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Rogers-Ramanujan Identities:

A Century of Progress from Mathemati
s to Physi
s

Alexander Berkovich and Barry M. McCoy

Abstract. In this talk we present the discoveries made in the theory of
Rogers-Ramanujan identities in the last five years which have been made
because of the interchange of ideas between mathematics and physics.
We find that not only does every minimal representation M(p, p′) of the
Virasoro algebra lead to a Rogers-Ramanujan identity but that different
coset constructions lead to different identities. These coset constructions
are related to the different integrable perturbations of the conformal field
theory. We focus here in particular on the Rogers-Ramanujan identities
of the M(p, p′) models for the perturbations φ1,3, φ2,1, φ1,2 and φ1,5.
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1 Introduction

In 1894 L.J. Rogers [1] proved the following identities for a = 0, 1 between infinite
series and products valid for |q| < 1

∞∑

n=0

qn(n+a)

(q)n
=

∞∏

n=1

1

(1− q5n−1−a)(1− q5n−4+a)

=
1

(q)∞

∞∑

n=−∞

(qn(10n+1+2a) − q(5n+2−a)(2n+1)) with (q)n =
n∏

j=1

(1− qj). (1)

For about the first 85 years after their discovery interest in these identities and
their generalizations was confined to mathematicians and many ingenious proofs
and relations with combinatorics, basic hypergeometric functions and Lie algebras
were discovered by MacMahon, Rogers, Schur, Ramanujan, Watson, Bailey, Slater,
Gordon, Göllnitz, Andrews, Bressoud, Lepowsky and Wilson and by 1980 there
were over 130 isolated identities and several infinite families of identities known.

The entry of these identities into physics occurred in the early ’80’s when
Baxter [2], Andrews, Baxter and Forrester [3, 4], and the Kyoto group [5] encoun-
tered (1) and various generalizations in the computation of order parameters of
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certain lattice models of statistical mechanics. A further glimpse of the relation to
physics is seen in the development of conformal field theory by Belavin, Polyakov
and Zamolodchikov [6] and the form of computation of characters of representa-
tions of Virasoro algebra by Kac [7], Feigin and Fuchs [8] and Rocha-Caridi [9].
The occurrence of (1) in this context led Kac [10] to suggest that “every modular
invariant representation of Vir should produce a Rogers-Ramanujan type identity.”

The full relation, however, between physics and Rogers-Ramanujan identities
is far more extensive than might be supposed from these first indications. Starting
in 1993 the authors [11]-[17] have fused the physical insight of solvable lattice
models in statistical mechanics with the classical work of the first 85 years and
the recent developments in conformal field theory to greatly enlarge the theory
of Rogers-Ramanujan identities. In this talk we will summarize the results of
this work and present some of the current results. Our point of view will be
dictated by our background in statistical mechanics but we will try to indicate
where alternative viewpoints exist. Hopefully in this way some of the inevitable
language barriers between physicists and mathematicians can be overcome.

2 What is a Rogers-Ramanujan Identity?

The work of the last 5 years originating in physics problems has provided a new
framework and point of view in the study of Rogers-Ramanujan identities. The
emphasis is not the same as in the earlier mathematical investigations and thus it
is worthwhile to discuss generalities before the presentation of detailed results.

2.1 Sums instead of products

The equation (1) is the equality of three objects; an infinite sum involving (q)n,
an infinite product, and a second sum with (q)∞ in the denominator. For the first
85 years since (1) was proved it was the equality of the first infinite series with
the infinite product which was called the Rogers-Ramanujan identity. The second
sum while present in the intermediate steps of the proofs was always eliminated
in favor of the product by use of the triple or pentuple product formula. The first
important insight that was recognized when Rogers-Ramanujan identities arose in
physics is that, contrary to this long history, it is not the product but rather the
second sum on the right which arises in the statistical mechanical and conformal
field theory applications. Indeed by now it is true that in most cases where we
have generalizations of the identities between the two sums a product form is not
known. Consequently by Rogers-Ramanujan identity we will mean the equality of
the sums without further reference to possible product forms.

2.2 Polynomials instead of infinite series

The second insight which is also present in the very first papers on the connection
of Rogers-Ramanujan identities with physics [2, 3, 4] is the fact that the physics
will often lead to polynomial identities (with an order depending on an integer L)
which yield infinite series identities as L → ∞. The polynomial generalization of
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(1) is the identity first proven in 1970 [18]

Fa(L, q) = Ba(L, q) (2)

where

Fa(L, q) =

∞∑

n=0

qn(n+a)

[
L− n− a

n

]
(3)

and

Ba(L, q) =

∞∑

n=−∞

(−1)nqn(5n+1+2a)/2

[
L

⌊ 1
2 (L− 5n− a)⌋

]
(4)

where ⌊x⌋ denotes the integer part of x and the Gaussian polynomials (q-binomial
coefficients) are defined for integer m,n by

[
n

m

]
=

{
(q)n

(q)m(q)n−m
0 ≤ m ≤ n

0 otherwise.
(5)

The identity (1) is obtained by using limn→∞

[
n
m

]
= 1/(q)m It is generalizations

of the polynomial identity (2) which we will call a Rogers-Ramanujan identity.

2.3 The generalizations of Fa(L, q)

All known generalizations of Fa(L, q) can be written in terms of the following
function [12]

f =
∑

restrictions

q
1
2mBm−

1
2Am

n∏

α=1

[
((1−B)m+ u

2 )α
mα

]
(6)

where m,u and A are n dimensional vectors and B is an n × n dimensional
matrix and the sum is over all values of the variables mα possibly subject to some
restrictions (such as being even or odd). In many cases the q-binomials are defined
by (5) but there do occur cases in which an extended definition

[
m+ n

m

]
=

{
(qn+1)m
(q)m

for m ≥ 0, n integers

0 otherwise
(7)

which allows n to be negative needs to be used.
The function (6) has the interpretation as the partition function for a collec-

tion of n differerent species of free massless (right moving) fermions with a linear
energy momentum relation e(Pα

j )α = vPα
j where the momenta are quantized in

units of 2π/M and are chosen from the sets

Pα
j ∈ {Pα

min(m), Pα
min(m) +

2π

M
,Pα

min(m) +
4π

M
, · · · , Pα

max(m)} (8)

with the Fermi exclusion rule Pα
j 6= Pα

k for j 6= k and all α = 1, 2, · · · , n,

Pα
min(m) =

π

M
[((B− 1)m)α −Aα + 1] and Pα

max = −Pα
min +

2π

M
(
u

2
−A)α (9)
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where if some uα = ∞ the corresponding Pα
max = ∞. The Fa(L, q) of (3) is regained

in the very special case of n = 1, B = 2,u = 2L − 2a and 1
2A = −a. Because of

the Fermi exclusion rule we call these sums which generalize Fa(L, q) Fermi forms.
The generalization which the selection rule (8) makes over the usual exclusion rule
of fermions is of great physical importance in the physics of the fractional quantum
Hall effect [19].

2.4 The generalizations of Ba(L, q)

The first polynomial found which generalizes Ba(L, q) is B
(p,p′)
r,s (L, a, b; q) given

by[3, 4]

∞∑

j=−∞

(
qj(jpp

′+rp′
−sp)

[
L

L+a−b
2 − jp′

]
− q(jp+r)(jp′+s)

[
L

L−a−b
2 − jp′

])
. (10)

with L+ a− b even. When L → ∞ this polynomial reduces to

lim
L→∞

B(p,p′)
r,s (L, a, b; q) =

1

(q)∞

∞∑

j=−∞

(
qj(jpp

′+rp′
−sp) − q(jp+r)(jp′+s)

)
(11)

which is (multiplied by q∆
(p,p′)
r,s −c/24) the well known character [8, 9] of the minimal

modelM(p, p′) of the Virasoro algebra with central charge c = 1−6(p−p′)2/pp′ and

conformal dimension ∆
(p,p′)
r,s = [(rp′ − sp)2 − (p− p′)2]/4pp′ (1 ≤ r ≤ p − 1, 1 ≤

s ≤ p′ − 1). In the method of Feigin and Fuchs [8] this formula is obtained by
modding out null vectors from the Fock space of one free boson. For this reason
we call generalizations of Ba(L, q) bosonic forms.

When p = 2, p′ = 5, r = 1 and s = 2 − a the character (11) is identical with
the righthand side of (1). This is the original inspiration for the belief that there
is a connection between conformal field theory and Rogers-Ramanujan identities.

Moreover we note that the relation between the exclusion rules (8) with the
character formula (11) provided by Rogers-Ramanujan identities explains why
conformal field theory and related Kac-Moody algebra [20] methods have been
successfully applied to the fractional quantum Hall effect. In particular the Rogers-
Ramanujan identities of [21] guarantee that starting from the U(1) Kac-Moody
algebra description of edge states in the fractional quantum hall effect [20] there
must be corresponding description in terms of fermionic quasiparticles.

But unlike the generalizations of Fa(L, q) there are other quite distinct gen-
eralizations of Ba(L, q) which have been found to occur. One of the more widely
studied uses, instead of q-binomials (5), the q-trinomials of Andrews and Baxter
[22] (

L

A

)p

2

=
∞∑

j=0

qj(j+A−p) (q)L
(q)j(q)j+A(q)L−2j−A

(12)

and replaces (10) by either B
(1)(p,p′)
r,s (L, a, b; q) given by

∞∑

j=−∞

[
qj(pp

′j+rp′
−sp)

(
L

2pj + a− b

)0

2

− q(jp+r)(jp′+s)

(
L

2pj + a+ b

)0

2

]
, (13)
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which appear in the computation of the order parameters of the dilute A models

[23], or B
(2)(p,p′)
r,s (L, a, b; q) given by

∞∑

j=−∞

[
qj(pp

′j+rp′
−sp)

(
L

p′j + a− b

)0

2

− q(jp+r)(jp′+s)

(
L

p′j + a+ b

)0

2

]
. (14)

These q-trinomials have the property that limL→∞

(
L
A

)0
2
= 1

(q)∞
and thus we see

that although the polynomials B
(1)(p,p′)
r,s (L, a, b; q) and B

(2)(p,p′)
r,s (L, a, b; q) are not

the same as B
(p,p′)
r,s (L, a, b; q) all three polynomials have the the same L → ∞

limit (11). Further generalizations to q-multinomials have also been investigated
[24, 25, 26, 27].

2.5 Proof by L-difference equations

The polynomial Roger-Ramanujan identities which generalize (2) are proven by
demonstrating that the generalizations of Fa(L, q) and Ba(L, q) each satisfy the
same difference equation in the variable L and are explicitly identical for suitably
small values of L. Thus (2) is proven by demonstrating [18] that both Fa(L, q) and
Ba(L, q) satisfy

h(L, q) = h(L− 1, q) + qL−1h(L− 2, q) forL ≥ a+ 2 (15)

and that they are identical for L = a, a + 1. We refer to such equations as L-
difference equations.

For the Fermi forms (6) the L-difference equations are derived by the general
technique of telescopic expansions [13] which uses the two recursion relations for
q-binomial coefficients (5)

[
n

m

]
=

[
n− 1

m− 1

]
+ qm

[
n− 1

m

]
= qn−m

[
n− 1

m− 1

]
+

[
n− 1

m

]
(16)

which hold for all positive integers m,n or the identical recursion relations for
generalized q-binomial coefficients (7) which hold for all integer m,n without re-
striction.

For the Bose form (10) which involves q-binomials the recursion relation (16)
is sufficient to derive an L-difference equation but for the Bose forms (13) and (14)
which involve q-trinomials we need not only the trinomial recursion relations such
as (

L

A

)1

2

= qL−1

(
L− 1

A

)1

2

+ qA
(
L− 1

A+ 1

)0

2

+

(
L− 1

A− 1

)0

2

(17)

but also so-called “tautological” equations such as

(
L

A− 1

)1

2

− qA−1

(
L

A+ 1

)1

2

=

(
L

A− 1

)0

2

− q2A
(

L

A+ 1

)0

2

(18)

which reduce to trivialities when q = 1. These “tautological” identities are what
make the results involving q-trinomials more intricate to prove.
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3 Results for minimal models M(p, p′)

The irreducible representations M(p, p′) with central charge less than one are
parameterized by two relatively prime integers p and p′ and the characters are given
by (11). Thus the suggestion of Kac [10] can by taken to mean that each bosonic
form of the character has a fermionic form. We have recently proven [14, 15] that
such identities do indeed exist, even generalized to polynomial identities, for all p
and p′.

But there is much more to the theory than this. The minimal models M(p, p′)
can be realized in terms of the coset construction of fractional level [28, 29]

(A
(1)
1 )1 × (A

(1)
1 )m

(A
(1)
1 )m+1

with m =
p

p′ − p
− 2 or −

p′

p′ − p
− 2. (19)

However, these constructions are not unique and as an example we note that the
model M(3, 4) in addition to the coset (19) with m = 1 has the representation

(E
(1)
8 )1 × (E

(1)
8 )1/(E

(1)
8 )2. It may thus be asked whether or not the Rogers Ra-

manujan identity is a unique property of the model M(p, p′) or is it a property of
the several different coset constructions. For the M(3, 4) it is known that just as
there are two coset constructions so there are two very different fermionic repre-
sentations of the characters. For example

χ
(3,4)
1,1 =

∞∑

m=0
m even

q
m2

2

(q)m
=

∞∑

n1,···,n8=0

q
nC

−1
E8

n

8∏

j=1

1

(q)j
. (20)

Thus it is natural to extend the suggestion of Kac to the conjecture that to ev-

ery coset construction of conformal field theory there exists a Rogers-Ramanujan

polynomial identity.

Physically there are even more reasons to make such a conjecture. Conformal
field theories represent integrable massless systems. But it is not needed for a
system to be massless for it to be integrable and it is known [30] that the opera-
tors φ1,3, φ2,1, φ1,5 and φ1,2 provide integrable massive perturbations of M(p, p′)
whenever they are relevant. Each of these massive models has a fermionic quasi-
particle spectrum which is a basis of states in the Hilbert space. As a basis this
is independent of mass and thus still is a basis in the massless limit. We identity
these quasi-particles with the fermionic representations (6). But the different mas-
sive perturbations will in general have a differerent number of quasi-particles and
thus each integrable perturbation is expected to give a different fermionic form and
hence a different Rogers-Ramanujan identity. However, even though at the level
of the field theory these characters are the same at the level of finite statistical
mechanical models the polynomials will be different. Thus we expect that each
coset will lead to a different polynomial identity.

In the remainder of this section we will summarize how much of this conjecture
has been proven.
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3.1 The perturbation φ1,3

The integrable perturbation φ1,3 corresponds to the coset (19) and the bosonic

polynomial is the original B
(p,p′)
r,s (L, a, b; q) (10) of [3, 4].

For the unitary case M(p, p + 1) the Rogers-Ramanujan identities were first
proven in [13]. Here the matrix B is 1

2 the Cartan matrix of Ap−2

Bj,k =
1

2
CAp−2

|j,k = δj,k −
1

2
δj,k+1 −

1

2
δj,k−1 1 ≤ j, k ≤ p− 2 (21)

and uj = Lδj,1 for r = s = 1 The general case of arbitrary p and p′ is treated
in [14, 15] and here B is a “fractional” generalization of a Cartan matrix which
is obtained from the analysis of Bethe’s Ansatz equations of the XXZ spin chain
of Takahashi and Suzuki [31]. There are families of r, s for which the vector A is
known but results for all cases have not been explicitly written down although an
algorithm exists which allows the identity for any r, s to be found. For p′ = p+ 1
only the conventional binomial coefficients (5) are needed and the Fermi form
consists of a single term of the form (6). However, for general values of p′ the
modified binomials (7) arise and in addition there are many values of r, s where
the Fermi form consists of a linear combination of terms of the form (6). It is
essentially the existence of these linear combinations which makes the complete
set of results difficult to explicitly write down.

3.2 The perturbations φ2,1 and φ1,5

Rogers-Ramanujan identities for the character with the minimal conformal dimen-
sion for the integrable perturbations φ2,1 and φ1,5 have recently been obtained [16]
for models M(p, p′) by means of the recently discovered [17] trinomial analogue
of Bailey’s lemma and some computer tested conjectures. For the unitary case
M(p, p + 1) we have just completed the proof of the identities for all values of r
and s. When 2p > p′ the perturbation φ2,1 is relevant and the bosonic form B(1)

of (13) appears in the identities. We also have identities for p′

3 < p < p′

2 where the

perturbation φ1,5 is relevant and the bosonic form B(2) of (14) is used.

For the unitary case M(p, p+ 1) the matrix B is of dimension p− 1 where

Bj,k =
1

2
CAp−2

|j,k 2 ≤ j, k ≤ p− 2

B0,0 = B1,1 = 1, B0,2 = −B2,0 = 1/2 B1,2 = B2,1 = −1/2 (22)

and zero otherwise and uj = 2Lδj,0 for r = s = 1. This matrix differs significantly
from the p− 2 dimensional matrix (21) in that it is not symmetric.

The matrices B are also known [16] for the nonunitary cases p′ 6= p + 1.
However, in many of these nonunitary cases a new phenomena arises not seen
in the φ1,3 perturbations, namely that there can be several different fermionic
representations (with different dimensions of the B matrix) of the same bosonic
polynomial.
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3.3 The perturbation φ1,2

The final case of integrable perturbations is φ1,2 but this case is not nearly so well
understood. For the three very special unitary cases of cases M(3, 4), M(4, 5) and
M(6, 7) Rogers-Ramanujan identities are known [11, 32] where the B matrices
are twice the inverse of the Cartan matrix of E8, E7 and E6 respectively and
the bosonic form is obtained from (13) with the replacement p → p + 1 in the
q-trinomials. Beyond these nothing further seems to be known.

4 How many identities?

We demonstrated in [14, 15] that every M(p, p′) yields a set of Rogers-Ramanujan
identities. But we also found that there are more than one identity for each
M(p, p′). The question then arises of how many fermionic representations there
are for the characters of each model M(p, p′) The answer to this is not known
and the scope of the problem is perhaps most vividly shown by considering the
three state Potts model M(5, 6) where in addition to the identities for the φ2,1

perturbation discussed above there is another set of identities which are a special
case of the “parafermionic” identities first found by Lepowsky and Primc [33] in
1985 where the matrix B is twice the inverse Cartan matrix of A2 and in the limit
L → ∞, u → ∞. This perturbation is also for the φ2,1 perturbation but has two
quasi-particles instead of the four quasi-particles of (22). One may speculate that
this has something to do with the difference between A and D modular invariants,
but the actual explanation and interpretation of this fact is not known nor is it
known if such extra representations exist for other models. If this is part of the
explanation then we must enlarge the conjecture of sec. 3 to account for the
possible modular invariants. But even this suggestion will not give an explanation
for all of the various identities found for the nonunitary φ2,1 perturbations in [16].
The full range of Rogers-Ramanujan identities is by no means yet understood and
it is anticipated that both in the mathematics and in the physics there is much
still left to be discovered.
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