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Bayesian Density Estimation
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Abstract. This is a brief exposition of posterior consistency issues in
Bayesian nonparametrics especially in the context of Bayesian Density
estimation,
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1 Introduction

We describe popular methods of Bayesian density estimation and explore sufficient
conditions for the posterior given data to converge to a true underlying distribution
P0 as the data size increases. One of the advantages of Bayesian density estimates
is that,unlike classical frequentist methods,choice of the right amount of smoothing
is not such a serious problem.

Section 2 provides a general background to infinite dimensional problems of
inference such as Bayesian nonparametrics, semiparametrics and density estima-
tion. Bayesian nonparametrics has been around for about twenty five years but the
other two areas,specially the last, is of more recent vintage. Section 3 indicates in
broad terms why different tools are needed for these three different problems and
then Section 4 focuses on our main problem of interest ,namely,positive posterior
consistency results for Bayesian density estimation.

2 Background

Let X1, X2, . . . , Xn be i.i.d. random variables with unknown common probability
measure P on (R,B), whereR is the real line and B the Borel σ− field. Typically P
lies in some given set of probability measures P. In Bayesian analysis, a statistician
puts a probability measure Π on P equipped with a suitable σ− field BP and
assumes that the unknown P is distributed over P according to Π and, given P ,
X1, X2, . . . , Xn are i.i.d. with common distribution P. This completely specifies
the joint distribution of the random P and the random Xs. Hence, in principle
one can calculate the conditional probability Π(B|X1, X2, . . . , Xn) of P lying in
some subset B. This is the posterior in distinction with Π(B) which is the prior
probability of B. Consistency of posterior to be defined below is a sort of partial
validation of this method of analysis. We now define posterior consistency at
P0. Suppose unknown to the Bayesian statistician,X1, X2, . . . , Xn are i.i.d. ∼ P0,
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where P0 is a given element of P and not random. Suppose that P is also equipped
with a topology and the topology and BP are compatible in the sense that the
neighborhoods B of P0 are BP measurable.

Definition: Π(. |X1, X2, . . . , Xn) is consistent at P0 if for all neighborhoods
B of P0, as n → ∞,

Π(B|X1, X2, . . . , Xn) → 1 a.s P0

This property depends on both Π and P0. It would be desirable to have this
property at various P0’s that seem plausible to the Bayesian who is using this
posterior.

An old result of Doob shows that such a property holds for all but a π−null
set of P0’s. Unfortunately, this result is too weak to settle whether consistency
holds for a particular P0. It is well known that this property holds for a wide class
of priors and all P0’s if P is finite dimensional,e.g., when P is the set of all normal
distributions N(µ, σ2) with mean µ and variance σ2, −∞ < µ < ∞, σ2 > 0. In
contrast the answer is usually no when P is infinite dimensional as in density
estimation.

There are three broad classes of infinite dimensional problems —(fully) non-
parametric inference like making inference about an unknown distribution func-
tion, a semiparametric problem like estimating the point of symmetry of an un-
known symmetrical distribution function, and density estimation. The set P is
different for these three cases. In the first case,which is classical, P is the class
of all probability measures on (R,B). In the third case and, in fact also in the
second, we work instead with the set of probability measures P on (R,B) which
have a density f with respect to the Lebesgue measure. In the first two problems
the set P is equipped with the weak topology and the natural tools are the use
of tail free priors or a theorem of Schwartz(1965). In the third case the natural
topology is that induced by the L1 or the Hellinger metric. The natural tool is a
new theorem that makes use of the notion of metric entropy or packing numbers
for the space of densities in addition to one of Schwartz’s conditions.

3 Notations and other technicalities

3.1 Nonparametrics

We start with the nonparametric problem. Let P be the class of all probability
measures on (R,B); P be equipped with the weak topology and BP the corre-
sponding Borel σ− field. Equivalently, BP is the smallest σ− field which makes
the evaluation maps P 7→ P (A) measurable for each A in B.

The most popular prior on (P,BP) is the Dirichlet process due to Fergu-
son(1973,1974). It is specified by its finite dimensional distributions as follows.
Let α be a finite non zero measure on (R,B). Let A1, A2, . . . , Ak form a measur-
able partition. Then P (A1), P (A2), . . . , P (Ak) have a finite dimensional Dirichlet
distribution with parameters α(A1), α(A2), . . . , α(Ak). If α(Ai) > 0, i = 1, 2, . . . , k
then this distribution has a density with respect (k−1) dimensional Lebesgue mea-
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sure that has the form

Γ(R)
∏k
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i , 0 < pi,

k
∑
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pi = 1

If k = 2, one gets the beta distribution. Integrating out p1 one gets

E(P (Ai)) = α(Ai)/α(R) = ᾱ(Ai). (1)

It can be shown that the posterior given X1, X2, . . . , Xn is again a Dirichlet with
α+

∑n

1 δXi
, in place of α, where δXi

is the point mass at Xi. Using this fact and
(1), one gets immediately,

E (P (A)|X1, X2, . . . , Xn) =
α(R)

α(R) + n
ᾱ(A) +

n

α(R) + n

(
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n

∑

δXi
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)

(2)

which is a convex combination of the prior guess ᾱ(A) and the frequentist
nonparametric maximum likelihood estimate Pn(A) =

1
n

∑

δXi
(A). The weights

reflect the Bayesian’s confidence in prior guess. One can elicit or choose ᾱ(.) and
α(R) — and hence α(.)— from these considerations.

We denote the Dirichlet process by Dα.
Proposition. If Π is Dα and B is a weak neighborhood of true P0, then

Π (B|X1, X2, . . . , Xn) → 1 a.s. (P0), i.e., posterior consistency holds for all P0.
At the heart of this fact is the property of being tailfree,vide Ferguson(1974),

which allows one to reduce an infinite dimensional problem to a finite dimensional
problem and invoke posterior consistency for the latter. This idea as well as the
introduction of Dirichlet for another infinite dimensional problem goes back to
Freedman(1963).

3.2 Semiparametrics

We start with a famous example of Diaconis and Freedman(1986). Suppose we
wish to make inference about θ and Pθ(.) = P (. − θ) where θ is real and P (.) is
symmetric around zero. To put a prior distribution for Pθ one first chooses a P ′

using a Dα, symmetrizes P ′ to get P and independently chooses θ. Diaconis and
Freedman(1986) show that the posterior for θ need not be consistent in the weak
topology.

Various people have observed that semiparametrics should involve probability
measures with densities but the Dirichlet assigns probability one to the set of
discrete measures. However choosing priors on densities is not enough.

Ghosal, Ghosh and Ramamoorthi(1998) have pointed out that one may argue
that the Diaconis–Freedman counter example occurs because of the breakdown of
the tailfree property. They show that posterior consistency can be proved provided
a condition used by Schwartz(1965) holds. Priors for which posterior consistency
holds are exhibited in Ghosal, Ghosh and Ramamoorthi(1998).

The version of Schwartz’s(1965) theorem one has to use for this purpose is
given below. We now work with P = the set of probability measures P having a
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density f with respect to Lebesgue measure. For two such probability measures
P1, P2, with densities f1, f2 the Kullback–Leibler number K(P1, P2) is defined as
∫

R
f1 log

f1
f2
dx.

K(P1, P2) is always ≥ 0 and may be ∞. It is not a metric but measures
the divergence between P1 and P2 with the extreme tail of the density playing an
important role.

Theorem 1 Suppose P0 belongs to the Kullback–Leibler support of Π,i.e., for
all δ > 0,

Π{K(P0, P ) < δ} > 0 (3)

Then Π(B|X1, X2, . . . , Xn) → 1 a.s. (P0), for all weak neighborhoods B of P0.

As Ghosal, Ghosh and Ramamoorthi(1998) show property(3)—unlike the tail-
free property — continues to hold even with the addition of a finite dimensional
parameter.

For later reference as well as completeness we record Schwartz’s(1965) theorem
in its original form and an extension due to Barron(1988,1998).

Theorem 2 Let Π be a prior on P, and P0 ∈ B. Assume the following
conditions:

1. Π(K(P0, P ) < δ) > 0 for all δ > 0;

2. There exists a uniformly consistent sequence of tests for testing H0 : P = P0

vs. H1 : P ∈ Bc, i.e., there exists a sequence of tests φn(X1, X2, . . . , Xn)
such that as n → ∞,

EP0
φn(X1, X2, . . . , Xn) → 0 and inf

P∈Bc

EPφn(X1, X2, . . . , Xn) → 1.

Then Π(B|X1, X2, . . . , Xn)→ 1 a.s. P0.

Theorem 3 ((Barron(1988,1998))) Let Π be a prior on P, and P0 be in
P and B be a neighborhood of P0. Assume that Π(K(P0, P ) < δ) > 0 for all ǫ > 0.
Then the following are equivalent.

1. There exists a β0 such that

P0{Π(Bc|X1, X2, . . . , Xn) > e−nβ0 infinitely often} = 0;

2. There exist subsets Vn,Wn of P, positive numbers c1, c2, β1, β2 and a se-
quence of tests {φn(X1, X2, . . . , Xn)} such that

(a) Bc = Vn ∪Wn,

(b) Π(Wn) ≤ C1e
−nβ1 ,

(c) P0{φn(X1, X2, . . . , Xn) > 0 infinitely often} = 0 and
infP∈Vn

EPφn ≥ 1− c2e
−nβ2 .
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4 Density estimation

4.1 Dirichlet mixture of Normals

We illustrate with what seems to be currently the most popular and successful
Bayesian method, first proposed by Lo(1984) and implemented in the early nineties
via Markov Chain Monte Carlo(1994) by Escobar, Mueller and West (94).

Choose a random P ′ ∼ Dα. Since P ′ is discrete, as observed before,form a
convolution with a normal density N(0, h). Let P = P ′ ∗N(0, h).

Since the smoothness of P depends on h and one does not know how much
smoothness is right, put a prior(usually, inverse gamma)on h also. This completes
the specification of a prior,which is often called a Dirichlet mixture of normal. It
turns out that for MCMC to be feasible one needs α also to be normal. Simula-
tions and heuristic calculations show that one can improve the rate of convergence
by adding a location and scale parameter to α and by putting a prior on these
parameters also. The following discussion can handle these refinements as well as
general nonnormal α. However for the normal α,one can supplement the discussion
below with non trivial heuristic argument that throws light on how convergence
takes place. For lack of space the heuristic argument will not be given.

4.2 Posterior consistency for general priors

The basic theorem is the following which improves on an earlier result of Bar-
ron,Schervish and Wasserman(1997).

Let P0 ⊂ P. For δ > 0, the L1− metric entropy of P0, denoted by J(δ,P0) is
log a(δ), where a(δ) is the minimum over all k such that there exist P1, P2, · · · , Pk

in P with P′ ⊂ ∪k
1{P : ‖P − Pi‖1 < δ}.

Theorem 4 (Ghosal,Ghosh and Ramamoorthi) Let Π be a prior on P.
If P0 ∈ P and Π(K(P0, P ) < ǫ) > 0 for all ǫ > 0. If for each ǫ > 0 there is a

δ < ǫ, c1, c2 > 0, β < ǫ2

2 and also Pn such that

1. Π(Pc
n) < C1e

−nβ1 for large n

2. J(δ,Pn) < nβ

then Π(B|X1, X2, . . . , Xn)→ 1 a.s.P0n for all L1-neighborhoods B of P0.

The proof of this theorem is based on the result of Barron recorded in Section
3. The first assumption is the condition assumed in Theorem 1 in Section 3 while
the two remaining assumptions take care of conditions(2) and (3) of Barron’s
Theorem.

4.3 Application to Dirichlet mixture of normals

One has to have two sets of tools to verify the two conditions in Theorem 4. The
set or sieve Pn for verifying the condition is: fix a δ and β as in the theorem then

Pn =

{

P = P ′ ∗N(0, h);P ′[−
√
n,

√
n] > 1− δ, h >

c(δ, β)√
n

}
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Various sufficient conditions which entail application of Theorem 4 are given
in Ghosal, Ghosh and Ramamoorthi(97. For example if P0 is smooth unimodal
with finite Shannon entropy and compact support, like the uniform on [a, b] then
P0 belongs to the Kullback–Leibler support of the prior. For unbounded support
the tails of P0 and ᾱ have to be compatible in a certain way.

4.4 Concluding Remarks

Theorem 4 can also be used to study posterior consistency for Gaussian process
priors and Bayesian histograms (Barron(1988,1998) and Ghosh and Ramamoor-
thi(1998)).

One may also ask whether the Bayes estimate E(P |X1, X2, . . . , Xn) is con-
sistent. It is easy to show that posterior consistency in the weak topology or the
topology induced by L1 norm implies Bayes consistency.

One may also ask questions about rates of convergence and non-informative
or default priors which attain a minimax rate of convergence for the posterior or
Bayes estimates. This issue is currently under investigation by Ghosal,Ghosh and
van der Vaart and by Wassserman and Shen.

A final important remark. In recent work Barron(1998) shows if we focus on
the cumulative Kullback-Leibler predictive loss (also called the entropy loss) an
elegant consistency theory can be built up using only Kullback-Leibler support.
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