealistic. A complete proof
of the conjecture of Boltzmann and Jeans could perhaps be obtained by comple-
menting the dynamical theory with statistical considerations.

The result above has been extended to further situations, including the case
of infinite systems. As an example, consider a modification of the celebrated
nonlinear chain of Fermi, Pasta and Ulam[11] in which the equal masses are replaced
by alternating heavy and light masses. It is known that the spectrum splits into
two well separated branches, called the acoustical and the optical one. Moreover
the optical frequencies are very close to each other. The whole system may thus
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be considered as composed of two separate subsystems, and the subsystem hω of
the optical frequencies may still be considered as a system of oscillators with the
same frequency: the small difference can consistently be considered as part of the
perturbation. In this case it has been proven that the exponential estimate applies
also to the case of an infinite chain, provided the total energy is sufficiently small
(see [2]). Strictly speaking, this is not enough for the application to the problem of
equipartition of energy in statistical mechanics, since in that case one is interested
in initial data with fixed specific energy. However, the discrepancy is still due to
the fact that we are working on a purely dynamical basis. For, the possibility
that the whole energy of the optical subsystem remains concentrated on a single
oscillator for a long time is not excluded. Here too one should include statistical
considerations.

4. Superexponential stability

Let us go back to considering the Hamiltonian (1). I will need to consider the
action variables in a domain G̺ =

⋃

p∈G B̺(p), where ̺ is a positive parameter,
G ⊂ R

n is open, and B̺(p) denotes the open ball of radius ̺ and center p. The
phase space is D = G̺ ×T

n.

If the unperturbed Hamiltonian h(p) is non degenerate, then the construction
of the normal form for the Hamiltonian can not be performed globally on the action
domain G̺. For, the small denominators 〈k, ω(p)〉 (with k ∈ Z

n and ω(p) = ∂h
∂p )

may generically vanish in a set of points that is dense in G̺. This fact lies at
the basis of Poincaré’s proof of nonexistence of uniform first integrals (see [26],
chapt. V).

The way out of this problem is based on: (a) a Fourier cutoff of the perturba-
tion, i.e., only a finite number of Fourier modes is considered during the process of
normalizing the Hamiltonian, and (b) the construction of the normal form in local
nonresonance domains where the small denominators are far enough from zero.
The burden of constructing the nonresonance domains is taken by the so called
geometric part of the proof of Nekhoroshev’s theorem: basically, the original do-
main G̺ is covered by subdomains corresponding to known resonances of different
multiplicity 0, 1, . . . , n, where multiplicity zero corresponds to the region free from
resonances. The domains so constructed are open because only a finite number of
resonances is taken into account; this is a consequence of the Fourier cutoff. The
normal form is local to each domain, and depends on the resonances that appear
on it. Nekhoroshev’s theorem on exponential stability follows by proving that ev-
ery orbit is confined inside a local nonresonance domain for an exponentially long
time.

The result that I’m going to illustrate is based on iteration of Nekhoroshev’s
theorem. Let me first state the result. Let ϕt be the canonical flow generated by
the Hamiltonian (1). A n–dimensional torus T will be said to be (η, T )–stable in
case one has dist(ϕtP, T ) < η for all |t| < T and for every P ∈ T . The formal
statement is the following

Documenta Mathematica · Extra Volume ICM 1998 · III · 143–152



150 Antonio Giorgilli

Theorem: Consider the Hamiltonian (1), and assume that the unperturbed
Hamiltonian h(p) is convex. Then there exists ε∗ > 0 such that for all ε < ε∗

the following statement holds true: there is a sequence
{

D(r)
}

r≥0
of subsets of

D, with D(0) = D, and two sequences {εr}r≥0 and {̺r}r≥1 of positive numbers
satisfying

ε0 = ε , εr = O
(

exp(−1/εr−1)
)

,

̺0 = ̺ , ̺r = O(ε
1/4
r−1) ,

such that for every r ≥ 0 one has:
(i) D(r+1) ⊂ D(r) ;

(ii) D(r) is a set of n–dimensional tori diffeomorphic to G(r)
̺r

×T
n;

(iii) Vol(D(r+1)) > (1−O(εar))Vol(D(r)) for some positive a < 1;
(iv) D(∞) =

⋂

r D(r) is a set of invariant tori for the flow ϕt, and moreover one
has Vol(D(∞)) > (1−O(εa0))Vol(D(0)) ;

(v) for every p(r) ∈ G(r) the torus p(r) ×T
n ⊂ D(r) is (̺r+1, 1/εr+1)–stable;

(vi) for every point p(r) ∈ G(r) there exists an invariant torus T ⊂ B̺r
(p(r))×T

n.

Let me illustrate the main points of the proof (for a complete proof see [15]).
A careful reading of the geometric part of Nekhoroshev’s theorem allows one to
extract the following information: there exists a subset D(1) of phase space charac-
terized by absence of resonances of order smaller than O(1/ε); such a domain is the
union of open balls of positive radius ̺1, and its complement has measure O(ε1/4).
Moreover, in this subset one may introduce new action–angle variables, (p′, q′) say,
which give the Hamiltonian the original form (1), but with a perturbation of size
ε1 = O

(

exp(−1/ε)
)

.
Nekhoroshev’s theorem can be applied again to the new Hamiltonian in the

open domain D(1), thus allowing one to construct a second nonresonant domain
D(2) characterized by absence of resonances of order smaller than O(1/ε1) =
O
(

exp(−1/ε)
)

. Such a procedure can be iterated infinitely many times, and this

gives the sequence D(r) of subdomains of phase space, the existence of which is
stated in the theorem. Nekhoroshev’s stability estimates hold in every such do-
main, with stability times exponentially increasing at every step.

The sequence D(r) of domains converges to a set D(∞) of invariant tori. This
part of the proof is just an adaptation of Arnold’s proof of KAM theorem and the
set of invariant tori so obtained is similar to Arnold’s one.

Let me finally explain how superexponential stability arises. Properties (v)
and (vi) imply that every (̺r+1, 1/εr+1)–stable torus is ̺r–close to an invariant
torus. In view of the form of the sequences ̺r and εr given in the statement of
our theorem one has

εr+1 = O(1/ exp(1/εr)) = O(1/ exp(exp(1/εr−1))) = O(1/ exp(exp(1/̺r))) .

In view of this remark we may say that in the neighbourhood of an invariant
torus the natural perturbation parameter is the distance ̺ from the torus, and
the diffusion speed is bounded by a superexponential of the inverse of the distance
from an invariant torus.
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[22] Moser, J.: Stabilitätsverhalten kanonischer differentialgleichungssysteme,

Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl IIa, nr.6, 87–120 (1955).
[23] Moser, J.: On invariant curves of area–preserving mappings of an annulus,

Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl II, 1–20 (1962).
[24] Nekhoroshev, N. N.: Exponential estimates of the stability time of near–

integrable Hamiltonian systems. Russ. Math. Surveys, 32, 1 (1977).
[25] Nekhoroshev, N. N.: Exponential estimates of the stability time of near–

integrable Hamiltonian systems, 2. Trudy Sem. Petrovs., 5, 5 (1979).
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