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Appliations of

Intentionally Biased Bootstrap Methods

Peter Hall and Brett Presnell

Abstract. A class of weighted-bootstrap techniques, called biased-
bootstrap methods, is proposed. It is motivated by the need to adjust
more conventional, uniform-bootstrap methods in a surgical way, so as
to alter some of their features while leaving others unchanged. Depend-
ing on the nature of the adjustment, the biased bootstrap can be used
to reduce bias, or reduce variance, or render some characteristic equal
to a predetermined quantity. More specifically, applications of bootstrap
methods include hypothesis testing, variance stabilisation, both density
estimation and nonparametric regression under constraints, ‘robustifica-
tion’ of general statistical procedures, sensitivity analysis, generalised
method of moments, shrinkage, and many more.

1991 Mathematics Subject Classification: Primary 62G09, Secondary
62G05
Keywords and Phrases: Bias reduction, empirical likelihood, hypothesis
testing, local-linear smoothing, nonparametric curve estimation, variance
stabilisation, weighted bootstrap

1. Uniform and weighted bootstrap methods

For centuries the sample mean has been recognised as an estimator of the pop-
ulation mean — or in contemporary notation, X̄ =

∫
x dF̂ (x) is an estimator of

µ =
∫
x dF (x), where F̂ denotes the empirical distribution function computed us-

ing a sample drawn from a distribution F . The idea that the sample median is an
estimator of the population median is implicit in work of Galton about 120 years
ago. Thus, the notion that a parameter may be regarded as a functional of a dis-
tribution function, and estimated by the same functional of the standard empirical
distribution, is a rather old one, even though it was perhaps only recognised as a
general principle relatively recently.

Efron’s (1979) classic paper on the bootstrap vaulted statistical science for-
ward from these simple ideas. Efron saw that when substituting the true F by an
estimator F̂ , the notion of a ‘parameter’ could be interpreted much more widely
than ever before. It could include endpoints of confidence intervals or critical
points of hypothesis tests, as well as error rates of discrimination rules. It could
encompass tuning parameters in a wide variety of estimation procedures (even the
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nominal levels of intervals or tests can be regarded as tuning parameters), and
much more.

Another key ingredient of the methods discussed by Efron (1979) was recogni-

tion that in cases where the functional of F̂ could not be computed directly, it could
be approximated to arbitrary accuracy by Monte Carlo methods. This differed in
important respects from several earlier approaches to ‘resampling’, as the idea of
sampling from the sample has come to be known. In particular, neither Maha-
lanobis’ notion of ‘interpenetrating samples’, nor Hartigan’s (1969) ‘subsampling’
approach, directly involve drawing a resample of the same size as the original sam-

ple by sampling with replacement. The methods of Simon (1969, Chapters 23–25)
are closer in this respect to the contemporary bootstrap.

The combination of these two ideas — the substitution or ‘plug in F̂ ’ rule,
and the notion that Monte Carlo methods can be used to surmount computational
obstacles — has been little short of revolutionary. When Monte Carlo simulation is
employed to compute a standard bootstrap estimator, one samples independently
and uniformly from a data set X = {X1, . . . , Xn}, producing a resample X ∗ =
{X∗

1 , . . . , X
∗
n} with the property that

P (X∗
i = Xj |X ) = n−1 , 1 ≤ i, j ≤ n . (1.1)

Standard bootstrap methods may be loosely defined as techniques that approxi-
mate the relationship between the sample and the population by that between the
resample X ∗ and the sample X .

The generality of the standard uniform bootstrap may be increased in a num-
ber of ways, for example by allowing the resampled values X∗

i to be exchangeable,
rather than simply independent, conditional on X (see e.g. Mason and Newton,
1992); or by retaining the independence but replacing the sampling weight n−1 at
(1.1) by pj , say. In the latter case we shall use a dagger instead of the familiar
asterisk notation, so that there will be no ambiguity about the procedure we are
discussing:

P
(
X†

i = Xj

∣∣X
)
= pj , 1 ≤ i, j ≤ n , (1.2)

where
∑

j pj = 1. This ‘weighted bootstrap’ procedure has been discussed exten-
sively (see e.g. Barbe and Bertail, 1995), usually as a theoretical generalisation
of the uniform bootstrap, pointing to a multitude of different modes of behaviour
that may be achieved through relatively minor modification of the basic resampling
idea.

2. Biased bootstrap methods

In ‘standard’ settings, where the appropriate way of applying the bootstrap is rel-
atively clear, the uniform bootstrap offers an unambiguous approach to inference.
Therein lies part of its attraction — there are no tuning parameters to be selected,
for example. However, the lack of ambiguity can also be a drawback. In particular,
the rigidity of the conventional bootstrap algorithm makes it relatively difficult to
modify uniform-bootstrap methods so as to include constraints on the parameter
space. The weighted bootstrap offers a way around this difficulty, by providing an
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opportunity for ‘biasing’ bootstrap estimators so as to fulfill constraints. More-
over, we may interpret the notion of a ‘constraint’ in a very broad sense, like that
of a ‘parameter’. Nevertheless, an unambiguous approach to choosing the weights
pi is required. Biased-bootstrap methods provide a solution to that problem.

The biased bootstrap requires two inputs from the experimenter: the distance
measure, and the constraints. The first is generic to a wide range of problems, and
will be discussed from that viewpoint in section 3. The second is problem-specific,
and will be introduced through nine examples in section 4. A general form of
the biased bootstrap is to choose the weights pi so as to minimise distance from
the distribution at (1.2) to that at (1.1), subject to the constraints being satisfied
(Hall and Presnell, 1998a).

Details of some of the examples in section 4 may be found in Hall and Pres-
nell (1998a,b,c) and Hall, Presnell and Turlach (1998). Examples not treated in
section 4 include hypothesis testing, bagging (bootstrap aggregation), shrinkage,
and applications involving time series data. The latter may be handled by either
modelling the time series as a process with independent disturbances, and applying
the biased bootstrap to those; or by using a biased form of the block bootstrap.

Section 5 will consider potential computational issues. Aids to computation
include estimating equations, protected Newton-Raphson algorithms, and approx-
imate, sequential linearisation. It will be clear that, using such techniques, biased-
bootstrap methods are definitely computationally feasible.

3. Distance measures

For the sake of brevity we shall confine attention to a class of distance measures,
the power divergence distances, introduced by Cressie and Read (1984) and Read
and Cressie (1988). A wider range has been treated by Corcoran (1998) in the
context of Bartlett adjustment of empirical likelihood. See also Baggerley (1998).

Let p = (p1, . . . , pn). For simplicity we assume throughout that
∑

i pi = 1 and
each pi ≥ 0, although in some cases (e.g. power divergence with index ρ = 2) the
case where negative pi’s are allowed has computational advantages. Given ρ 6= 0
or 1, we may measure the distance between the uniform-bootstrap distribution,
punif = (n−1, . . . , n−1), and the biased-bootstrap distribution (with weight pi at
data value Xi) by

Dρ(p) = {ρ (1− ρ)}−1

{
n−

n∑

i=1

(npi)
ρ

}
.

This quantity is always nonnegative, and vanishes only when p = punif . For ρ = 1
2 ,

Dρ(p) is proportional to Hellinger distance. Letting ρ→ 0 we obtain

D0(p) = −

n∑

i=1

log (npi) ,

which equals half Owen’s (1988) empirical log-likelihood ratio. Similarly, D1 may
be defined by a limiting argument; it is proportional to the Kullback–Leibler diver-
gence between p and punif (whereas D0(p) is proportional to the Kullback–Leibler
divergence between punif and p).
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In constructing a biased-bootstrap estimator we would select a value of ρ,
and then compute p̂ = (p̂1, . . . , p̂n) from the sample X = {X1, . . . , Xn} so as to
minimise Dρ(p), subject to the desired constraints being satisfied. If the parameter
value that we wished to estimate was expressible as θ(F ), then its biased-bootstrap

estimator would equal θ(F̂p̂), where F̂p denotes the distribution function of the
discrete distribution that has mass pi at data value Xi for 1 ≤ i ≤ n. Usually the
value of θ(F̂p̂) will not be computable directly, but it may always be calculated
by Monte Carlo methods, resampling from X according to the scheme that places
weight p̂i on Xi.

In some instances, for example outlier reduction (section 4.7), there are ad-
vantages to using ρ 6= 0, since D0(p) becomes infinite whenever some pi = 0. By
way of comparison, Hellinger distance (for example) allows one or more values of
pi to shrink to zero without imposing more than a finite penalty. However, in
most other applications we have found that there is little to be gained — and
sometimes, something to be lost (see sections 4.1 and 4.2) — by using a value of
ρ other than ρ = 0.

4. Examples

4.1. Empirical likelihood. The method of empirical likelihood, or EL, was in-
troduced by Owen (1988, 1990). See also Efron (1981). It may be viewed as a

special case of the biased bootstrap in which the constraint is θ(F̂p) = θ1, where

F̂p denotes the distribution function of the weighted bootstrap distribution with
weights pi, and θ1 is a candidate value for θ. It is based on the value p̂ = p̂(θ1) of

p that minimises Dρ(p) subject to θ(F̂p) = θ1.
One EL approach to constructing an α-level confidence interval for the true

value of θ is to take tα to be the upper α-level quantile of the chi-squared distri-
bution for which the number of degrees of freedom equals the rank of the limiting
covariance matrix of the uniform-bootstrap estimator, θ̂(F̂punif

); and to let the

interval be the set of θ1’s such that Dρ{θ(F̂p̂(θ1))} ≤ tα. Under regularity con-
ditions that represent only a minor modification of those of Hall and La Scala
(1990), this interval may be shown to have asymptotic coverage equal to 1 − α,
no matter what the value of ρ. Using methods of DiCiccio, Hall and Romano
(1991) it may be shown that this generalised form of EL is Bartlett-correctable
if and only if ρ = 0. (Strictly speaking, the term ‘likelihood’ is appropriate for
describing these generalised EL techniques only if ρ = 0.) See Baggerley (1998)
and Corcoran (1998).

4.2. Variance stabilisation. Here we wish to choose, by empirical means, a transfor-
mation ĝ which, when applied to a (scalar) parameter estimator θ̂, will implicitly
correct for scale. Our method is a biased-bootstrap version of a conventional-
bootstrap technique proposed by Tibshirani (1988). It has an advantage over the
latter approach in that it does not require selection of any smoothing parameters,
or any extrapolation.

As in example 4.1, choose p to minimise Dρ(p) subject to θ(F̂p) = θ1. Let

X † = {X†
1 , . . . , X

†
n} denote a resample drawn by sampling from X using the

weighted bootstrap with weights p̂i, and let θ̂† denote the version of θ̂ computed
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from X † rather than X . Let v̂(θ1) = var(θ̂†|X ) be the biased-bootstrap estimator

of the variance of θ̂ when the true value of θ is θ1. Write ĝ(θ) for the indefi-
nite integral of v̂(θ)−1/2, with the constant chosen arbitrarily. Using the uniform

bootstrap, compute the conditional distribution of ĝ(θ̂∗) − ĝ(θ̂) and use it as an

approximation to the unconditional distribution of ĝ(θ̂)− ĝ(θ0), where θ0 denotes
the true parameter value. This enables us to compute confidence intervals for
ĝ(θ0), from which we may calculate intervals for θ0 by back-transformation. It
may be shown that ρ = 0 is sufficient for the latter intervals to be second-order
accurate.

4.3. Density estimation under constraints. Here we consider kernel-type, biased-
bootstrap estimators of the form f̂p(x) =

∑
i piKi(x), where Ki(x) = h−1K{(x−

Xi)/h}, K is a positive, symmetric kernel, and h is a bandwidth. (The tradi-
tional kernel estimator, in which each pi is replaced by n−1, may be regarded as a
uniform-bootstrap estimator of θ = E{Ki(x)}.) Constraining the j’th moment of

the distribution with density f̂p to equal the j’th sample moment is equivalent to
asking that

∑
i piAi = a, where a denotes the sample moment,

Ai =

〈j/2〉∑

k=0

(
j

2k

)
Xj−2k

i h2k κ2k ,

〈j/2〉 represents the integer part of j/2, and κℓ =
∫
yℓK(y) dy. Moreover, stip-

ulating that the q’th quantile of the distribution with density f̂p equal the q’th

sample quantile (ξ̂q, say) produces a constraint of the same form, this time with

Ai = L{(ξ̂q −Xi)/h} (where L denotes the distribution function corresponding to

the density K) and a = q. Constraining the interquartile range for f̂ to equal its
sample value amounts to the obvious linear form in constraints on the 25% and
75% quantiles. See also Chen (1997).

The constraint that entropy equals t, say, has the form

−

n∑

i=1

pi

∫
Ki(x) log

{ n∑

j=1

pj Kj(x)

}
dx = t .

Reducing entropy increases ‘peakedness’ and reduces spurious bumps in the tails.
Combining this observation with the fact that increasing the bandwidth also tends
to reduce the number of modes, while decreasing peakedness, we may develop an
implicit algorithm (as distinct from the explicit method suggested in section 4.5)
for computing a density estimator subject to the constraint of unimodality.

4.4. Correcting Nadaraya-Watson estimator for bias. Suppose data pairs (Xi, Yi)
are generated by the model Yi = g(Xi) + ǫi, where g is the smooth function that
we wish to estimate, the design points Xi are random variables with density f ,
and the errors ǫi have zero mean. Then the Nadaraya–Watson estimator of g may
be defined by g̃ = γ̂/f̂ , where γ̂(x) = n−1

∑
i Ki(x)Yi and f̂(x) = n−1

∑
i Ki(x).

The performance of g̃ is generally inferior to that of local-linear estimators,
owing to problems of bias. In particular, g̃ is biased for linear functions. To

Documenta Mathematica · Extra Volume ICM 1998 · III · 257–266



262 Peter Hall and Brett Presnell

overcome this difficulty we may use the biased bootstrap to constrain the estimator
to be unbiased when g is linear, by insisting that

∑
i pi(x) (x − Xi)Ki(x) = 0.

Thus, p = (p1, . . . , pn) is now a function of location, x. The resulting estimator is

ĝ(x) =

{ n∑

i=1

pi(x)Ki(x)Yi

}/{ n∑

i=1

pi(x)Ki(x)

}
.

It achieves the same minimax efficiency bounds as local-linear smoothing (see e.g.
Fan, 1993), and enjoys positivity properties that the latter approach does not.

4.5. Unimodality and monotonicity. Define a continuous density f to be strongly
unimodal if there exist points −∞ < x1 < x2 < ∞ such that (i) f is convex
on (−∞, x1) and on (x2,∞), and (ii) f is concave on (x1, x2). In principle we

may constrain f̂p to be a strongly unimodal density estimator, by arguing as
follows: (a) for fixed x1 and x2, choose p = px1x2

to minimise Dρ(p) subject to

f̂ ′′p (x) =
∑

i piK
′′
i (x) being positive on (−∞, x1) and on (x2,∞), and negative on

(x1, x2); (b) choose x1, x2 to minimise Dρ(px1x2
) over all possible choices satisfying

(a). However, the probability that this is possible does not necessarily converge
to 1 as n → ∞, even if the true f is strongly unimodal and considerable latitude
is allowed for choice of bandwidth.

On the other hand, a weaker form of unimodality may be successfully imposed.
There, we argue as follows: (α) select a candidate −∞ < x0 < ∞ for the mode

of f̂p, and choose p = px0
to minimise Dρ(p) subject to f̂ ′(x0) = 0, f̂ ′′(x0) ≤ 0,

and to any point x 6= x0 for which f̂ ′(x) = 0 being a point of inflexion of f̂p; and
(β) choose x0 to minimise Dρ(px0

) over all possible choices satisfying (α). There
is also a version of this method in the context of nonparametric regression, where
‘unimodality’ of a regression mean is defined in the obvious way.

Likewise, we may use biased-bootstrap methods to impose monotonicity of a
function estimator in either the density or regression cases. Confining attention to
local-linear estimators for nonparametric regression, we would proceed as follows.
Let (Xi, Yi), for 1 ≤ i ≤ n, denote a sample of independent and identically dis-
tributed data pairs. If (Xi, Yi) is accorded weight pi then the local-linear estimator

of g(x) = E(Y |X = x) equals â, where (â, b̂) denotes the pair (a, b) that minimises

n∑

i=1

{Yi − a− b (Xi − x)}2 piKi(x) .

The biased-bootstrap local-linear estimator is ĝp = (S2T0 − S1T1)/(S2S0 − S2
1),

where

Sj(x) =

n∑

i=1

(Xi − x)j piKi(x) , Tj(x) =

n∑

i=1

Yi (Xi − x)j piKi(x) .

Suppose we wish to constrain ĝp(x) to have derivative not less than a given value
t, for all x in some interval I. It may be shown that, if the true regression mean
g satisfies g′ ≥ t on I then, with probability tending to 1 as n → ∞, and for a
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wide range of choices of bandwidth, the biased-bootstrap constrained-minimisation
problem has a solution, and that the solution has bias and variance of the same
order as those of the unconstrained local-linear smoother.

4.6. Bias reduction without violating sign. Let θ̂ = θ(F̂punif
) (possibly vector-

valued) denote the uniform-bootstrap estimator of θ(F ), based on data X =
{X1, . . . , Xn}. Suppose we wish to estimate ψ0 = ψ(θ0), where θ0 is the true
value of θ and ψ is a known smooth function. The uniform-bootstrap estimator is
ψ̌ = ψ(θ̂), but is generally biased. The standard uniform-bootstrap bias-reduced

estimator is ψ̃ = 2 ψ̌ − E{ψ(θ̂∗)|X}, where θ̂∗ denotes the uniform-bootstrap ver-

sion of θ̂. However, this approach does not necessarily respect the sign of the
function ψ. For example, when ψ(u) ≡ u2, and θ is a population mean and θ0 = 0,

the probability that ψ̃ < 0 converges to 0.68.
A sign-respecting, biased-bootstrap approach to bias reduction may be defined

as follows. Let θ̂† denote the version of θ̂ computed from a resample drawn by
sampling at random from X according to the weighted empirical distribution F̂p. A

biased-bootstrap approximation to the bias of ψ(θ̂) is β(p) = Ep{ψ(θ̂
†)|X}−ψ(θ̂),

where Ep denotes expectation with respect to F̂p. Choose p = p̂ to minimise Dρ(p)
subject to β(p) = 0,

∑
i pi = 1 and each pi ≥ 0. Then, our biased-bootstrap, bias-

reduced, sign-respecting estimator of ψ0 is ψ̂ = ψ(θ̂p̂), where θ̂p = θ(F̂p).

It may be shown that, not only does ψ̂ overcome the sign problem, in cases
where the probability that ψ̃ has the wrong sign does not converge to 0, ψ̂ is closer
(on average) than ψ̃ to ψ0.

4.7. ‘Trimming’ or ‘winsorising.’ Let θ̂p = θ(F̂p) denote the biased-bootstrap
estimator of θ = θ(F ), and let γ(p,X ) be a measure of the concentration of the

biased-bootstrap distribution with respect to θ̂p. For example, in the case of a
scalar sample X , and when our interest is in location estimation, we might define

γ(p,X ) =

n∑

i=1

pi (Xi − X̄p)
2k ,

where k ≥ 1 is an integer and X̄p = X̄p(k) minimises
∑

i pi(Xi−x)
2k with respect

to x. (Taking k = 1 we see that γ(p,X ) is the variance of the biased-bootstrap
distribution.) Put γ̂ = γ(punif ,X ), being the version of the concentration measure
in the case of the uniform bootstrap. Given 0 < t ≤ γ̂ we may calibrate the level of
concentration by choosing p = p(t) to minimise Dρ(p) subject to γ(p,X ) = t. As

t decreases, the biased-bootstrap distribution F̂p(t) becomes more concentrated.
To avoid the result of calibration being heavily influenced by tail weight of

the sampling distribution, we suggest ‘inverting’ the calibration so that it is on
Dρ(p) rather than γ(p,X ). That is, given ξ > 0 we propose choosing t = tξ such
that Dρ{p(t)} = ξ, and defining p̂(ξ) = p(tξ). In order for this approach to be
practicable we require Dρ{p(t)} to be a monotone increasing function of t, which
can be verified in many cases.

With this modification it may be shown that, in the case 0 < ρ ≤ 1, the biased
bootstrap provides a remarkably effective device for reducing the effects of outlying
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data values. For example, in the context of univariate location estimation the
estimator has a smooth, redescending influence curve, and a breakdown point that
may be be located at any desired value ǫ ∈ (0, 12 ) simply by ‘trimming’ to a known
distance (depending only on ǫ) from the empirical distribution. The estimator
has an affine-equivariant multivariate form, and has versions for regression and
nonparametric regression.

4.8. Sensitivity analysis. The ideas suggested in section 4.7 may be used to develop
new, empirical methods for describing influence and sensitivity. For example, one
may vary t by an infinitesimal amount, starting at t = γ̂, and rank the data values
Xi in decreasing order of the amount by which this variation produces a decrease

in the respective values of pi. This may be regarded as ranking data values in
terms of their influence on concentration, according to the chosen concentration
measure. It produces an outlier diagnostic.

An alternative approach is to apply the biased bootstrap with θ equal to a
candidate value, θ1 say, for the parameter, and consider the values of (∂/∂θ1) pi(θ1)

evaluated at the uniform-bootstrap estimator θ̂ = θ(F̂unif). (Of course, the signs
of the derivatives convey important information about the nature of sensitivity.)
Still another approach is to examine leave-one-out empirical-likelihood ratios com-
puted at biased-bootstrap estimators. These influence diagnostics have potential
advantages over traditional techniques; for example, they may be applied to quite
arbitrary estimators and parameters.

4.9. Generalised method of moments. The generalised method of moments, or
GMM, can provide substantial improvements over the naive method of moments,
by reducing the variance of estimators. Versions of the biased bootstrap have
already been successfully applied to GMM; see for example Brown and Newey
(1995) and Imbens, Johnson and Spady (1998). However, those applications re-
quire equations defining the estimators to be of full rank, and the methods can
perform poorly when one or more of those equations is (approximately) redun-
dant. Indeed, one may show by example that in such cases, the rate of conver-
gence of GMM estimators can be as slow as n−1/4 (where n is sample size), rather
than the n−1/2 achieved using a much simpler method without a weight matrix
in the least-squares step; and that this rate is not improved by iterating GMM.
Biased-bootstrap methods can be used to identify redundancy and accommodate it
adaptively. The approach involves choosing the weight matrix to minimise a non-
asymptotic estimator of mean squared error, and thereby calibrating the standard
GMM method so as to obtain nearly-optimal performance. The biased bootstrap
is employed to enforce an empirical version of the method-of-moments constraint
when defining the mean squared error estimator.

5. Computational issues

By way of notation, let us say that a constraint on p is linear if it may be written in
the form

∑
i piAi = a, which we denote by (L), where Ai and a depend only on the

data, not on p, and may be vectors. (If they were vectors of length ν then we would,
in effect, be imposing ν separate linear constraints.) Examples of linear constraints
include those encountered in in the context of constraining moments and quantiles
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in section 4.3. Particularly for linear constraints, methods described by Owen
(1990) and Qin and Lawless (1995), based on estimating equations, generally lead
to numerically stable procedures.

It may be shown after a little algebra that under constraint (L), and when
the distance function is Dρ for some ρ 6= 1, the resulting pi’s are given by pi =
pi(λ) = (λ0+λ

T
1 Ai)

1/(1−ρ), where λ0 is a scalar, λ1 is a column vector of length ν,
and λ = (λ0, λ1). (The λ0 term comes from incorporating the additional condition∑

i pi = 1. We have not, at this stage, included the constraints pi ≥ 0, which in
any event hold automatically when −1 < ρ < 2.) When ρ = 1 we have instead
pi = exp(λ0+λ

T
1 Ai); and for any given ρ, the value of λ is defined by substituting

back into (L). Thus, the dimension of the problem has been reduced from n to
ν + 1, which remains fixed as n increases. If in addition ρ = 0 then it may be
shown that λ0 = n− λT1 a, and so dimension reduces further, to ν.

In highly nonlinear problems, where these dimension reduction arguments do
not apply, it may be necessary to compute the pi’s directly as the solution to an
(n − 1)-dimensional optimisation problem. For example, we have found that for
moderate n a protected Newton-Raphson algorithm performs well in the problem
of enforcing unimodality through constraints on entropy. Other approaches, such
as the linearisation methods of Wood, Do and Broom (1996), may also be useful
in nonlinear problems.
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