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Abstract. We review recent work on derivations of the Euler, incom-
pressible Navier-Stokes and Boltzmann equations from scaling limits of
microscopic dynamics.
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I. Introduction

Macroscopic equations such as the Euler equations, Navier-Stokes equations or
Boltzmann equation are usually derived through a continuum formulation of con-
servation of mass and momentum or in the last case, by idealizing the collision
process. But, they also have a more fundamental origin in the microscopic equa-
tions of Newton or Schrodinger. The main question is whether this assertion can
be put on a firm mathematical foundation and whether macroscopic concepts such
as the viscosity, the nonlinearity, and the dissipation of the entropy can be un-
derstood microscopically. There are other important questions about many-body
dynamics such as fluctuations, time-dependent correlations and behavior of tagged
particles which are naturally formulated only on the microscopic level, but due to
the restriction of the length of this review, we shall address only the first question
here.

In statistical physics, continuum quantities such as density, velocity, and en-
ergy have microscopic versions which assume their macroscopic, deterministic val-
ues through the law of large numbers. Therefore, in order the equations describing
the evolution of the macroscopic quantities to be exact, certain limits have to be
taken, with suitably chosen scalings of space, time, and other macroscopic param-
eters of the systems. So the first step in the derivation of such equations is a choice
of scaling. Denote coordinates by lower case letters (x, t) in the microscopic scale;
by capital letters (X,T ) in the macroscopic scale. We put the system in a cube of
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size L in d-dimensional space with periodic boundary condition and we will usually
assume d = 3. Denote the particles by (x1, · · · , xN , v1, · · · , vN ) with the density
(in the microscopic unit, i.e., number of particles per microscopic unit volume)
ρ = N/Ld. Let ε be the ratio between the microscopic unit and the macroscopic
unit (say, ε ∼ 10−8). There are typically three choices of scalings:







Grad ρ = ε, (X,T ) := (xε, tε)

Euler ρ = 1, (X,T ) := (xε, tε)

Diffusive ρ = 1, (X,T ) := (xε, tε2)







=⇒







collisions

per particle
:

finite

ε−1

ε−2







(1.1)

The Euler and diffusive limits will be referred to as hydrodynamic limits. The
typical number of collisions is finite for the Grad limit; infinite in the hydrody-
namic limits. Hence the Grad limit is the closest to free motion without collisions.
Essentially due to this feature, O. Lanford [12] proved the convergence of the hard
core billiards to the Boltzmann equation in the Grad limit in short time based on
the BBGKY hierarchy. Lanford’s work, though restrictive in many ways, remains
the only rigorous result on the scaling limits of many-body Hamiltonian systems
with no unproven assumptions.

II. Euler Equations

At present there is no rigorous derivation of Euler equations from Hamiltonian
mechanics. Unlike the Grad limit, the Euler limit involves an infinite number
of collisions and the typical behavior is governed by the stationary (equilibrium,
invariant) states, which are assumed to be Gibbs in the famous Boltzmann Hy-
pothesis. More precisely:
Boltzmann Hypothesis : The invariant (stationary) measures of many body
classical dynamics are Gibbs ∼ e−βH . In particular, the typical velocity distribu-
tions of different particles are uncorrelated (Weak Boltzmann Hypothesis).

The Boltzmann Hypothesis is strictly speaking incorrect because there are
singular invariant measures. We believe that these singular invariant measures can
be removed by regularity assumption such as finite specific entropy, i.e., entropy
per microscopic unit volume is finite. The following theorem is a joint work with
S. Olla and S. Varadhan [15].

Theorem. Assume the weak Boltzmann Hypothesis holds for invariant measures
with finite specific entropy. Suppose the Euler equation has a smooth solution in
[0, T ]. Then the empirical density, velocity. and energy converge to the solution
of the Euler equations in [0, T ] with probability one.

Recall that classical dynamics are characterized by a Hamiltonian

H(x, v) =
1

2

N∑

α=1

‖vα‖
2 +

∑

α<β≤N

V (xα − xβ) (2.1)

with V a two-body potential and the Liouville equation

∂tfN,t(x1, · · · , xN , v1, · · · , vN ) = L∗fN,t (2.2)
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Scaling Limit of Particle Systems 195

where fN,t is the density (w.r.t. the standard Lebesgue measure) of the system at
time t and the Liouville operator is given by

−L∗ = L =
N∑

α=1

[
∂H

∂vα

∂

∂xα
−
∂H

∂xα

∂

∂vα

]

with the adjoint taken w.r.t. the standard Lebesgue measure.
For a given configuration ω = (x1, · · · , xN , v1, · · · , vN ) the empirical density

and velocity (which rigorously speaking are measures) are defined by

ρ̂ǫ,ω(X) = N−1
N∑

α=1

δ(X − εxα) ,

v̂ε,ω(X) = N−1
N∑

α=1

δ(X − εxα)vα ,

where δ is the standard delta function on Euclidean space. We shall say
ρ̂ε,ω(T/ε)(X) has a density ρ(X,T ) if for any test function J on the unit torus,

∫

J(εx)ρ̂ǫ,ω(T/ε)(X)dX = N−1
N∑

α=1

J( ε xα(T/ε) ) →

∫

J(X)ρ(X,T )dX

as ε→ 0. Similarly for the velocity,

N−1
N∑

α=1

J( ε xα(T/ε) ) vα(T/ε) →

∫

J(X) (ρv)(X,T )dX.

To obtain the Euler equation, we differentiate the velocity

d

dT

∫

J(X)ρ(X,T )v(X,T )dX ∼ ε−1 d

dt
N−1

N∑

α=1

J(εxα)vα

= −(2N)−1
N∑

α=1

ε−1J(εxα)
∂H

∂xα
+ · · ·

= −(2N)−1
N∑

α=1

∇J(εxα)
∑

β 6=α

xα − xβ
ε

· (∇V )

(
xα − xβ

ε

)

︸ ︷︷ ︸

micro current

+ · · · (2.3)

(the micro current appearing here is only a main term for illustration of the idea).
Recall the Euler equations:

dρ

dt
+∇ (ρv) = 0

d (ρv)

dt
+∇ [ρv ⊗ v + P ] = 0

d (ρe)

dt
+∇ [ρe v − v P ] = 0
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Here the pressure P is a function of density, velocity and energy and is determined
by the equation of state from the equilibrium Gibbs measure. So in order to obtain
the Euler equations we need to show that

micro current → macro current (= P (ρ̂ε,ω, v̂ε,ω, êε,ω)) (2.4)

in the limit ε→ 0. This equality is understood in the sense of law of large numbers
w.r.t. the density of the systems fN,t at time t, i.e.,

N−1

∫

fN,t(ω)
∣
∣
∣

N∑

α=1

∇J(εxα)

×
[ ∑

β 6=α

xα − xβ
ε

· (∇V )

(
xα − xβ

ε

)

− P (ρ̂ε,ω, v̂ε,ω, êε,ω)
] ∣
∣
∣dω → 0

(2.5)
where dω = dx1dv1 · · · dxNdvN .

The density fN,t satisfies the Liouville equation (2.2). At the present time
we have essentially no estimate on this equation and the required identity has not
been proved. To appreciate the difficulties, we list a few comments on the Liouville
equation:
• It conserves Lp norm and positivity (thus fN can be considered as a probability
density) but Lp norm is not useful since ‖ fN ‖p∼ eCN which is a huge number.
• There is no elliptic theory for classical dynamics.
• The BBGKY method works only for perturbation of free dynamics and thus is
only useful for the Grad limit for which ρ ∼ ε.

Instead of approaching it via elliptic estimates or Lp theory, a useful way to
establish (2.5) is to consider the ergodic property of the Hamiltonian systems. The
key observation, due to Morrey [14], is that (2.5) holds if we replace fN,t by any
Gibbs measure (with Hamiltonian H (2.1)), or more generally, if “locally” fN,t
is a Gibbs measure of the Hamiltonian H. If we can prove that “locally” fN,t is
a equilibrium measure with finite specific entropy, we have proved (2.5) provided
that we assume the Boltzmann Hypothesis. So the proof of Theorem 2.1 consists
of two main ingredients: 1. Prove that the weak Boltzmann hypothesis implies
the Boltzmann hypothesis. 2. Clarify the precise meaning of the word “locally”
and eliminate the possibility of meso-scale fluctuation. The method we used for 2
is the relative entropy method.

Recall that for any two probability densities the relative entropy is defined by

S(f |g) =

∫

f log(f/g)dω

Suppose ft is a solution of the Liouville equation and ψt is any density. Then

∂tS(ft|ψt) =

∫

ft
{
ψ−1
t [L∗ − ∂t]ψt

}
dω (2.6)

This identity can be checked easily from the Liouville equation. It also has a
version for Markov processes:

∂tS(ft|ψt) = −D(ft|ψt) +

∫

ft
{
ψ−1
t [L∗ − ∂t]ψt

}
dω (2.7)
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where D(f |ψ) is the Dirichlet form of f w.r.t. ψ and is nonnegative [21, 15]. Now
recall the entropy inequality (or the Jensen inequality) which states that for any
function W , ∫

fWdω ≤ S(f |ψ) + log

∫

ψ exp (W ) dω

Thus from (2.6),

∂tS(ft|ψt) ≤ S(ft|ψt) + log

∫

ψt exp
{
ψ−1
t [L∗ − ∂t]ψt

}
dω

If we have

N−1 log

∫

ψt exp
{
ψ−1
t [L∗ − ∂t]ψt

}
dω → 0 (2.8)

then the relative entropy can be controlled on the relevant time scale and this will
imply the estimate (2.5) and thus the Euler equations. Note that the left hand side
of (2.8) is independent of ft so the remaining argument in [15] can be summarized
as showing that (2.8) holds iff ψt is a local Gibbs state with density, velocity and
energy chosen according to the Euler equations (Note: As it is, (2.8) is incorrect;
some arguments using ergodicity of the Hamiltonian dynamics are also needed).
This is essentially a dynamical variational approach because we solve the problem
by guessing a good trial function which in this case is the local Gibbs state.

III The incompressible Navier-Stokes equations

The Navier-Stokes equations are the next order corrections to the Euler equations.
In order to derive them one needs to show that

micro current → macro current+ εν∇v̂ε,ω + o(ε) (3.1)

where the currents are given by (2.3) and (2.4) and ν is the viscosity. Since there
is an ε appearing in the viscosity term, (3.1) is in a sense the next order correction
to the Boltzmann hypothesis! From the expression for the micro current in (2.3),
it is hard to even imagine how the viscosity correction arises. This difficulty was
recognized decades ago by Dobrushin, Lebowitz, and Spohn, among others. Recent
work [20, 7, 8, 13] has given us a good understanding of the nature of (3.1), though
a rigorous proof from the Hamiltonian dynamics is still very far off.

The equation for the leading order terms of (3.1) is (2.4) and it holds w.r.t.
Gibbs measures in the sense of law of large numbers. The difficulty to justify (2.4)
rigorously for Hamiltonian dynamics (i.e. (2.5)) is to prove that the solutions
to the Liouville equation are locally stationary and all stationary measures are
Gibbs. On the other hand, one can check easily that (3.1) is incorrect w.r.t any
Gibbs measures with Hamiltonian H. Indeed, (3.1) is a “dynamical identity”. It
can be interpreted physically via the linear response theory or the Green-Kubo
formula (see [17] for an account). A more mathematical interpretation is through
the fluctuation-dissipation equation which we now explain.

Roughly speaking, the fluctuation-dissipation equation states that

micro current → macro current+ εν∇v̂ε,ω + εLg + o(ε) (3.2)
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for some function g(ω), where L is the Liouville operator. In other words, (3.1) is
correct only up to a quotient of the image of the Liouville operator. The image of
the Liouville operator is understood as fluctuation, negligible in the relevant scale
after time average: for any bounded function g

ε

∫ t

0

ds

∫

fs,N (ω) (εLg)(ω) dω = ε2
∫

[ft,N − f0,N ](ω) g(ω) dω ∼ ε2

and is thus negligible to the first order in ε, the relevant scale.
It is difficult to work on “next order correction” and thus we turn to the

incompressible Navier-Stokes (INS) equations

∂u

∂t
+ u · ∇u = −∇p+∇ν∇u, ∇ · u = 0. (3.3)

The INS equations are invariant under the incompressible scaling,

x→ εx, t→ ε2t, u→ ε−1u, p→ ε2p, (3.4)

under which (3.2) becomes

micro current → macro current+ ν∇v̂ε,ω + Lg (3.5)

Notice that both the viscosity and the function g are unknown and (3.5) determines
both. We interpret (3.5) as a decomposition of the space of microscopic currents
into a direct sum of the space of macroscopic currents, the gradient of the velocity
representing the dissipation and the image of the Liouville operator representing
the fluctuation.

Equation (3.5) is extremely difficult to solve as it requires inversion of the
Liouville operator. A class of more manageable stochastic lattice gas models were
introduced in a joint work with R. Esposito and R. Marra [8]. Even for these,
(3.5) requires the inversion of a nonsymmetric operator in infinite dimensions
with a complex interaction. If the generator L is symmetric, i.e., the dynamics
is reversible, (3.5) can be solved by formulating the problem in an appropriate
space so that it reduces to inverting a self-adjoint operator. This formulation, due
to S. Varadhan [20], is already quite sophisticated since the terms appearing in
(3.5) do not live in a natural space. On the other hand, in order to obtain the
INS equations, the dynamics has to retain essential features of the Hamiltonian
dynamics; this forces us into nonzero drifts and therefore nonreversibility. The
invertibility in the nonsymmetric case is very subtle [13]. Dimension comes into
play, and we believe that (3.5) has no solution at all for dimension d ≤ 2.

In the models of [8] particles have velocities in a chosen finite set and at each
site of the lattice at most one particle of each velocity is allowed. The dynamics
consists of two parts: Random walks and binary collisions between particles. The
random walk part of the dynamics requires only that particles with velocity v
should have the mean drift v. The binary collisions conserve momentum. Note
that conservation of energy is not important here because the INS equations are
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Scaling Limit of Particle Systems 199

equations of velocity alone. The combined dynamics should have good ergodic
properties and also restore rotational symmetry in the limit. The restoration of
the rotational symmetry is not trivial because the lattice structure breaks the
symmetry. Sets of velocities and dynamics satisfying all the requirements can be
found in [8].

The main result in [8] states that (3.5) has a solution (in a suitable sense) for
d ≥ 3 and if the INS equations have a strong solution up to a fixed time T then
the rescaled empirical velocity densities (measures)

vε,ω(X) := εd−1
∑

x

δ(X − εx)
∑

v

vη(x, v) (3.6)

converges to that solution. Here η(x, v) ∈ {0, 1} is the number of particles of
velocity v at site x. Notice the blowup of the velocity by ε−1 in accordance with
the scaling (3.4).

The assumption that the INS equations have a strong solutions has a long his-
tory in their derivation from more basic models. Derivations of the INS equations
from the Boltzmann equation go back already a century to Chapman, Enskog and
Hilbert, and were made rigorous in the seventies [4,5]. However the removal of the
smoothness assumption has not been so easy. A program [3] of deriving the weak
(Leray) solutions from the DiPerna-Lions solutions of the Boltzmann equation re-
mains far from complete, due to a lack of good estimates. Though it was believed
that the analysis of particle systems would be even more difficult because they are
essentially infinite dimensional, in a joint work with J. Quastel [16] we have been
able to remove this obstacle.

Theorem 3.1. Let Pε be the distributions of the empirical momentum densities
(3.6). Then Pε are precompact (as a set of probability measures with respect to a
suitable topology) and any weak limit is supported entirely on weak solutions of
the INS equations satisfying the energy inequality.

Theorem 3.1 is proven only for d = 3. The restriction d ≤ 3 is for technical
reasons; the restriction d ≥ 3, however, is intrinsic. Since the macroscopic velocity
is defined through the law of large numbers in statistical physics, it inherits a small
fluctuation from the central limit theorem, which is of order εd/2. When we blow
up the velocity by ε−1 in the incompressible limit (3.6), this term becomes of order
one or larger for dimensions d ≤ 2 and thus the macroscopic velocity is not well
defined in this limit. Note that this argument applies to any dynamics including
the Hamiltonian dynamics.

Though (3.5) determines the viscosity, it is important to have an indepen-
dent characterization, traditionally expressed as a time integral of current-current
correlation functions, which up to constants is given by:

ν =

∫ ∞

0

〈
micro current (t = 0); micro current (t = s)

〉
ds (3.7)

where
〈
f ; g

〉
=

〈
fg

〉
−

〈
f
〉〈
g
〉
is the correlation function and the expectation is

w.r.t. lattice gas dynamics starting from equilibrium. This is called the Green-
Kubo formula and is proved rigorously in [13, 8] for d ≥ 3. For dimension d ≤ 2,
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the Green-Kubo formula (3.7) diverges, (3.5) has no solution, and the time scaling
is faster than diffusive. We are thus forced to conclude that the two dimensional
INS equations cannot be obtained as the incompressible limit of any microscopic
dynamics.

A large deviation principle was also given in [16]. One main step in [16]
is a proof of the energy estimate for the INS equations directly from the lattice
gas dynamics by implimenting a renormalizatin group analysis. The techincally
most demanding points, the large field problems in the standard field theory and
the large fluctuation here, are controlled by the entropy method [10] and and the
logarithmic Sobolev inequality [22]. The entropy method is an infinite dimensional
version of the energy method in PDE; the logarithmic Sobolev inequality plays the
role of the usual Sobolev inequalities.

IV Quantum Dynamics

Most problems concerning classical or stochastic dynamics have corresponding
quantum versions. They are however often too difficult to study. The classical
or stochastic dynamics are governed by the evolution of a probability density;
the quantum dynamics by a complex wave function. Although both dynamics are
linear, the physics in the quantum case is given by the square of the wave function,
breaking the superposition law. Furthermore, the evolution of a wave function is
determined by its phase which is very hard to control. We mention here a result
on the quantum Lorentz gases [6] to give some flavor of quantum dynamics.

Classical Lorentz gases model a classical particle in an environment of fixed
scatterers distributed randomly (or periodically). The question is the time evo-
lution of this particle for a typical configuration of the scatterers. Denote by
ω = (xα), α = 1, · · · , N, the configuration of scatterers in a cube of width L. We
are interested in the Grad limit (1.1) with ̺ = N/Ld denoting the density of the
scatterers. The typical number of collisions is now of the order tρ ∼ 1. It was
proved in [9,19, 1] that its time evolution converges to a linear Boltzmann equation

∂TFT (X,V ) + V · ∇XFT (X,V ) =

∫

σ(U, V ) [FT (X,U)− FT (X,V )] dU, (4.1)

where F is the phase space density and σ(U, V ) is the scattering cross section.
The quantum Lorentz gases can be obtained by simply replacing the classical

dynamics by the quantum dynamics. More precisely, let V0(x) be a fixed “nice”
function. The Schrödinger equation governing the quantum particle is given by

i∂tψt = HN,Lψt, ψt=0 = ψ0, (4.2)

where the Hamiltonian is given by

HN,L = H := −∆/2 + Vω, Vω(x) =
N∑

α=1

V0(x− xα). (4.3)

The classical phase space density of a wave function ψ is defined through the
Wigner transform:

Wψ(x, v) :=

∫

ψ(x+ z/2)ψ(x− z/2)eivzdz.
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The scaling is the same as in the classical case,

W ε
ψ(X,V ) :=Wψ(X/ε, V ). (4.4)

Notice that the velocity is not rescaled. The Wigner transform typically has no
definite sign, and the associated Husimi function or coherent states are needed to
define a positive density, but we will not go into these details here.

Let ψεω,t be the solution to the Schrödinger equation (4.2), (4.3) with initial
data ψε0. Suppose that the initial data is of the following form

ψε0(x) = ε3/2h(εx)eiu0x,

for some smooth functions h so that as ε → 0 the rescaled Wigner transform
W ε
ψε

0

(X,V )dXdV converges weakly to |h(X)|2δ(V − u0)dXdV =: F0(X,V )dXdV

as probability measures on R2d. Then in dimension d = 3 and for V0 small enough
(so that there is no bound state) our main result with L. Erdős [6] is that for any
T > 0,

EW ε
ψε

ω,T/ε
W (X,V )dXdV → FT (X,V )dXdV

weakly as ε → 0 and FT (X,V ) satisfies the linear Boltzmann equation (3.6) with
initial data F0(X,V ) and effective collision kernel σ given by the quantum scat-
tering operator of the potential V0.

A simple example illustrates the difference between the classical and the quan-
tum dynamics. Suppose that the particle in a Lorentz gas has one collision. Clas-
sically we simply choose a scatterer and the particle collides with it. In quantum
mechanics, we have from the Duhamel formula

ψt = e−itHψ0 = e−itH0ψ0 − i

∫ t

0

e−i(t−s)H0V e−isH0ψ0 ds+ · · ·

where Vω is the potential given in (4.3) and H0 = −∆/2. The one collision term is

the second term on the right hand side which, for simplicity, we write as
∑N
α=1 ψt,α.

Notice that instead of collision with a scatterer in classical dynamics, it is now a
sum of collisions with all scatterers! Since we have to square the wave function
to get physical quantities, we need to show that the overlaps (or interference) of
off-diagonal terms

〈
ψt,α, ψt,β

〉

are very small. Stationary phase methods show they are small, but the number of
the off-diagonal terms is much larger than that of diagonal terms. The analysis of
this competition is very simple in this first term but very complicated in higher
order terms. It nevertheless can be carried out rigorously to all orders [18, 11].
However such results are restricted to the weak coupling limit (a semiclassical
limit) and short time. Instead we renormalize the perturbation theory so that we
can consider the Grad limit to obtain the quantum scattering kernel. Furthermore,
we truncate the Duhammel formula and estimate the error terms to remove the
short-time restriction and thus we obtain results global in time [6].
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