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State Spae Collapse for Queueing Networks

Maury Bramson∗

Abstract. The diffusive limits of queueing networks, known as heavy
traffic limits, are a topic of continuing interest. An important ingredient
in such work is the demonstration of state space collapse, which says
that, in the limit, the process must live on an appropriate subspace. In
[Wi98b], conditions are given under which state space collapse suffices
for heavy traffic limits. Here, we discuss how state space collapse can be
reduced to the problem of showing stability for the fluid model which is
the deterministic analog of the queueing networks under consideration.
We discuss specific cases, such as first-in first-out (FIFO) networks of
Kelly type and certain static priority networks.
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1 Introduction

Queueing networks constitute a general family of stochastic processes. In such
models, one envisions “customers”, such as people, products or some task to be
performed, as being lined up at the different queues, or stations, of a network.
When service of a customer at a station is completed, the customer moves to
another station or leaves the network. Customers are also assumed to enter the
network at various stations. This behavior will, in general, be random, with ran-
dom variables corresponding to the choice of the next station when service at
a station is completed, to the service times at stations, and to the interarrival
times for customers entering the network. The evolution of such a network can be
formulated as a continuous time Markov process. Two basic topics for queueing
networks concern (1) obtaining criteria for when this Markov process is positive
recurrent and (2) deciding when a sequence of networks, under diffusive scaling,
converges to a reflecting Brownian motion. The criteria, in the two cases, are
related. In this survey, we discuss both topics, with emphasis on the latter.

In many situations, it is important to permit more than one type of behavior
for customers at a given station. (For example, patients at the receptionist’s
desk of a doctor’s office will follow different rules, depending on whether they are
checking in or out.) To allow for this, one distinguishes between different classes
or buffers at a station; customers in the same class are subject to the same random
rules for service and routing to the next class. A queueing network is single class

if only one class is assigned to each station; otherwise, it is multiclass. One can
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also classify a queueing network based on whether or not it allows feedback, that is,
output from a station can eventually become part of its input. This will occur, for
example, when customers repeatedly visit a station along some preassigned route.
Not surprisingly, answers for (1) and (2) above will be easiest to obtain for single
class networks without feedback, and most difficult for multiclass networks with
feedback.

The limits in (2), which are referred to as heavy traffic limits (HTL), have
been investigated over the past three decades. Presently, HTL theory remains
incomplete for multiclass networks. An important concept in this context is state
space collapse (SSC). When SSC holds, customers in the different classes at a
station occur (asymptotically) in fixed proportions. Such behavior enables one to
generalize HTL results from single class networks to multiclass networks. This is
done in [Wi98a]. It is also shown there that SSC follows from a somewhat weaker
concept, multiplicative state space collapse (MSSC). This work is summarized in
the article [Wi98b] in this volume.

Here, we discuss certain settings where one can demonstrate MSSC. These
include well-known families of networks, such as first-in first-out networks of Kelly
type. More generally, sufficient conditions for MSSC are given by the convergence
of the solutions of fluid model equations which are associated with the networks
in question. Such criteria hold, for example, for static priority networks.

The remainder of this article is organized as follows. In Section 2, we summa-
rize the basic notation and definitions for queueing networks. Section 3 discusses
the stability of queueing networks. Fluid models, the main tool for demonstrating
stability, are introduced here. Section 4 discusses heavy traffic limits. Empha-
sis there is placed on recent work, in [Br98, Wi98a], which employs state space
collapse.

2 Notation and Definitions

We make use here of concepts and notation employed in the article [Wi98b] in
this volume, which the reader should consult for more detail. The variable j,
j = 1, . . . , J , will denote the stations of the network under consideration, and k,
k = 1, . . . ,K, will denote the classes of the network. We use C(j) for the set of
classes belonging to a station j, and s(k) for the station to which class k belongs.
At each station there is a single server. This server will always by non-idling, that
is, the server will remain busy as long as there are customers present at its station.

The triple (E(·), V (·),Φ(·)) contains the random input of the network. The
random vector E(t) = {Ek(t), k = 1, . . . ,K} denotes the number of external
arrivals by time t, t ≥ 0, and V (n) = {Vk(nk), k = 1, . . . ,K}, n = (n1, . . . , nK),
denotes the cumulative service times for the first nk customers in each class. The
random matrix Φ(n), with rows Φk(nk), k = 1, . . . ,K, denotes the cumulative
routing process after nk departures from each class k. As in [Wi98b], summands
of these quantities are assumed, in each case, to be independent and identically
distributed, with the different sequences also being independent of one another.
The triple (α,M,P ) is the deterministic analog of (E(·), V (·),Φ(·)). The mean
vector α gives the external arrival rates at the different classes; the K×K diagonal
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matrix M has the mean service times mk as its diagonal entries. The matrix
P = {Pkℓ, k, ℓ = 1, . . . ,K} gives the probability of a customer being routed
from one class to another. In many interesting cases, the routing of the queueing
network will be deterministic, with all customers entering the system at the same
class, and moving along a given route, until they exit from the system. Such
networks are referred to as re-entrant lines.

We will consider here only open networks, that is, networks for which the
matrix

Q
def.
= (I − P ′)−1 = I + P ′ + (P ′)2 + . . . (2.1)

is finite. (“ ′ ” denotes the transpose.) This means that customers at any class
are capable of ultimately leaving the network. To investigate these networks, one
employs the solutions λℓ, ℓ = 1, . . . ,K, of the traffic equations

λℓ = αℓ +
K∑

k=1

λkPkℓ, (2.2)

or equivalently, in vector form, of λ = α + P ′λ. (All vectors in this article are to
be interpreted as column vectors.) Solving (2.2), one obtains λ = Qα. The term
λk is the nominal arrival rate for class k; to avoid degeneracies, we assume that
λk > 0 for all k. Employing m and λ, one defines the traffic intensity ρj for the
jth server as

ρj =
∑

k∈C(j)

mkλk, (2.3)

with ρ being the corresponding vector. The condition ρj < 1, j = 1, . . . , J , is
required for each station, when nonempty, to serve customers, in the long run,
more rapidly than they enter the station. When this holds, the network is strictly
subcritical. When ρj = 1 for each j, the network is referred to as being critical or
balanced.

Associated with each queueing network is a discipline, which specifies the
order in which customers receive service. We consider here only head-of-the-line

(HL) disciplines, where only the first customer in each class may receive service
at a given time. For multiclass networks, the proportion of service to be devoted
to each class needs to be specified. Examples of disciplines which we will discuss
are first-in first-out (FIFO), where the first customer at a station receives all of
the service irrespective of its class; head-of-the-line proportional processor sharing
(HLPPS), where the amount of service allocated to the first customer in each class
is proportional to the number of customers in that class, and static priority disci-
plines, where classes are assigned a strict ranking, and customers of higher ranked
classes are always served first. In the setting of re-entrant lines, examples of static
priority disciplines are first-buffer-first-served (FBFS) and last-buffer-first-served
(LBFS), where customers at the earlier, respectively latter, classes have priority.
When the queueing network is single class, and the service and interarrival times
are exponentially distributed, it is referred to as a Jackson network. When the re-
striction on the service and interarrival times is removed, it is called a generalized
Jackson network.
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Once a discipline has been given, the triple (E(·), V (·),Φ(·)) and the initial
data uniquely specify the evolution of a queueing network along each realization.
This defines an underlying Markov process. When this process is positive recur-
rent, the queueing network is said to be stable. Depending on the discipline, the
description of the state space can be a bit of a notational burden. We avoid such
details here.

3 Stability and Fluid Models

A necessary condition for a queueing network to be stable is that it be strictly
subcritical. For a long while, it was generally believed that the condition is also
sufficient. This is now known to be false ([Br94], [LuKu91], [RySt92] and [Se94]).
It is possible for the flow of customers through a network to synchronize so that,
at a given time, customers are clustered at specific parts of the network. This
permits individual stations to be periodically “starved” for work, which reduces
their long-term efficiency. At the end of each additional cycle, the number of
customers in the network will then be, on the average, a multiple of the number
for the previous cycle, which produces geometric growth (as measured in cycles).

For many disciplines, however, a queueing network is stable whenever it is
strictly subcritical. Fluid models are the main tool for showing this. They allow
one, in essence, to replace a queueing network with its continuous deterministic
analog of mass flowing through the system. It is typically a considerably easier
problem to show stability in this deterministic setting. Under mild conditions
on the service and interarrival distributions, the stability of the original queueing
network will then follow.

The basic idea is to describe the evolution of a queueing network by a set of
equations. One then analyzes the solutions of the corresponding set of determin-
istic equations, where random quantities have been replaced by their means. One
needs to show that the “queue length” vector for such solutions is 0 after a fixed
time. It then follows that the queueing network is stable.

In order to describe the evolution of a queueing network, one employs random
vectors such as A(t), D(t), W (t), Y (t) and Z(t). The vector A(t) denotes the
number of arrivals by time t, D(t) denotes the number of departures, and Z(t) is
the number of customers at time t. These three quantities are all class vectors, with
components corresponding to the individual classes. The vectors W (t) and Y (t)
are both station vectors, with W (t) being the immediate workload (the future time
required to serve customers currently at each station), and Y (t) is the cumulative
idletime. Typically, the choice of exactly which quantities one employs depends
on the particular setting. We will denote the corresponding n-tuple by X(t); in
the above setting,

X(t) = (A(t), D(t),W (t), Y (t), Z(t)). (3.1)

One connects these quantities together by queueing network equations, which
include

A(t) = E(t) +
∑
k

Φk(Dk(t)), (3.2)
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Z(t) = Z(0) +A(t)−D(t), (3.3)

W (t) = CV (A(t) + Z(0))− et+ Y (t) (3.4)∫ ∞

0

1(0,∞)(Wj(s))dYj(s) = 0, j = 1, . . . , J, (3.5)

for t ≥ 0. Here, e is the J-vector of all 1’s, and C is the J×K matrix with Cjk = 1
for k ∈ C(j), and Cjk = 0 otherwise. An additional equation or two is required for
the discipline of the network. For instance, for the FIFO discipline, one employs

Dk(t+Wj(t)) = Zk(0) +Ak(t), k = 1, . . . ,K, (3.6)

for t ≥ 0.
For our purposes, the exact nature of the equations (3.2)–(3.6) is not too

important. One should think of there as being enough equations to determine the
evolution of the queueing network. These equations are used in conjunction with
their deterministic analogs, known as fluid model equations, which are obtained by
replacing (E(·), V (·),Φ(·)) by (α,M,P ). The analogs of (3.2)–(3.6) are then given
by

Ā(t) = αt+ P ′D̄(t), (3.7)

Z̄(t) = Z̄(0) + Ā(t)− D̄(t), (3.8)

W̄ (t) = CM(Ā(t) + Z̄(0))− et+ Ȳ (t), (3.9)∫ ∞

0

1(0,∞)(W̄j(s))dȲj(s) = 0, j = 1, . . . , J , (3.10)

D̄k(t+ W̄j(t)) = Z̄k(0) + Āk(t), k = 1, . . . ,K, (3.11)

for t ≥ 0. (To distinguish the solutions of the fluid model equations, we employ
overbar notation for the variables in this context.) We also write X̄(t) for the
analog of (3.1). Such solutions are referred to as fluid model solutions. We restrict
our attention to solutions with continuous and nonnegative components, where
Ā(t), D̄(t) and Ȳ (t) are nondecreasing.

The solutions of the equations (3.2)–(3.6) and (3.7)–(3.11) are connected via
the fluid limits of X(t). These are the limits obtained by applying hydrodynamic
scaling to X(t), i.e., by scaling the weight of individual customers and time pro-
portionately. (We avoid the technical details here.) Fluid limits are solutions of
the fluid model equations; solution of the latter will give information about the
original queueing network. The fluid model is said to be stable if, for a given δ > 0
and all solutions of the fluid model equations, Z̄(t) = 0 for t ≥ δ|Z̄(0)|. (|·| denotes
the sum of the coordinates.) Since the solutions of a fluid model correspond to a
queueing network with the randomness removed, stability of the fluid model says
that, in essence, the total number of customers in the queueing network has a net
negative drift.

Using elementary properties of Markov processes on general state spaces, it
is shown in [Da95] that, under mild assumptions on the service and interarrival
times, a queueing network is stable whenever the corresponding fluid model is
stable. (Versions of these ideas were first employed in [RySt92].) This enables one
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to indirectly study a queueing network by means of the corresponding fluid model
equations. In particular, the distributions of the service and interarrival times do
not occur in this setting. This enables one, for example, to simply demonstrate
the stability of strictly subcritical generalized Jackson networks, whereas a direct
argument is quite tedious. The stability of strictly subcritical FIFO networks of
Kelly type is another application. (The latter condition means that mk = mℓ

whenever s(k) = s(ℓ).) In general, strictly subcritical FIFO networks which are
not of Kelly type need not be stable.

4 Heavy Traffic Limits

Some background

In the introduction, we briefly discussed heavy traffic limits. Here, we go into more
detail. The basic setup for HTLs consists of a sequence of queueing networks, with
the accompanying n-tuples Xr(t) and queueing network equations. One scales the
quantities W r(t) and Zr(t), setting Ŵ r(t) = W r(r2t)/r and Ẑr(t) = Zr(r2t)/r.
The goal is to show that

Ŵ r(·) ⇒ W ∗(·) as r → ∞, (4.1)

where W ∗(·) is a semimartingale reflecting Brownian motion (SRBM). The func-
tions Ŵ r(·) take values in the space of J-dimensional right continuous functions
with left limits, which is equipped with the usual Skorokhod topology, and “⇒”
denotes weak convergence.

SRBMs and related concepts are defined in [Wi98b]. Intuitively, the SRBM
W ∗(·) behaves like a Brownian motion in the interior of the orthant RJ

+; its drift
and its covariance matrix are given by appropriate limits of the first two moments
of the summands of the triples (Er(·), V r(·),Φr(·)), and by the discipline of the
networks. It is confined to R

J
+ by pushing on the boundary in the directions given

by a reflection matrix R (also determined by the above quantities), according to
the local time spent there. In order for such a process W ∗(·) to exist, R needs to
be completely-S.

HTLs have been investigated over the past three decades; a summary of the
subject is given in [Wi96, Wi98b]. Implicit in the formulation of (4.1) is the as-
sumption that the states of the corresponding networks are, for large r, essentially
given by Ŵ r(t) at time t. More detailed information about the system, such as
Ẑr(t), should not be necessary to study the evolution of the limit W ∗(t). This
type of behavior is known as state space collapse. (The term was used in [Re84a];
related ideas go back to [Wh71].) For our purposes, the relevant variant is multi-

plicative state space collapse, that is

‖Ẑr(·)−∆Ŵ r(·)‖T

max(‖Ŵ r(·)‖T , 1)
→ 0 in probability (4.2)

as r → ∞. Here, ∆ is an appropriate linear map from R
J to R

K , which depends
on the service discipline; ‖ · ‖T is the uniform norm over [0, T ].
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HTLs as in (4.1) need not exist, even for standard disciplines such as FIFO.
It was shown in [DaNg94, DaWa93, Wh93] that this is the case for certain se-
quences of FIFO networks; the problem is related to the limiting reflection matrix
R not being completely-S. Another potential problem is the lack of MSSC. These
problems need to be faced when dealing with multiclass networks with feedback.
(When a network is single class, these problems do not arise, and HTLs exist
([Re84b])). This is also the case when the network is feedforward, that is, an or-
dering among the stations is possible so that customers at lower ranked stations
always go to higher numbered stations.) The general theory for multiclass net-
works is presently incomplete. Below, we summarize some recent work on the
subject which uses MSSC and the fluid model equations introduced in Section 3.

Reduction to fluid model equations

In [Wi98a, Br98], HTLs are demonstrated for certain families of multiclass net-
works. The reasoning employed there can be broken into three “modules”, which
are essentially independent. The first module, which is worked out in [Wi98a], uses
MSSC and the completely-S condition to derive HTLs. Solutions of the balanced
fluid model equations corresponding to the limiting triple (α,M,P ), obtained from
(αr,Mr, P r), are employed in the second module. It is shown in [Br98], that MSSC
holds whenever such solutions have “nice” asymptotic behavior. The third module
consists of deriving the desired asymptotics for these solutions, and verifying that
R is completely-S. Both of these conditions, in the last step, are not trivial in
general. They are, though, substantial reductions from MSSC. In this subsection,
we discuss the appropriate framework for the second module. We also mention
some specific disciplines where the conditions in the third module can be verified.

In order to state our results for MSSC, we need to overcome some technical
difficulties. The specific discipline must be known in order to be able to write
down all of the relevant queueing network or fluid model equations, such as (3.6).
If one wishes to state results on MSSC at the general level of HL processes, it
is more convenient to instead work with cluster points. These are, in the setting
of MSSC, the analog of the fluid limits, which were mentioned briefly in Section
3. Rather than complicate matters, we restrict ourselves here to several more
concrete families where we can work directly with the corresponding fluid model
equations. Also, as in [Wi98b], we assume that Zr(0) = 0 for the sequences of
queueing networks under consideration, in order to simplify formulation of the
results.

Associated with a sequence of queueing networks are the triples
(Er(·), V r(·),Φr(·)). We assume here that the corresponding means (αr,Mr, P r)
satisfy

αr → α, Mr → M, P r → P as r → ∞, (4.3)

and that the limit (α,M,P ) is balanced. One also needs a uniformity condition on
the second moments of the service and interarrival distributions for the sequence.
The latter conditions can be ensured, for example, by not allowing Er(·) or Φr(·) to
vary with r, and only allowing the components of V r(·) to vary by scalar multiples,
as is done in [Wi98b]. In order to obtain HTLs from MSSC, as in [Wi98a, Wi98b],
one will need to strengthen (4.3) so that r(ρr − e) → γ as r → ∞, for some γ,
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also holds, although this is not needed for MSSC itself. (Rγ will be the drift of
the HTL.)

We first consider a sequence of queueing networks, with a fixed static priority
discipline. As mentioned above, we assume that Zr(0) = 0 for all r. We also
assume that (4.3) holds, that (α,M,P ) is balanced, and that the second moment
conditions referred to above hold. Let Z̄(t) denote the queue length for solutions
of the corresponding fluid model equations for the specific discipline. We further
assume that for all solutions with |Z̄(0)| ≤ 1,

|Z̄(t)− Z̄(∞)| ≤ H(t) (4.4)

holds for a fixed function H(t), with H(t) → 0 as t → ∞, and for appropriate
Z̄(∞) (depending on Z̄(0)) of the form

Z̄(∞) = ∆W̄ for some W̄ ∈ R
J . (4.5)

It is shown in [Br98], that MSSC follows under these conditions. In [BrDa98],
(4.4)–(4.5) are verified for several disciplines, such as FBFS and LBFS. Since one
can also show that the R matrix is completely-S in both cases, the corresponding
HTLs follow. (HTLs for FBFS networks are also shown in [ChZh96].)

One can also obtain HTLs for sequences of FIFO networks of Kelly type
and HLPPS networks by investigating the corresponding fluid models. The basic
procedure is the same as above. In each case, one can, in fact, demonstrate
(4.4) with H(t) = B1e

−B2t, for appropriate B1 and B2 > 0. MSSC therefore
follows. Since the R matrix will always be completely-S in both cases, (4.1) holds
for appropriate W ∗(t). The arguments for showing (4.4) for the two models are
related. One obtains an entropy function H(t) which converges exponentially fast
to 0; the states with entropy 0 will satisfy (4.5). The function for FIFO fluid
models of Kelly type is

H(t) =
∑
k

∫ t+W̄j(t)

t

hk(D̄
′
k(r))dr. (4.6)

Its asymptotic behavior is analyzed in [Br96] by employing the equations (3.7)–
(3.11).

So far, we have not identified the linear map ∆, which “lifts” R
J to R

K .
For the above disciplines, this is easy to do, since ∆W , for W ∈ R

J
+, will be

among the states that remain invariant under the evolution of the corresponding
fluid model. Clearly, for static priority disciplines, (∆W )k = 0 at all coordinates
except where k is the lowest ranked class at its station j = s(k), in which case
(∆W )k = Wj/mk. For FIFO networks, (∆W )k = λkWj , where λ is as in (2.2),
and for HLPPS networks,

(∆W )k =
λkmkWj∑
ℓ∈C(j) λℓm2

ℓ

. (4.7)

One can see why, in principle, MSSC should follow from the limiting behavior
of the fluid model solutions, as in (4.4)–(4.5), by comparing the evolution of the
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queue length vector Z(t) under hydrodynamic scaling with its behavior under dif-
fusive scaling. (Some poetic license is taken in phrasing the following steps.) Fluid
limits, which are solutions of the fluid model equations, arise from hydrodynamic

scaling. So, for large t, the components Z̃r
k(t) of Z̃r(t)

def.
= Zr(rt)/r, as r → ∞,

will be in the proportions prescribed by ∆. Recalling that Ẑr(t) = Zr(r2t)/r, this
implies that Ẑr(Tr) = Z̃r(rTr), as r → ∞, collapses to the subspace given by ∆,
if Tr is chosen so that rTr → ∞ sufficiently slowly as r → ∞. (One needs the
growth of rTr to be slow enough to avoid the contribution of noise from random
fluctuations of Zr(r2Tr).) One is, moreover, entitled to restart the processes Z̃r(t)
at times i = 1, 2, . . ., with

Z̃r,i(t)
def.
= Zr(r(t+ i))/r. (4.8)

Chopping up the interval [0, r2T ], T > 0, from the original time scale into rT
pieces, it suffices to analyze the fluid limits corresponding to each of these processes
in order to demonstrate MSSC. Under the second moment conditions on the service
and interarrival distributions that have already been made, the exceptional events
where any of these processes is ill behaved, and the desired collapse does not occur,
will have small probability for large r. Also, the assumption Ẑr(0) = 0 ensures
that Ẑr(t) remains close to 0 at small times. Therefore, for a typical realization,
Ẑr(t) collapses to the desired subspace for all t ∈ [0, T ]. This reasoning (when
carefully carried out) will demonstrate MSSC.
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