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Stability of Matter

in Classi
al and Quantized Fields

Gian Michele Graf

Abstract. In recent years considerable activity was directed to the issue
of stability in the case of matter interacting with an electromagnetic field .
We shall review the results which have been established by various groups, in
different settings: relativistic or non-relativistic matter, classical or quantized
electromagnetic fields. Common to all of them is the fact that electrons
interact with the field both through their charges and the magnetic moments
associated to their spin. Stability of non-relativistic matter in presence of
magnetic fields requires that Zα2 (where Z is the largest nuclear charge in
the system) as well as the fine structure constant α itself, do not exceed
some critical value. If one imposes an ultraviolet cutoff to the field, as it
occurs in unrenormalized quantum electrodynamics, then stability no longer
implies a bound on α, Zα2. An important tool is given by Lieb–Thirring type
inequalities for the sum of the eigenvalues of a one–particle Pauli operator
with an arbitrary inhomogeneous magnetic field.
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Introduction

Ordinary matter consists of molecules and atoms which are largely empty inside.
Yet matter does not shrink. A related — and more fundamental — aspect of
stability is the fact that the energy per particle is bounded below, independently
of the number of particles. This is what is usually referred to as stability of
matter. It should be stressed that it goes well beyond the stability of individual
atoms. Basic thermodynamic properties such as extensivity (e.g., two moles of
water occupy with good approximation twice the volume occupied by a single
mole) also depend on this property. These topics are reviewed in [19, 20].

Stability of matter could not hold without quantum mechanics and, in par-
ticular, without the uncertainty principle, but the Pauli principle and screening
properties of the interaction (Coulomb) potential are equally important (see [34]
for the consequences of tampering with these tenets). The first instance where
stability was established, by Dyson and Lenard [9], is non-relativistic matter con-
sisting of N electrons which move in the field of M nuclei having fixed but arbi-
trary positions. We denote by qi = −1, resp. qi = Z, the charge of an electron
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(i = 1, . . . , N), resp. of a nucleus (i = N +1, . . . , N +M). According to the Pauli
principle a (pure) state of the N electrons is given by a normalized wave function

Ψ ∈

N∧

i=1

L2(R3,C2) (1)

in the N -fold antisymmetric tensor product of the single particle Hilbert space
L2(R3,C2). Here, C2 accounts for the spin of the electron, whose role is however
unessential so far. The Hamiltonian is, in appropriate units,

H =

N∑

i=1

ti + Vc , (2)

where the kinetic energy of a single electron is t = p2, p = −i∇ and the index i
refers to the variables of the i-th electron. The Coulomb potential Vc is

Vc =
∑

i<j

qiqj
|xi − xj |

.

Theorem 1. There is a constant C(Z) independent of the position of the nuclei,
such that

H ≥ −C(Z)(N +M) . (3)

Subsequently, Lieb and Thirring [27] obtained a much better constant C(Z)
which is of order unity for Z ≈ 1. They also provided a simpler proof, thereby
linking (3) to stability of Thomas-Fermi theory. (See however [17] for a short proof
closer in spirit to [9]).

In recent years considerable activity was directed to the issue of stability in
the case of matter interacting with an electromagnetic field, which brings the
model closer to physical reality. Results have been established by various groups,
in different settings: relativistic or non-relativistic matter, classical or quantized
electromagnetic fields.

Stability and instability in classical magnetic fields

To begin with, consider the addition of a classical, external magnetic field B = ∇∧
A. There, stability — uniformly in the magnetic vector potential A — persists [1,
7] if the field is included through minimal substitution, i.e., for t = D2, D = p+A.
This follows by means of the diamagnetic inequality. To actually describe matter
in magnetic fields one must however also add the interaction of the electrons with
the field through their spins or, more precisely, through the associated magnetic
moments. The corresponding kinetic energy is

t = D2 +
g

2
B · σ ,
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where σ = (σ1, σ2, σ3) are the Pauli matrices and g is known as the gyromagnetic
factor. Its physical value is g = 2, as long as radiative corrections from quantum
electrodynamics are neglected. Stability (3) extends straightforwardly to any g <
2, while for g > 2 the Hamiltonian is not even bounded below. In the critical case
g = 2, to which we shall henceforth restrict, the kinetic energy may be written as

t = D2 +B · σ = D
/
2 , D

/
= D · σ .

Dynamical spins confer new aspects to the issue of stability. A first indication of
this is the following: Whereas the equation Dψ = 0 admits (by the uncertainty
principle) only ψ = 0 as a solution in L2(R3,C2), there exist [30] field config-
urations A such that D

/
ψ = 0 has non-trivial solutions called zero-modes. This

effectively invalidates the uncertainty principle and, as a result, stability as defined
above. To see this, just consider the case N =M = 1 with Hamiltonian

HA = D
/
2
A − Z|x|−1 .

By scaling both the field and its zero-mode,

Aλ(x) = λ−1A(x/λ) , ψλ(x) = λ−3/2ψ(x/λ) , (4)

we obtain D
/
Aλ
ψλ = 0 and

(ψλ, HAλ
ψλ) = −Zλ−1(ψ, |x|−1ψ) , (5)

which can be made arbitrarily large and negative by letting λ→ 0.
However, a proper formulation of stability should incorporate the field energy

Hcf =
1

8πα2

∫
B(x)2d3x (6)

into the Hamiltonian:

H =

N∑

i=1

ti + Vc +Hcf . (7)

Here α > 0 is the fine structure constant. The physical value of this dimensionless
parameter is α = e2/~c ≈ 1/137. Note that under (4) the magnetic field scales as
Bλ(x) = λ−2B(x/λ), so that Hcf scales as λ−1, just as the Coulomb energy (5).
Thus already from the case N = M = 1 one sees that stability for (7) may hold
only if Zα2 is sufficiently small. Another necessary condition is that α itself be
small enough. To see the latter, consider N = 1 and M large. As above, let the
electron be in a zero-mode of a fixed field A. Distribute the many nuclei according
to some limiting density, e.g., uniformly over a ball. The repulsion energy between
the nuclei is ≤ C1(ZM)2, and the attraction of the electron ≤ −C2(ZM), with
C1, C2 > 0 independent of Z, M . By minimizing the sum of the two bounds we
obtain (ψ, Vcψ) ≤ −C2

2/4C1 for ZM = C2/2C1. Thus,

(ψ,Hψ) ≤ −
C2

2

4C1

+
1

8πα2

∫
B(x)2d3x < 0
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for α large enough. Since both the Coulomb and the field energy scale the same
way, the expectation value of the Hamiltonian can in fact be made arbitrarily large
and negative. The above two conditions are in fact sufficient for stability:

Theorem 2. The Hamiltonian (7) is stable, i.e.,

H ≥ −C(N +M) ,

provided α and Zα2 are small enough.
The theorem was first established by Fefferman [12], for Z = 1. Soon there-

after, Lieb, Loss, and Solovej [23] found a simpler proof which furthermore ensures
stability at physical values of the parameters Z, α and produces a realistic lower
bound −C on the energy per particle. An additional improvement of Lieb, Sieden-
top and Solovej [24, 25] and Loss [29] yields the following sufficient condition for
stability:

π

2
Z + 2.7919Z2/3 + 1.2987 ≤ 0.2153α−2 . (8)

In particular, for α = 1/137 stability holds if Z ≤ 2264. Precursors of Theorem 2
are found in [16, 21], where the cases N = 1 and M = 1, resp. N = 1 or M = 1,
were proved.

Let us present the proof of Theorem 2 given in [25], but for brevity we shall
not keep track of best constants. The stability of (7) is brought into relation with
stability of an apparently unrelated Hamiltonian Hrel, namely that of relativistic
matter without dynamical spins. It is defined by (2), but with t = α−1|D|. The
corresponding stability result was proven in [8, 15, 28, 22].

Theorem 3.

Hrel ≥ 0 , (9)

if α and Zα are sufficiently small.
Note that Hrel can be uniformly bounded below only if it is non-negative, since

both its terms scale as λ−1. Explicitly, stability is assured [22] if the l.h.s. of
(8) does not exceed α−1. On the other hand, Hrel is unbounded below [18] if
Zα > 2/π.

The other ingredients of the proof of Theorem 2 are:
• The Birman-Koplienko-Solomyak inequality [3]: For any operators A, B ≥ 0,

tr(A−B)+ ≤ tr(A2 −B2)
1/2
+ , (10)

where s+ = max(s, 0), provided the operator on the r.h.s. is trace class.
• The Lieb-Thirring estimate [27]:

tr(−h)γ+ ≤ Lγ

∫
v(x)γ+

3

2 d3x (11)

for γ ≥ 0 and any Schrödinger operator h = D2−v on L2(R3) with v = v(x) ≥ 0.
The l.h.s. can be written as

∑
k |ek|

γ , where ek < 0 are the negative eigenvalues
of h.
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Let us denote by α̃ the fine structure constant in Hrel, to avoid confusion. Using

(9), the first two terms in (7), Hm =
∑N

i=1D
/
2
i + Vc, can be estimated as

Hm ≥
∑

i=1

(D
/
2 − α̃−1|D|)i ≥ − tr(α̃−1|D| − 2β|D

/
|)+ − β2N ,

for any β > 0. Here we used D
/
2 ≥ 2β|D

/
| − β2 and the Pauli principle. Now (10)

can be used to bound the trace (setting 4β2 = 2α̃−2) as

α̃−1 tr(D2 − 2D
/
2)

1/2
+ = α̃−1 tr(−D2 − 2B · σ)

1/2
+ ≤ 2α̃−1L1/2

∫
4B(x)2d3x ,

where, in the last step, we used −B · σ ≤ |B| and (11). Summing up, one obtains

H = Hcf +Hm ≥
( 1

8πα2
−

8L1/2

α̃

)∫
B(x)2d3x−

1

2
α̃−2N ,

showing that stability holds for α2 ≤ α̃/(64πL1/2).
Finally, Lieb, Siedentop and Solovej [24, 25] considered relativistic matter with

dynamical spins. The appropriate kinetic energy is given by the Dirac operator

t = D · α+ βm

acting on L2(R3,C4), where m ≥ 0 is the mass and α = (α1, α2, α3), β are the
Dirac matrices. Except for this modification, the many-body Hamiltonian HDirac

is still given by (7). Clearly HDirac, just as t, is unbounded below, but the proper
interpretation, going in essence back to Dirac, is ‘to fill the Fermi sea’ for t. In
other words, one should only consider expectation values for HDirac in states

Ψ ∈

N∧

i=1

h+ ,

where h+ ⊂ L2(R3,C4) is the positive spectral subspace for t.

Theorem 4.

(Ψ, HDiracΨ) ≥ 0

(uniformly also in m ≥ 0), provided α and Zα are small enough.
For α = 1/137 stability holds up to Z ≤ 56. The proof is related to the one

sketched above.

Stability and instability in quantized electromagnetic fields

We shall consider only the case of non-relativistic matter. The model is formally
still defined by the Hamiltonian (7), but with the following changes. First, the
Hilbert space now is H = Hm ⊗ F , where Hm is the Hilbert space (1) for matter
and F , the Hilbert space for the field, is the bosonic Fock space over L2(R3,C2).
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Here, C2 accounts for the helicity of the photon. Second, the ultraviolet-cutoff
electromagnetic vector potential in the Coulomb gauge is given by

AΛ(x) = A−(x)+A−(x)
∗ , A−(x) =

α1/2

2π

∫

|k|≤Λ

|k|−1/2
∑

λ=±

aλ(k)eλ(k)e
ikxd3k ,

where Λ <∞ is the cutoff. For each k, the direction of propagation k̂ = k/|k| and
the polarizations e±(k) ∈ C

3 are orthonormal. The operators aλ(k)
∗ and aλ(k)

are creation and annihilation operators on F and satisfy canonical commutation
relations

[aλ(k)
#, aλ′(k′)#] = 0 , [aλ(k), aλ′(k′)∗] = δλλ′δ(k − k′) .

The vacuum state Ω ∈ F , (Ω,Ω) = 1, is distinguished by aλ(k)Ω = 0, for all
k ∈ R

3. The kinetic energy in (7), t = D
/
2, is now defined with D = p + AΛ(x).

Finally, the quantum field energy is

Hqf = α−1

∫
|k|

∑

λ=±

aλ(k)
∗aλ(k)d

3k . (12)

This completes the definition of the Hamiltonian, which we denote by HΛ. To
see how (12) relates to the previous definition (6), we introduce the (tranverse)
electric field E(x) = −i[Hqf , AΛ(x)] and the magnetic field B(x) = (∇ ∧ AΛ)(x).
Then,

Hqf =
1

8πα2

∫
:E(x)2 +B(x)2 : d3x , (13)

where : . . . : denotes Wick ordering; explicitly, : B(x)2 := B(x)2 − (Ω, B(x)2Ω),
and analogously for E(x)2. In contrast to (6), the integrand of (13) may also take
negative (expectation) values.

Let us remark that the model represents, apart from the cutoff needed to make
it well-defined, a physically correct description of the coupled system consisting
of matter and field, since the Hamiltonian yields the correct equations of motion.
The spectral theory of a similar model is discussed in [2].

The stability of Theorem 2 carries over to this situation [6, 5], but not with the
same explicit bounds.

Theorem 5. For any Λ > 0,

HΛ ≥ −C(α,Z,Λ)(N +M) , (14)

for small enough α, Zα2, with C(α,Z,Λ) = const ·Z̃max(Z̃, α1/4Λ) and Z̃ = Z+1.
Actually, the ultraviolet cutoff prevents the instability explained before Theo-

rem 2. As a result, the restriction to small values of α, Zα2 may be dropped, as
shown by Fefferman [13] and Fefferman, Fröhlich and Graf [14]:

Theorem 5’. For any α, Z, Λ, the estimate (14) holds with C(α,Z,Λ) = const ·

Z̃(1 + β5 log β)(β−2Z̃ + Λ) with β = Z̃α2 + 1.
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This fact is not of direct physical significance, however. Rather, one should
consider a renormalized Hamiltonian

HΛ,ren =
N∑

i=1

m−1
Λ D

/
2
i + Vc +Hqf − µΛN , (15)

where the mass mΛ and the chemical potential µΛ are to be chosen so that the
energy of a one electron state with small total momentum p is p2. It appears
conceivable that stability for (15) holds uniformly in Λ, for small enough α, Zα2.

The proof of Theorem 5 can be reduced to stability statements for matter in
classical, external fields [12, 4], but with a different expression for the field energy
Hcf than before. For reasons related to the vacuum energy subtraction mentioned
above, the classical field energy (6) should be replaced by

Hcf =
1

8πα2

∫

U

B(x)2d3x , (16)

where the integration is now restricted to a small neighborhood U of the nuclei.
A similar expression [13, 5], involving also the field gradient, occurs in the proof
of Theorem 5’.

Magnetic Lieb-Thirring type inequalities

An issue of related, but also independent interest is found in Lieb-Thirring in-
equalities corresponding to (11) for Pauli, rather than Schrödinger, Hamiltonians,
i.e., for h = D

/
2 − v on L2(R3,C2). (We shall focus on γ = 1, corresponding to the

sum of the negative eigenvalues of h). The first such estimate, by Lieb, Solovej
and Yngvason [26] applies to constant magnetic fields B(x) = B.

Theorem 6. For constant fields,

∑

k

|ek| ≤ aδ

∫
v(x)5/2d3x+ bδ|B|

∫
v(x)3/2d3x , (17)

for any 0 < δ < 1, with aδ = 0.3119 δ−2 and bδ = 0.2123(1− δ)−1.
The second term represents the contribution of the lowest Landau level, i.e., of

the lowest (degenerate) eigenvalue of D
/
2, whereas the higher levels are accounted

for by the familiar first term. Note that a generalization to arbitrary non-constant
fields cannot be obtained by just pulling |B(x)| in (17) under the integral sign.
Such a bound would be too small (for small v), since, due to the possible existence
of zero-modes D

/
ψ = 0, the bound has to be at least (ψ, vψ).

Estimates for non-constant fields are due to Erdős [10], followed by [23, 32, 33,
4, 5, 31]. Some of them are useful in proofs of stability of matter. In this context
we mention the bound of Lieb, Loss and Solovej [23]:

Theorem 7.

∑

k

|ek| ≤ aδ

∫
v(x)5/2d3x+ bδ

(∫
B(x)2d3x

)3/4(∫
v(x)4d3x

)1/4

, (18)
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for any 0 < δ < 1, with aδ = 0.0654 δ−1 and bδ = 0.1005 δ−5/8(1− δ)−3/8.
One may be tempted to believe that the second term could be replaced by∫
|B(x)|3/2v(x) d3x, which would imply (18) by Hölder’s inequality. It turns out

— essentially by arguments of Erdős [10] — that this is not true: The interplay
between the field B(x) and the potential v(x) is not strictly local. It is however
possible to define an effective scalar field b(x) ≥ 0 which allows for a semi–local
version of (18). This is of interest in connection with the definition (16) and is the
content of the following result of Bugliaro et al. [4]:

Theorem 8.

∑

k

|ek| ≤ C ′

∫
v(x)5/2d3x+ C ′′

∫
b(x)3/2v(x)d3x , (19)

∫
b(x)2d3x ≤ C

∫
B(x)2d3x . (20)

In particular, the two estimates together imply (18), except for the constants.
The construction of b(x) can be explained as follows. The interplay between the
field B and V takes place on a length scale r(x) which depends on B itself (see
below), and b(x)2 is the average of B(y)2 over that length scale:

b(x)2 =

∫
r(x)−3ϕ

(y − x

r(x)

)
B(y)2d3y ,

with appropriate decay of ϕ(z) ≥ 0 as |z| → ∞. To determine r(x), note that in
the constant field case it is proportional to |B|−1/2, the radius of a Landau orbit
in the lowest Landau level. In the general case, it is determined self-consistently
as r(x) = b(x)−1/2. A different definition of b(x) due to Sobolev [32, 33], which
motivated the one just presented, also implies (19), but not (20).

Yet another generalization of (17) aims at estimating the contributions of the
field gradient ∇ ⊗ B = (∂iBj)i,j=1,2,3. This was done by Erdős and Solovej [11]
and, under somewhat different conditions, by Bugliaro, Fefferman and Graf [5].
To this end a length scale l(x) is introduced which is related to ∇⊗B in a similar
way as r(x) is related to B.

Theorem 9.

∑
ei ≤ C ′

∫
V (x)3/2(V (x) + B̂(x))d3x+ C ′′

∫
V (x)P (x)1/2(P (x) + B̂(x))d3x ,

where B̂(x) is the average of |B(y)| over a ball of radius l(x) centered at x, and
P (x) = l(x)−1(r(x)−1 + l(x)−1).

By the variational principle, this estimate implies a bound on the density n(x) =∑
j |ψj(x)|

2 of orthonormal zero-modes ψj of D
/
. The bound is

n(x) ≤ C ′′P (x)1/2(P (x) + B̂(x)) ,

and, as it should, it vanishes in the case of a homogeneous magnetic field.
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[11] L. Erdős, J. P. Solovej, Semiclassical eigenvalue estimates for the Pauli oper-
ator with strong non-homogeneous magnetic fields. I. Non-asymptotic Lieb-
Thirring type estimates. To appear in Duke Math. Jour.

[12] C. Fefferman, Stability of Coulomb systems in a magnetic field. Proc. Natl.
Acad. Sci. USA 92, 5006-5007 (1995).

[13] C. Fefferman, On electrons and nuclei in a magnetic field, Adv. Math. 124,
100-153 (1996).
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