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Latti
e Point Problems

and the Central Limit Theorem

in Eu
lidean Spa
es

F. Götze1

Abstract. A number of problems in probability and statistics lead to ques-
tions about the actual error in the asymptotic approximation of nonlinear
functions of the observations. Recently new methods have emerged which
provide optimal bounds for statistics of quadratic type. These tools are
adaptions of methods which provide sharp bounds in some high dimensional
lattice point remainder problems and solve some problems concerning the
distribution of values of quadratic forms.
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1. Introduction.
Let X1, . . . , Xn denote independent and identically distributed random vectors in
Rd, d ≥ 1.
Example 1.1 Assume that X1 takes values in the finite set {−1, 1}d ⊂ Rd with
equal probability 2−d. Write

Sn = n−1/2(X1 + . . .+Xn).

By the Central Limit Theorem (CLT) the sequence of random vectors Sn con-
verges in distribution to a multivariate Gaussian distribution with mean zero and
identity covariance matrix. Let |m|2 = 〈m,m〉 denote the d-dimensional Euclidean
norm and scalar-product. A number of statistical problems require to determine
asymptotic approximations for the distribution of test statistics of type

Tn = |Sn|2.

It is well known that the distribution function (d.f.) P {Tn ≤ v} converges to the
χ2–distribution function with d degrees of freedom, say χ(v), for all v ∈ R. In
order to measure the error of this approximation we shall use the Kolmogorov
distance and would like to determine the optimal exponents α > 0 such that for a
constant c > 0 independent of n

(1.1) δn = sup
v≥0

|P{Tn ≤ v} − χ(v)| ≤ cn−α.

1Research supported by the SFB 343, ’Diskrete Strukturen in der Mathematik’, Bielefeld.
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Here Tn ≤ v means that the sum
√
nSn is contained in a ball Bvn = {|x| ≤ √

v n}.
General estimates in the multivariate CLT (Sazonov [Sa], Bhattacharya and

Rao [BR]) established the rate α = 1/2 uniformly in the class of convex sets.
Hence for balls and ellipsoids the achievable rate α should be at least 1/2.

In Example 1.1 the sum Sn takes values in a lattice. By the local limit theorem
its discrete density may be approximated by a Gaussian density such that

P
{
Sn =

m√
n

}
= ϕn(m)

(
1 +O(n−1)

)
, ϕn(m) :=

1

(2πn)d/2
exp

{

− |m|2
2n

}

.

Hence bounds in (1.1) can be derived from estimates of

sup
v

|
∑

m∈Bvn∩Zd

ϕn(m)− χ(v)|.

Since the weights ϕn(m) are ’smoothly’ depending on m, the problem might be
further reduced to the case of constant weights, which leads to a problem about
counting the lattice points in Bvn. In this way Esseen [E] and Yarnold [Y] have
proved

Theorem 1.2.

(1.2) P{Tn ≤ v} − χ(v) = exp{−v/2}∆(Bvn) +O(n−1).

Here ∆(A) denotes the relative lattice point remainder given by

(1.3) ∆(A) :=
volZ A− volA

volA
,

with volZ A and volA denoting the number of points of the standard lattice Zd in
A and the volume of A respectively.

The relation (1.2) obviously establishes for Example 1.1 an equivalence between
bounds in the lattice point remainder problem for ellipsoids and bounds of type
(1.1) in the multivariate CLT. Indeed, Landau [L1] and Esseen [E] proved

∆(Bs) = O
(
s−d/(d+1)

)
resp. δn = O

(
n−d/(d+1)

)
.

Note though that Esseen’s bound holds for balls and arbitrary i.i.d. random vec-
tors Xj with finite fourth moment and identity covariance operator, where an
equivalence of type (1.2) is not known.

Example 1.1 provides as well lower bounds for the error. Notice that nTn

assumes integer values in the interval [−dn, dn]. Distributing probability 1 among
these values there exists an integer j such that

P {Tn = j n−1} ≥ c n−1, c = 1/(2d+ 1).

Comparing the piecewise constant function v 7→ P {Tn ≤ v} with the smooth
limit v 7→ χ(v), we find the lower bound δn ≥ cn−1. Hence the rates α in (1.1)
are restricted to 1/2 ≤ α ≤ 1.

This lecture is organized as follows. Section 2 contains results in the CLT
for quadratic statistics in Euclidean spaces. Corresponding results in lattice point
problems are described in section 3. Section 4 contains applications to distributions
of values of positive definite and indefinite forms. Finally, in Section 5 we describe
inequalities for trigonometric sums which are essential for these results.

A major part of the results in this lecture represents joint work with V. Bentkus.
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2. Approximations in the CLT for Quadratic Statistics.

The CLT in Euclidean Spaces. Let X,X1, X2, . . . be a sequence of i.i.d. random
vectors taking values in the d-dimensional Euclidean space Rd including the case
d = ∞ of infinite dimensional real Hilbert spaces. We assume thatX has mean zero
and |X| has a finite second moment. Then the sums Sn converge weakly to a mean
zero Gaussian random vector, say G, with covariance equal to the covariance of X.
Assume that G is not concentrated on a proper subspace of Rd. Let Q denote a
bounded linear operator on Rd. Consider the quadratic form Q[x] = 〈Qx, x〉 and
assume that Q is non-degenerated, that is kerQ =

{
0
}
.

The distribution of the quadratic form Q[G] is determined by its distribution
function, say χ(v), and may be represented up to a shift as the distribution of a
finite (resp. infinite) weighted sum of squares of i.i.d. standard Gaussian variables.

Rates of approximation in (1.1) in the CLT for Tn = Q[Sn] have been inten-
sively studied especially in the infinite dimensional case in view of applications to
non parametric goodness-of-fit statistics based on empirical distributions. Unfor-
tunately the techniques of multivariate Fourier inversion of earlier results like that
of Esseen [E] cannot be applied here. Several approaches have been developed for
this problem.

A probabilistic approach is based on the Skorohod embedding resp. the KMT–
method and provided bounds of order α = 1/4, Kiefer [Ki], resp. O(n−1/2 log n),
Csörgö [Cs]. An analytic approach is based on a Weyl type inequality for charac-
teristic functions, see (5.4). Using this technique, rates α = 1 − ε for any ε > 0
have been proved in (1.1), see [G1] and for refinements Bentkus and Zalesskii [BZ]
and Nagaev and Chebotarev [NC]. Moreover, using methods like (5.4) the approx-
imation χ(v) may be refined by asymptotic expansions in (1.1) up to an error of
order O(n−k/2+ε) for polynomials of Sn of degree k ≥ 2, see[G3].

Results providing optimal bounds of order α = 1 are based on techniques used
in related bounds for the corresponding lattice point problems. For diagonal qua-
dratic forms and vectors X with independent coordinates the rate α = 1 was
proved for d ≥ 5 in [BG1]. Here the additive structure of Q[x] allows to apply
a discretization of type (5.5) and a version of the Hardy-Littlewood method of
analytic number theory.

New tools described in (5.5)–(5.6) lead to the following result.

Theorem 2.1. [BG2]. Let EX = 0 and β4 = E |X|4 < ∞. Assume that d ≥ 9
or d = ∞. Then

(2.4) sup
v

∣

∣

∣ P
{
Q[Sn] ≤ v

}
− P

{
Q[G] ≤ v

} ∣

∣

∣ = O
(
n−1

)
.

The constant in this bound depends on β4, the eigenvalues of Q and the covariance
operator of G only.

Remark 2.2.

1) For d = 8 the bound O(n−1 lnδ n) holds with some δ > 0.

2) Similar results like (2.4) hold forQ[x−a] involving an arbitrary center a ∈ Rd.
Here the approximation by the limit d.f. P

{
Q[G− a] ≤ v

}
needs to be improved

by a further expansion term, say n−1/2χ1(v; a), which vanishes for a = 0.
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3) For dimensions d > 9 including the case d = ∞ uniform bounds in (2.4),
for Q = Id say, depend on moments of X and on lower bounds for a finite number,
say m, of the largest eigenvalues of the covariance operator of X. For such bounds
the minimal number m ≤ d of eigenvalues needed has recently been determined to
be m = 12, see [GU].

These results can be extended as follows.

U -Statistics. Let X,X1, . . . , Xn be i.i.d. random variables taking values in an
arbitrary measurable space (X , B) and let g : X → R, h : X 2 → R denote real-
valued measurable functions. Assume that h(x, y) = h(y, x), for all x, y ∈ X and
Eh(x,X) = 0 for almost all x ∈ X . Consider the so called degenerated U -statistic

(2.5) Tn =
1

n

∑
1≤i<j≤n

h(Xi, Xj) +
1√
n

∑
1≤i≤n

g(Xi),

and write βs = E
∣∣g(X)

∣∣s and γs = E
∣∣h(X1, X2)

∣∣s. Assuming that γ2 is positive

and β2 + γ2 is finite, the U -statistic Tn converges to a weighted χ2–type distri-
bution, say χ. Using a further expansion term, say χ1, the problem is to derive
explicit estimates for the error

(2.6) δn = sup
v

|P{Tn ≤ v} − χ(v)− n−1/2χ1(v)|.

Rates of order δn = o(n−1/2) have been proved by Korolyuk and Borovskich [KB].
Moreover, for degenerated U -statistics of any degree k ≥ 2 asymptotic approxi-
mations have been established up to errors δn = O(n−k/2+ǫ) in [G2].

Using similar techniques as in Theorem 2.1 the following explicit bound with
optimal rate α = 1 holds.

Theorem 2.3. [BG4]. Let qj denote the eigenvalues (ordered by decreasing ab-
solute value) of the Hilbert-Schmidt operator induced on L2(X ) by the kernel h.

Write γs,r = E
(
E
(∣∣h(X1, X2)

∣∣s ∣∣X2

))r
and σ2 := γ2. If q13 6= 0,

(2.7) δn ≤ C

n

( β4

σ4
+

β2

3

σ6
+

γ3

σ3
+

γ2,2

σ4

)

, where C ≤ exp
{ cσ

|q13|
}

.

Remark 2.4. 1) In cases where the expansion term χ1 vanishes the condition
q9 6= 0 suffices to prove a similar bound.

2) The result can be extended to von Mises statistics, i.e. statistics including
diagonal terms h(Xj , Xj) := d(Xj), where d(X) has mean zero. This allows to
consider as well statistics like Tn := |Sn − a|2.

It is likely that improvements in lattice point approximation problems (see the
Conjecture in Section 3) allow to prove error bounds of order O(n−1) in Theorems
2.1 and 2.3 for dimensions 5 ≤ d ≤ 8 as well.

3. Lattice Point Problems.

For a symmetric positive definite matrix Q consider the quadratic form
Q[x] = 〈Qx, x〉 on Rd and the corresponding ellipsoid

Es :=
{
x ∈ Rd : Q[x] ≤ s

}
, for s ≥ 0.
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Special Ellipsoids. Using similar arguments as for δn in Section 1 a correspond-
ing lower bound can be shown for the lattice point remainder ∆(Es) (for Q = Id),
namely

(3.1) ∆(Es) = Ω(s−1), d ≥ 1.

For balls of dimensions 2 ≤ d ≤ 4, the lattice point remainder ∆(Es) admits
sharper lower bounds, e.g.

Ω(s−3/4 log1/4 s), d = 2, Ω(s−1 log1/2 s), d = 3, and Ω(s−1 log log s), d = 4,

due to Hardy [Ha], Szegö [Sz] and Walfisz [W2] respectively. The upper bound

(3.2) ∆(Es) = O(s−1), d ≥ 5

has been shown in a number of special cases. It holds for ellipsoids which are
rational, that is the matrix Q is a multiple of a matrix with rational coefficients.
Otherwise Q is called irrational. This result is due to Landau [L2] and Walfisz [W1]
and depends on the rational coefficients in a non uniform way. For a detailed
discussion see the monograph by Walfisz [W2].

For diagonal forms Q[x] =
∑d

j=1 qjx
2
j with arbitrary qj > 0, (3.2) is due to

Jarnik [J1]. Moreover, if Q is irrational, Jarnik and Walfisz [JW] have shown that
the bound

(3.3) ∆(Es) = o(s−1), d ≥ 5

holds and is best possible for general irrational numbers qj .

General Ellipsoids. For this class Landau [L1] obtained ∆(Es) = O(s−1+λ) with
λ = 1/(d + 1) for d ≥ 1, using Dirichlet series methods. His result has been ex-
tended by Hlawka [Hl] to convex bodies with smooth boundary and strictly pos-
itive Gaussian curvature, and improved to O(s−1+λ), with some λ = λ(d) > 0,
λ < 1/(d+ 1), by Krätzel and Nowak [KN1, KN2].

Assume without loss of generality that the smallest eigenvalue of Q is 1 and
denote the largest eigenvalue by q. Hence q ≥ 1. The following results provide
optimal uniform bounds of type (3.2) resp. (3.3) for general ellipsoids.

Theorem 3.1. [BG3, BG5]. There is a constant c > 0 depending on d only and
a function ρ(s) ∈ [0, 2], depending on Q, see (5.2), such that for all s ≥ 1

(3.5) sup
a∈Rd

∆(Es + a) ≤ c qd s−1
(
s−λ + ρ(s)

)
, for d ≥ 9,

where λ
def
=

1

2

[ d− 1

2

]
− 1, and

lim
s→∞

ρ(s) = 0 if and only if Q is irrational.

If d = 8 the bound supa∈Rd ∆(Es + a) ≤ c q8s−1 ln2 (s+ 1) still holds.

The error for generic forms Q[x] should be much smaller than for rational forms,
which can be seen by the following heuristic argument. Let C(m) denote the
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cube of side length 1 centered at a lattice point m ∈ Zd and let Is denote the
indicator function of Es. Define ξm as function of a randomly chosen Q as ξm =
Is(m)−

∫
C(m)

Is(x) dx. Then |ξm| ≤ 1 and we may assume that the ξm have mean

zero. Let Ds denote the set of lattice points m such that C(m) intersects ∂Es.
Note that ξm = 0 for m 6∈ Ds. Then

(3.4) ∆(Es) volEs =
∑

m∈Zd

ξm =
∑

m∈Ds

ξm.

Since Es has diameter proportional to r =
√
s, the sum in (3.4) extends over

O(rd−1) nonzero summands only. If the random variables ξm are approximately
independent the CLT implies for r → ∞ with probability tending to 1 that
(3.4) is smaller than r(d−1)/2 log r. Hence one would expect that ∆(Es) =
O(s−(d+1)/4 log s). Indeed, Jarnik [J2] proved for d ≥ 4 an upper bound of or-
der O(s−d/4+ε) for Lebesgue almost all diagonal forms. For generic forms Lan-
dau [L3] established ∆(Es) = Ω(s−(d+1)/4). The results described so far suggest
the following hypothesis about worst and generic case errors.

Conjecture. For any ǫ > 0 the relative lattice point remainder is of order

∆(Es + a) = O(s−1), d ≥ 5, for all Q and a,

= o(s−1), d ≥ 5, for irrational Q,

= O(s−(d+1)/4+ǫ), d ≥ 2, for Lebesgue almost all Q and a.

4. Distribution of Values of Quadratic Forms.

Positive Definite Forms. For fixed δ > 0 consider the shells Es+δ \ Es =
{x ∈ Rs : s ≤ Q[x] ≤ s+ δ}. Theorem 3.1 implies

Corollary 4.1. For d ≥ 9 and irrational Q we have

(4.1) lim
s→∞

volZ
(
Es+δ \ Es

)

vol(Es+δ \ Es)
= 1.

This result may be applied as well to shrinking intervals of size δ = δ(s) → 0
as s tends to infinity. The quantity vol(Es+δ \Es) measures the number of values
of a positive quadratic form in an interval (s, s+δ], counting these values according
to their multiplicities.

Let s and n(s) denote successive elements of the ordered set Q[Zd] of values
of Q[m]. Davenport and Lewis [DL] conjectured that the distance between succes-
sive values, that is n(s) − s, converges to zero as s tends to infinity for irrational
quadratic forms Q[x] and dimensions d ≥ 5. They proved in [DL] that there ex-
ists a dimension d0 such that for all d ≥ d0 and any given ε > 0 and any lattice
point m with sufficiently large norm |m| there exist another lattice point m ∈ Zd

such that
∣∣Q[m+m]−Q[m]

∣∣ < ε. This does not rule out the possibility of ar-

bitrary large gaps between possible clusters of values Q[m], m ∈ Zd. This result
has been improved by Cook and Raghavan [CR], providing the bound d0 ≤ 995.
Corollary 4.1 now solves this problem for d ≥ 9.

Define the maximal gap between the values Q[m− a], m ∈ Zd in the inter-
val [τ,∞) as d(τ ;Q, a) = sups≥τ

(
n(s)− s

)
. Then (4.1) implies
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Corollary 4.2. [BG5]. Assume that d ≥ 9 and that Q[x] is positive definite.
If Q is irrational then supa∈Rd d(τ ;Q, a) → 0, as τ → ∞.

Indefinite Forms and the Oppenheim conjecture. Assume that Q is irra-
tional and indefinite. Consider the infimum value of Q[m] for nonzero lattice
points m ∈ Zd

M(Q) = inf
{ ∣∣Q[m]

∣∣ : m 6= 0, m ∈ Zd
}

.

Oppenheim [O1] conjectured that M(Q) = 0, for d ≥ 5 and irrational indefinite Q,
and has shown that this implies that the set Q[Zd] is dense in R for d ≥ 3, see [O2].
This conjecture has been proved, e.g. for diagonal forms and d ≥ 5 by Davenport
and Heilbronn [DH] and for general forms and d ≥ 21 by Davenport [Da]. For
a review, see Margulis [Mar2]. It has been finally established for all dimensions
d ≥ 3 by Margulis [Mar1].

Let Cs denote a d–dimensional cube of side length
√
s and center 0. The

results of Theorem 3.1 are a consequence of more general asymptotic expansion
of µs{Q[x] ≤ β} in powers of s−1 for certain ’smooth’ distributions µs on Zd with
support in Cs, see [BG5, Theorem 2.1]. For indefinite forms this result yields the
following refinement of Oppenheim’s conjecture for dimensions d ≥ 9.

For a sufficiently small positive constant, say c0 = c0(d), let d(s) denote the
maximal gap in the finite set of values Q[m] such that −c0s ≤ Q[m] ≤ c0s and
m ∈ Cs/c2

0

∩ Zd. Then

Theorem 4.3. [BG5]. For d ≥ 9 the maximal gap satisfies

d(s) ≪d q3d/2
(
s−λ + ρ(s)

)
for s ≥ c−1

0 q3d/2,

with ρ(s) ≤ 2 defined in (5.2) and λ given in Theorem 3.1.

The quantitative version of Oppenheim’s conjecture by Dani and Margulis [DM]
describes the uniformity of the distribution of the set of values Q[Zd ∩ Cs] for
star-shaped sets like the cubes Cs introduced above. For a fixed interval [α, β] let
Vα,β denote the set of x ∈ Rd such that Q[x] ∈ [α, β]. Eskin, Margulis and Mozes
proved the following result using ergodic theory for unipotent groups.

Theorem 4.4. [EMM]. For any irrational indefinite form Q of signature (p, q)
with q ≥ 3,

(4.3)
volZ

(

Vα,β ∩ Cs

)

vol
(

Vα,β ∩ Cs

) = 1 + o(1), as s → ∞.

In particular (4.3) holds for all indefinite irrational forms with d ≥ 5.

Using expansion results for arbitrary forms, the error term in this convergence
result can be explicitly estimated for d ≥ 9, see [BG5, Theorem 2.6].

5. Inequalities for Characteristic Functions and Trigonometric

Sums.

In order to prove the results of Sections 2–4, characteristic functions of Q[Sn] and
weighted trigonometric sums, say f(t), are used. In the latter case the weights are

Documenta Mathematica · Extra Volume ICM 1998 · III · 245–255



252 F. Götze

given by a uniform distribution on the lattice points in the cube C2s smoothed
at the boundary of C2s by convolutions with uniform distributions on some suf-
ficiently small cubes, retaining constant weights in the center part Cs ⊂ C2s. A
simplified version of these weighted trigonometric sums, used in the explicit bounds
of Theorems 3.1 and 4.3, is defined as follows. Let

(5.1) ϕa(t; s) =
∣∣∣
(
volZ Cs

)−3 ∑
xj∈Zd∩Cs

exp
{
itQ[x1 + x2 + x3 − a]

}∣∣∣.

Note that ϕa(t; s) is normalized so that |ϕa(t; s)| ≤ ϕa(0; s) = 1. Define

γ
(
s, T

)
= sup

a
sup

s−1/2≤t≤T

ϕa(t; s).

It can be shown that lims→∞ γ
(
s, T

)
= 0 iff Q is irrational. Finally, given d ≥ 9

and ε with 0 < ε < κ := 1− 8/d, the characteristic ρ(s) of Theorem 3.1 and 4.3 is
given by

(5.2) ρ(s) = inf
T≥1

(
T−1 + γ

(
s, T

)κ−ε
T ε

)
.

The connections between the probability resp. counting problems and f(t) are
made by means of Fourier inversion inequalities based on Beuerling type functions,
see Prawitz [Pr], which bound δn resp. |∆(Es)| by

(5.3)
1∫

−1

|f(t)− g(t)| t−1 dt+
1∫

−1

(|f(t)|+ |g(t)|) dt.

Here g(t) is the continuous approximation to f(t) replacing the distribution of Sn

by a Gaussian distribution resp. the counting measure by the Lebesgue measure.
In the CLT the following version of Weyl’s [We] difference scheme for sums of

Rd–valued, independent random vectors, say U, V (with identical distribution) and

Z,W is used. Let X̄ denote an independent copy of X and let X̃ = X − X̄ be its
symmetrization. The inequality

(5.4)
∣

∣

∣ E exp{i tQ[U + V + Z +W ]}
∣

∣

∣

2 ≤ E exp{2 i t 〈QŨ, Z̃〉},

now reduces the estimation of f(t) in (5.3) to bounds of order O(n−1+ε) for con-
ditional linear forms, but in a restricted domain |t| ≤ n−ǫ only. This leads to rates
a = 1− ε in (1.1), see [G1].

In order bound the integral (5.3) by O(n−1), this Weyl step is followed by a
discretization step for positive definite functions H : Rd → R. For even n = 2 l
and binomial weights pn(k) =

(
n

l−k

)
/2n, bounds like

(5.5) EH(Sn) ≤
1

n

n∑

j=1

E
( ∑

|k|≤l

pn(k)H
(
k n−1/2 X̃j

))
,
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reduce the support of X to Zd and replace characteristic functions of Sn by
weighted trigonometric sums.

Finally, for general Q, the desired bounds for weighted trigonometric sums,
say f(t), of type (5.1), are based on the following ’correlation’ bound

(5.6)
∣∣f(t)f(t+ ε)

∣∣ ≤ c qd
((

εs
)−d/2

+ εd/2
)
for all t ∈ R and ε ≥ 0.

For t = 0 we have f(t) = 1 and (5.6) becomes a ’double large sieve’ estimate
for distributions on the lattice, see e.g. Bombieri and Iwaniec [BI]. The inequality
(5.6) implies for t0 ≤ t1 with 0 < δ ≤ |f(t0)|, |f(t1)| ≤ 2 δ that either

|t0 − t1| ≤ λr = c1δ
−4/ds−1 or |t0 − t1| ≥ κ = c2δ

−4/d.

Thus either the arguments t0 and t1, where the trigonometric sums are of the same
(large) order δ, nearly coincide or their distance has to be ’large’ (dependent on
δ and d). Hence the set of arguments t, where f(t) assumes values in an interval
[δ, 2δ] like Aδ = {t ≥ v : δ ≤ |f(t)| ≤ 2δ} with v := s−2/d, may be roughly
described as a set of intervals of size at most δr separated by ’gaps’ of size at
least κ. This allows to estimate part of (5.3) approximately as

∫

Aδ

|f(t)| dt
t

≪
L∑

l=0

δ λr
1

v + lκ
≪ s−1δ1−8/d log

1

δ
,

with some L such that Lκ ≤ 1. The sum of these parts for δ = 2−l, l ∈ N is now
of order O(s−1), provided that d > 8, which explains the dimensional restriction
of this method.
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