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STOCHASTIC COALESCENCE

DaviD J. ALbous?

ABSTRACT. Consider N particles, which merge into clusters accord-
ing to the rule: a cluster of size x and a cluster of size y merge at
(stochastic) rate K(x,y)/N, where K is a specified rate kernel. This
Marcus-Lushnikov model of coalescence, and the underlying determinis-
tic approximation provided by the Smoluchowski coagulation equations,
have an extensive scientific literature. A recent reformulation is the gen-
eral stochastic coalescent, whose state space is the infinite-dimensional
simplex (the state x = (x;,7 > 1) represents unit mass split into clusters
of masses z;), and which evolves by clusters of masses x; and x; coa-
lescing at rate K(z;,z;). Existing mathematical literature (Kingman’s
coalescent, component sizes in random graphs, fragmentation of random
trees) implicitly studies certain special cases. Recent work has uncovered
deeper constructions of special cases of the stochastic coalescent in terms
of Brownian-type processes. Rigorous study of general kernels has only
just begun, and many challenging open problems remain.
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1 INTRODUCTION

Our topic centers around two closely related models. The Marcus-Lushnikov pro-
cess is the following finite-state continuous-time Markov process [17, 16].

Fix an integer N > 1 and a rate kernel K(z,y) > 0. Imagine N particles,
originally separate, which merge into clusters according to the rule

each pair of clusters, sizes {m;, m;} say, coalesces into one cluster

of size m; +m; at rate K(m;, m;)/N.

The general stochastic coalescent [10] is the continuous-time Markov process whose
state space is the infinite-dimensional simplex A = {x = (z;) : 2; > 0,>_, x; = 1},
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where we imagine a state x as a fragmentation of unit mass into clusters of masses
x;, and the process evolves according to the rule

each pair of clusters, masses {z;,x;} say, coalesces into one cluster

of mass z; + x; at rate K (z;,z;).

Provided the rate kernel K is homogeneous with some exponent ~y
K(vacy):C’yK(xay)v 0<C,’I‘,y<OO (1)

we see that the Marcus-Lushnikov process is a special case of the general stochastic
coalescent, by taking each particle to have mass 1/N and rescaling time.

There is a large literature in various science disciplines (e.g. physical chem-
istry [9]) on deterministic equations (see section 3) for coalescence. A lengthy
survey of deterministic and stochastic models appears in [2]. In particular, there
are three special cases which are now well understood: K(z,y) = 1 (Kingman’s
coalescent), K(z,y) = x + y (the additive coalescent), K(z,y) = zy (the multi-
plicative coalescent). The next five sections focus on five open problems, whose
discussion will illustrate some of the known results.

2 THE FELLER PROPERTY OF THE GENERAL STOCHASTIC COALESCENT

In making precise the verbal description of the general stochastic coalescent, one
would like to prove it is a Markov process with some regularity properties, specif-
ically the Feller property that the distribution at time ¢ be weakly continuous as
a function of the initial state. Intuitively, this should be true under very weak
assumptions, e.g. that K(z,y) is continuous and strictly positive. But a proof
is elusive. Evans and Pitman [10] give a proof under stronger assumptions of
Lipschitz continuity.

3 DETERMINISTIC LIMITS

Studying t — oo time asymptotics in these models isn’t interesting: the mass all
coalesces into a single cluster. Our remaining problems concern different sorts of
asymptotics. In the Marcus-Lushnikov process write ML) (z, t) for the (random)
number of mass-x clusters at time ¢. One expects a weak law of large numbers,
saying that as N — oo

NP ML (z,8) =P n(z,t), 2>1, t>0 (2)

where the deterministic limit n(z, t) is the solution of the Smoluchowski coagulation
equation

x—1

%T’L(I,t) = % K(yvx —y)n(y,t)n(z - y7t) - n(x,t)ZK(m,y)n(y,t) (3)

y=1 y=1
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with n(z,0) = 1(;—1). It is these equations which have been studied most inten-
sively in the scientific community [9]. From the verbal description of the model
we expect solutions to have the property that mass density is preserved:

my(t) = an(x,t) =1Vt (4)
=1

This is true [23] under the assumption
Kix+y)=01+x+vy) (5)

but in general there might be a phase transition called gelation: 3Tge < 0o such
that
ml(t) =1,t< Tgel; ml(t) <1l, t> Tgel'

The physical interpretation of gelation is that after the critical time, a strictly pos-
itive proportion of mass lies in infinite-mass clusters, the gel. Exact conditions on
K for gelation or non-gelation are another open problem, but let us return to the
question of proving (2), which provides conceptual justification for the determinis-
tic approximation. Proving (2) for ¢ < Ty is closely related to proving uniqueness
of solutions of (3) up to Tye. While this is not difficult under assumption (5), the
gelling case seems intrinsically much harder, in that the natural techniques one
tries to use would prove regularity of solutions for all time, whereas by definition
a gelling kernel has solutions with a certain non-regularity property. Jeon [13] and
Norris [18] contain the latest results on such questions.

4 THE EMERGING GIANT CLUSTER FOR A GELLING KERNEL

The study of component sizes in the classical random graph process [7] is essentially
the same as the study of the Marcus-Lushnikov process with K(z,y) = ay. It
has long been known that Ty = 1 and that the N — oo behavior around the

critical point is as follows. For large A, at time 1 — A/N'/? the largest cluster
has size IN?/3 for some small §, and there are many clusters of similar size; at
time 1 + A/N'/3 the largest cluster has size DN?/3 for some large D, and the
second-largest cluster has size §N?/3. In other words, a distinguished giant cluster
emerges over the time interval 1+ O(N~'/3) and it has size ©(N?/3). See [15] for
an exhaustive analysis. Rescaling size and time near the critical point leads to a
limit process, the standard multiplicative coalescent [1], which is the K (x,y) = zy
case of the general multiplicative coalescent, except that one has to enlarge the
state space to the Iy space {x = (z;) : @; > 0,> , 27 < co}. Remarkably, the
marginal distribution of the standard multiplicative coalescent at a fixed time can
be expressed in terms of excursion-lengths of a certain inhomogeneous reflecting
Brownian motion.

No other gelling kernel is understood, so it is a matter of speculation to what
extent this behavior holds for general gelling kernels. Heuristic arguments of van
Dongen [21] suggest that for exponent 1 < v < 2 there should be an emerging
giant cluster of size N2/(1+7) but the only rigorous theory is some weak results in
[3].
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5 SELF-SIMILARITY AND ENTRANCE BOUNDARY

Consider a non-gelling kernel K which is homogeneous with some exponent v < 1.
It is natural [11] to seek a solution of the Smoluchowski coagulation equation which
is asymptotically self-similar (also called self-preserving or scaling), in the sense
that, as t — oo,

n(z,t) = s 2(t)((z/s(t)) + o(1)) uniformly in = (6)

where 1(z) > 0 satisfies [~ 21)(z) dz = 1. As at (4), we want the mean density
[ xn(z,t) dz to be constant in time, which explains the s~2 term in (6). Of course,
the interpretation of (6) is that cluster mass scales with time as s(t). Moreover
one expects

s(t) o tﬁ, —c0<y<1 s(t)oce” for some w, v = 1.

Outside the special cases, little is known, though under extra conditions it is
probably not hard to prove a “tightness” condition weaker than existence of a
self-similar limit (cf. [8] for this result in a slightly different model). For the
Marcus-Lushnikov process, this question relates to the time period when typical
clusters have size o(N) but not O(1). Reformulating in terms of the stochastic
coalescent, we are interested in the time period when typical clusters have mass
o(1). When v < 1 one expects there to be a unique version of the stochastic
coalescent on 0 < ¢t < oo such that the maximum cluster size — 0 as ¢ — 0, and
that in this version the empirical distribution of cluster sizes tends (as ¢ — 0, and
after rescaling by s(t)) to the self-similar distribution ¢. In Markov chain jargon,
this is a question about the entrance boundary, and is easy to verify ([2] section
4.2) in the case K(x,y) = 1. Establishing it more generally seems difficult.

Paradoxically, the two other special cases (kernels zy and z+y) seem atypical,
in that they have rich entrance boundaries, i.e. there are many different ways to
start the process with all the mass in infinitesimally small clusters. See [4, 6] for
detailed studies.

6 CONNECTIONS WITH d-DIMENSIONAL MODELS

Our models are “mean-field”, in that they do not track positions and velocities of
particles in d-dimensional space. This does not mean the models are completely
divorced from physical reality. Rather, the details of the physical process under
study are used to calculate the form of the rate kernel K (x,y). Perhaps the most
interesting case to a probabilist is the original 1916 setting of Smoluchowski [22],
who considered particles diffusing under thermal noise, i.e. performing physical
Brownian motion in three dimensions, and coalescing upon contact. In this case
the appropriate kernel in the mean-field model turns out to be

K(x,y) = (@' +y'?) (@™ +y 7177,

The second term reflects the faster diffusion of smaller particles, the first term
reflects their smaller cross-section and hence smaller chance of touching. It is nat-
ural to conjecture that, in the full model of spherical masses diffusing by Brownian
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motion in 3 dimensions and coalescing upon contact (and relaxing to spheres), as
time goes to infinity the distribution approximates a Poisson spatial distribution
with rescaled mass distribution following the law 1 at (6) predicted by the mean
field theory. This has apparently never been studied rigorously, though a less
realistic model is treated by Lang and Nguyen [14].

7 THE STANDARD ADDITIVE COALESCENT

Lest talking about open problems makes it seem little is known, let me end by
mentioning a positive result. Cayley’s formula says there are NV=2 trees on N
labeled vertices. Pick such a tree T, at random. To the edges e of T, attach
independent exponential(1) r.v.’s &. Write F(t) for the forest obtained from T,
by retaining only the edges e with & < t. Write Y() (t) for the vector of sizes
of the trees comprising F(t). It can be shown that (Y(V)(¢);0 < t < o) is the
Marcus-Lushnikov process associated with the additive kernel K (z,y) = = + y.
This construction was apparently first explicitly given by Pitman [20], although
various formulas associated with it had previously been developed in combinatorics
[19, 24] and statistical physics [12]. What is remarkable is that one can take
N — oo limits in this construction. The (rescaled) limit of the discrete tree is
the continuum random tree (CRT); the analog of cutting edges is placing marks
according to a Poisson process of intensity e~* along the skeleton of the CRT.
Cutting the mass-1 CRT at these marks splits it into subtrees of finite mass;
write X(¢) for the vector of masses of these subtrees at time ¢. Then (as we
expect by analogy with the discrete case above) the process (X(t), —oo < t < 00)
evolves as the stochastic coalescent for K (x,y) = x+y. This process, the standard
additive coalescent, is studied in detail in [5]. The CRT itself can be constructed
from Brownian excursion, so ultimately the construction of the standard additive
coalescent uses only Brownian and Poisson ingredients.

Acknowledgements. This project owes much to joint work and ongoing dis-
cussions with Jim Pitman, Steve Evans and Vlada Limic.
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