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Metastability and the Ising Model

Roberto H. Schonmann

Abstract. We present recent results on a classical non-equilibrium statis-
tical mechanics problem, in the context of a well-studied idealized interact-
ing particle system, called kinetic Ising model. The problem concerns the
speed and the patterns of relaxation of statistical mechanical systems in the
proximity of the phase-transition region, and is related to the problem of
understanding the metastable behavior of systems in such regions.
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It is well known that a ferromagnetic material which is in equilibrium under a
negative external magnetic field relaxes to equilibrium very slowly after the mag-
netic field is switched to a small positive value. A detailed mathematical analysis
of such a phenomenon can only be performed on simplified models. It is widely
accepted that an appropriate model for this and many other purposes is a kinetic
Ising model: a Markov process which endows the traditional Ising model with a
particular stochastic dynamics. On each vertex of an infinite lattice Z

d, we have
variables (called spins) which take the values −1 or +1. The system evolves in
continuous time as a Markov process which is time-reversible and has as invariant
measures the classical Gibbs measures of statistical mechanics. When the tem-
perature parameter, T , appearing in the definition of the model is small enough,
there is a phase transition which takes place when the external field parameter,
h, changes sign (this corresponds to the change from a negative to a positive ori-
entation of most spins). The question then arises of how the system relaxes to
equilibrium when h is small and positive, and the system is initially in an equilib-
rium distribution corresponding to a small negative value of h.

Simulations have shown that the relaxation mechanism is driven by the behavior
of the clusters (droplets) of +1-spins which form initially in the sea of −1-spins.
While small droplets tend to shrink and disappear, large ones tend to grow and
are responsible for the relaxation. This phenomenon has long been understood on
non-rigorous heuristic grounds, and can be used to predict for instance the order
of magnitude, as h ց 0, of the relaxation time for the process. The prediction
is that the relaxation time grows as exp(λhd−1), where λ is a constant which
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can be computed. The value of λ is, in particular, related to the equilibrium
surface tension of the Ising model through the Wulff construction, which solves a
variational problem.

In this note we will overview rigorous results of the type described above and
also some important extensions. A thorough review of metastability, even in the
context of the kinetic Ising models, is far beyond the scope of this note. Here
we will limit ourselves to the main results in the papers [Sch1] and [SS], which
concern metastability in the vicinity of the phase transition region. A great deal
of recent progress on metastability of the kinetic Ising models stems from the
fact that these models also display metastable behavior away from this region, at
low enough temperature. For a detailed discussion of relations between the various
manifestations of metastability of kinetic Ising models we refer the reader to [Sch2],
where further reference to the literature can also be found. More recent progress in
this direction is contained in [Nev], [BC], [DS], [CO], [CL] and references therein.
For a paper which reports on extensive numerical studies directly related to the
mathematical work reviewed here, we refer the reader to [RTMS].

The precise definition of the kinetic Ising models is lengthy and somewhat
technical. It can be found, e.g., in [Sch1] and [SS]. For the purpose of this note it
is best to just give a somewhat intuitive description. At each site of the lattice Z

d

there is a variable (spin) which can take the value −1 or +1. The configuration on

the complete lattice is then an element of the space Ω = {−1,+1}Z
d

. The system
evolves in time, with spins flipping back and forth, at rates which depend on the
state of nearby spins. The system as a whole is a Markov process with state space
Ω. The interaction among spins is driven by an energy function (Hamiltonian)
formally defined on Ω by

Hh(σ) = −
1

2

∑

x,y n.n.

σ(x)σ(y)−
h

2

∑

x

σ(x),

where “x, y n.n.” means that x and y are nearest neighbors in Z
d, i.e., they are

separated by Euclidean distance 1, h ∈ R is the external field and σ ∈ Ω is a
generic configuration.

Formally, Gibbs distributions are defined as probability distributions µ over Ω,
with

µ(σ) =
exp(−Hh(σ)/T )

Normalization
,

where T = 1/β > 0 is the temperature. When h 6= 0 or T > Tc = Tc(d) it is
known that there is a unique Gibbs distribution, which then describes the system
in equilibrium and will be denoted by µT,h. In d = 1, Tc = 0, but for d ≥ 2,
Tc > 0. The segment {{0} × (0, Tc)} of the phase diagram h × T corresponds
then to the phase-transition region. For these values of the parameters there
are multiple Gibbs distributions; one of them corresponds to a limit of Gibbs
distributions under h < 0 (resp. h > 0) as h ր 0 (resp. h ց 0), and is called the
(−)-phase (resp. the (+)-phase), represented by µT,− (resp. µT,+). Expectations
with respect to Gibbs measures will be denoted in the standard fashion

〈f〉T,h =

∫

fdµT,h.
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Of particular interest is the magnetization m(T, h) = 〈σ(0)〉T,h. Away from the
phase-transition region, m(T, ·) is analytic. It is nevertheless believed that for
T < Tc this function has no analytic continuation from h < 0 to h > 0. This
result has been proved indeed for low enough T in [Isa].

The time evolution which defines the kinetic Ising model as a Markov process
on Ω is given by a generator L of the form given next. Intuitively, when the
configuration is σ, the spin at each site x ∈ Z

d is flipping at a rate c(x, σ).

(Lf)(σ) =
∑

x∈Zd

c(x, σ)(f(σx)− f(σ)).

Here f : Ω → R is supposed to be a local observable, i.e., to depend only on the
spin at finitely many sites of the lattice, σx is the configuration obtained from σ
by flipping the spin at the site x, and c(x, σ) is called the rate of flip of the spin
at the site x when the system is in the state σ. The rates c(x, σ) are supposed to
satisfy certain conditions, the main one of them being called detailed balance or
reversibility, and formally given by

µ(σ)c(x, σ) = µ(σx)c(x, σx).

This assures that the Gibbs distributions are invariant for the process. Other
conditions are that the rates are invariant under translations of the lattice, are of
finite range of dependency, are monotone in the configuration and external field,
and are uniformly bounded above and below when T is fixed and |h| is small.
Several choices can be made for the rates, satisfying all this conditions. To give a
few examples, we introduce

∆xHh(σ) = Hh(σ
x)−Hh(σ).

Common choices of rates are:
Example 1) Metropolis Dynamics

cT,h(x, σ) = exp(−β(∆xHh(σ))
+),

where (a)+ = max{a, 0} is the positive part of a.

Example 2) Heat Bath Dynamics

cT,h(x, σ) =
1

1 + exp(β∆xHh(σ))
.

Example 3)

cT,h(x, σ) = exp

(

−
β

2
∆xHh(σ)

)

.

If in the kinetic Ising model the initial configuration is selected at random
according to a probability measure ν, then the resulting process is denoted by
(σν

T,h;t)t≥0. When ν is concentrated on the configuration with all spins −1, we

will denote this process by (σ−
T,h;t)t≥0. The probability measure on the space of

trajectories of the process will be denoted by P, and the corresponding expectation
by E.

The following is the main result of [Sch1].
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Theorem 1. For each dimension d ≥ 2 there is T0 > 0 such that for every
temperature T ∈ (0, T0) the following happens. There are constants 0 < λ1(T ) ≤
λ2(T ) < ∞ such that if we let h ց 0 and t → ∞ together, then for every local
observable f
i) E(f(σ−

T,h;t)) → 〈f〉T,− if lim suphd−1 log t < λ1(T ).

ii) E(f(σ−
T,h;t)) → 〈f〉T,+ if lim inf hd−1 log t > λ2(T ).

Explicit estimates on the values of λ1(T ) and λ2(T ) were also given in [Sch1].
The theorem above was conjectured by Aizenman and Lebowitz in [AL], where
they proved a similar result for certain deterministic cellular automata evolving
from initial random configurations selected according to translation invariant prod-
uct measures. Actually they conjectured the stronger result, which states that also
λ1(T ) = λ2(T ) =: λc(T ).

Theorem 1 was greatly improved in [SS] in the case in which d = 2. In particular
in this paper the conjecture by Aizenman and Lebowitz was fully vindicated in
this case. A somewhat simplified and partial statement of the main result in [SS]
is as follows.

Theorem 2. Suppose d = 2 and T < Tc. There is a constant λc = λc(T ) such
that for every probability distribution ν = µT,h′ , h′ < 0, the following happens.

i) If 0 < λ < λc, then for each n ∈ {1, 2, ...} and for each local observable f ,

E

(

f
(

σν
T,h;exp(λ/h)

))

=

n−1
∑

j=0

1

j!

dj〈f〉T,ĥ

dĥj

∣

∣

∣

∣

∣

ĥ=0−

hj +O(hn)

for h > 0, where O(hn) is a function of f and h which satisfies
lim suphց0 |O(hn)|/hn < ∞.

ii) If λ > λc, then for any finite positive C there is a finite positive C1 such that
for every local observable f ,

∣

∣

∣
E

(

f
(

σν
T,h;exp(λ/h)

))

− 〈f〉T,h

∣

∣

∣
≤ C1 ||f ||∞ exp

(

−
C

h

)

,

for all h > 0.

The value of λc(T ) can be written in terms of other quantities which are re-
lated to the equilibrium distributions of the Ising model. This expression and its
meaning, which are of great relevance, will be presented later in the paper. Next
we compare Theorems 1 and 2 and explain some of their content.

Three of the ways in which Theorem 2 improves on Theorem 1 when d = 2
are: 1) There is a single constant λc separating the regimes (i) and (ii). 2) The
temperature is now only required to be below Tc. 3) The initial distribution is
much more general than in Theorem 1, where it was supposed to be concentrated
on the configuration with all spins down. It is natural indeed to start from an
equilibrium state at a small negative h, change it to a small positive h and observe
the evolution of the system afterwards.
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To illustrate and clarify the main way in which Theorem 2 improves further the
statement in Theorem 1, let us take the local observable given by f(σ) = σ(0) and
n = 2. We have then, when 0 < λ < λc

E

(

σν
T,h;exp(λ/h)(0)

)

= −m∗ + χh+O(h2),

when h > 0. Here

m∗ = m∗(T ) = 〈σ(0)〉T,+ = −〈σ(0)〉T,−,

is the spontaneous magnetization, and

χ = χ(T ) =
d〈σ(0)〉T,h

dh

∣

∣

∣

∣

h=0−

=

(

β

2

)

∑

x∈Z2

{〈σ(0)σ(x)〉T,− − 〈σ(0)〉T,−〈σ(x)〉T,−} ,

is the susceptibility at h = 0−. This means that when h > 0 is small the function

−m∗ + χh is a better approximation to E

(

σν
T,h;exp(λ/h)(0)

)

than the constant

function identical to −m∗ = 〈f〉T,−. This function −m∗ +χh is the smooth linear
continuation into the region h ≥ 0 of the function which to h < 0 associates
the equilibrium expectation 〈f〉T,h. Similar interpretations can be given for larger
values of n and arbitrary f . In this sense Theorem 2 shows that the dynamics gives
meaning to arbitrarily smooth metastable continuations of the distributions µT,h,
h < 0, into the region h > 0, inspite of the absence of an analytic continuation.

In the Physics literature (see, e.g., [BM]), one sometimes relates the metastable
relaxation of a system to the presence of a “plateau” in the graph corresponding to

the time evolution of a quantity of the type of E
(

f
(

σν
T,h;t

))

. Of course, strictly

speaking there is no “plateau”, and generically the slope of such a function is never
0. Still, from the experimental point of view a rough “plateau” can be seen and

described as follows. In a relatively short time E
(

f
(

σν
T,h;t

))

seems to converge to

a value close to 〈f〉T,−; after this, one sees an apparent flatness in the relaxation
curve over a period of time which may be quite long compared with the time
needed to first approach this value. But eventually the relaxation curve starts to
deviate from this almost constant value and move towards the true asymptotic
limit, close to 〈f〉T,+. The experimentally almost flat portion of the relaxation
curve is referred to as a “plateau”. Theorem 2 can be seen to some extent as
giving some precise meaning to such a “plateau”, and we discuss now two ways in
which this can be done. First note that if 0 < λ′ < λ′′ < λc, then from Part (i) of
the Theorem we have

E

(

f
(

σν
T,h;exp(λ′/h)

))

− E

(

f
(

σν
T,h;exp(λ′′/h)

))

→ 0,

faster than any power of h. Observe that we are considering times which are
of different order of magnitudes, when h is small, and still we are observing a
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nearly constant E
(

f
(

σν
T,h;t

))

. For a second way in which Theorem 2 can be seen

as expressing the presence of a “plateau”, we can think of plotting E

(

f
(

σν
T,h;t

))

versus log(t), rather than versus t. This is somewhat the natural graph to consider,
if one is interested in the order of magnitude of the relaxation time. If the log(t)-
axis is drawn in the proper scale, amounting to replacing it with h log(t), then,
when h is small, Theorem 2 tells us that the graph should be close to that of a step
function which jumps at the point λc, from the value 〈f〉T,− to the value 〈f〉T,+.

The relation between the constant λc(T ) and some quantities related to the
equilibrium Ising model can best be explained by presenting an heuristic reasoning
which lies behind Theorems 1 and 2. The heuristics is presented next in the case
d = 2. For more on this heuristics including a different way of approaching it and
some of its history see [RTMS].

The first ingredient of the heuristics is the idea of looking at an individual
droplet of the stable phase (roughly the (+)-phase, since h is small) in a back-
ground given by the metastable phase (roughly the (−)-phase). Let S be the shape
of that droplet, which a priori can be arbitrary. Say that l2 is the volume (i.e., the
number of sites) of the droplet, and let us find an expression for the free-energy
of such a droplet. This free-energy may be seen as coming from two main contri-
butions. There should be a bulk term, proportional to l2. This term should be
obtained by multiplying l2 by the difference in free-energy per site between the
(+)-phase and the (−)-phase in the presence of a small magnetic field h > 0. This
difference in the free-energy per site of the two phases should come only from the
term in the Hamiltonian which couples the spins to the external field and should
therefore be given by 2m∗h/2 = m∗h. The other relevant contribution to the
free-energy of the droplet should come from its surface, where there is an interface
between the (+)-phase and the (−)-phase. This contribution is proportional to
the length of the interface, which is of the order of l. It should be multiplied
by a constant wS which depends on the shape of the droplet. This constant wS

represents the excess free-energy per unit of length integrated over the surface of
the droplet when its scale is changed so that its volume becomes 1. Adding the
pieces, we obtain for the free-energy of the droplet the expression

ΦS(l) = −m∗hl2 + wSl.

The two terms in this expression become of the same order of magnitude, in case l
is of the order of 1/h. Therefore, it is natural to write l = b/h, with a new variable
b ≥ 0. This yields

ΦS(b/h) =
φS(b)

h
,

where
φS(b) = −m∗b2 + wSb.

This very simple function takes the value 0 at b = 0, grows with b on the interval
[0, BS

c , ], where BS
c = BS

c (T ) = wS

2m∗
, reaching its absolute maximum φS(B

S
c ) =

(wS)
2

4m∗
= AS(T ) = AS at the end of this interval. Then it decreases with b on the

semi-infinite interval [BS
c ,∞), converging to −∞ as b → ∞.
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Metastability is then “understood” from the fact that systems in contact with
a heat bath move towards lowering their free-energy, so that the presence of a
free-energy barrier which needs to be overcome in order to create a large droplet
of the stable phase with any shape keeps the system close to the metastable phase.
Subcritical droplets are constantly being created by thermal fluctuations, in the
metastable phase, but they tend to shrink, as dictated by the free-energy land-
scape. On the other hand, once a supercritical droplets is created due to a larger
fluctuation, it will grow and drive the system to the stable phase, possibly colliding
and coalescing in its growth with other supercritical droplets created elsewhere.
As a function of h, the linear size of a critical droplet, BS

c /h, blows up as h ց 0.
One can then, in a somewhat circular, but heuristically-meaningful way, say that
the macroscopic free-energy of droplets is indeed a relevant object of consideration.
One can also hope then that sharp theorems could be conjectured and possibly
proven regarding the asymptotic behavior of quantities of interest in the limit
h ց 0.

Regarding the shape of the droplet, the height of this barrier is minimized by
minimizing the value of the constant wS. It is a fact (see [DKS]) that indeed one
can introduce a well defined surface tension function between the (+)-phase and
the (−)-phase, and that it produces a single convex shape S which minimizes wS .
This shape is called the Wulff shape. We will simplify the notation by omitting
the subscript S when it is the Wulff shape. In particular,

Bc =
w

2m∗
, A =

w2

4m∗
.

Based on the expression above for the free-energy barrier, one predicts the rate

of creation of supercritical droplets with center at a given place to be exp
(

−βA
h

)

.

In what follows now we write d instead of 2, to make the role of the dimension
clear in the geometric argument which comes next. We are concerned with an
infinite system, and we are observing it through a local function f , which depends,
say, on the spins in a finite set Supp(f). For us the system will have relaxed to
equilibrium when Supp(f) is covered by a big droplet of the plus-phase, which
appeared spontaneously somewhere and then grew, as discussed above. We want
to estimate how long we have to wait for the probability of such an event to be
large. If we suppose that the radius of supercritical droplets grows with a speed
v, then we can see that the region in space-time where a droplet which covers
Supp(f) at time t could have appeared is, roughly speaking, a cone with vertex
in Supp(f) and which has as base the set of points which have time-coordinate 0
and are at most at distance tv from Supp(f). The volume of such a cone is of the
order of (vt)dt. The order of magnitude of the relaxation time, trel, before which
the region Supp(f) is unlikely to have been covered by a large droplet and after
which the region Supp(f) is likely to have been covered by such an object can now
be obtained by solving the equation

(vtrel)
d trel exp

(

−
βA

h

)

= 1.
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This gives us

trel = v−d/(d+1) exp

(

βA

(d+ 1) h

)

.

In order to use this relation to predict the way in which the relaxation time scales
with h, one needs to figure out the way in which v scales with h. If we suppose,
for instance, that v does not scale with h, or at least that if it goes to 0, as h ց 0,
it does it so slowly that

(1) lim
hց0

hd−1 log v = 0,

then we can predict that

trel ≃ exp

(

βA

(d+ 1) h

)

= exp

(

λc

h

)

,

where

(2) λc =
βA

d+ 1
=

βw2

(d+ 1) 4m∗
=

βw2

12 m∗
.

The heuristics above may seem extremely crude. Potentially the interaction
between droplets could spoil the whole picture and lead to a much faster decay.
In the opposite direction, even if the droplet picture makes sense, their speed of
growth could be so slow that (1) could fail an therefore the relaxation time would
be much larger than predicted above.

One of the major contributions of [SS] is to prove that indeed λc in Theorem
2 is given by (2). This means that close to the phase transition region the time
evolution can be well described in first approximation by the highly simplified
droplet dynamics.
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