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Orale Inequalities

and Nonparametri Funtion Estimation

Iain M. Johnstone

Abstract. In non-parametric function estimation, partial prior infor-
mation about the unknown function is often expressed by a family of
models or estimators, among which a choice must be made. Oracle in-
equalities bound the mean squared error of a given estimator in terms of
the (unknowable) best possible choice of model for the unknown function.
This survey concentrates on three examples: the James Stein estimator,
soft thresholding, and complexity penalized least squares and as illustra-
tions, we describe some consequences for adaptive estimation.
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1 Introduction

Statistical theory aims in part to articulate when and why certain applied methods
of data analysis succeed. With emergence of large, often instrumentally acquired
datasets, recent decades have seen a focus on “nonparametric” models in which the
number of model parameters grows with the size of available data. Here we focus
on the estimation (or “recovery” or “denoising”) of functions observed in additive
noise and describe some relatively simple inequalities that encode information on
the effect of sparse representation on the quality of estimation.

A common caricature is to posit observed data y ∈ Rn with structure
y = µ + ǫz. Here µ is an unknown function which one desires to “estimate”
or “recover”, and z ∈ Rn is a vector of standard Gaussian noise of known scale ǫ.
When expressed in terms of coefficients in an orthonormal basis {ψi, I ∈ In}, the
model becomes

yI = µI + ǫzI I ∈ In. (1)

Here zI are independent Gaussian noises of mean zero and variance one. This
sequence form of the “Gaussian white noise model”, whether finite as here, or
infinite, as in Section 1.1 below, is the conceptually and technically simplest model
of nonparametric estimation. Extensions to correlated noise and indirect data
y = Kµ+ ǫz are possible, but not covered here.
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268 Iain M. Johnstone

Examples 1. (a) The equispaced, fixed design in which yI = f(tI) + σzI , with f
an unknown function defined on [0, 1] and tI = I/n, I = 1, . . . n.

(b) An initial segment of the continuous Gaussian white noise model. Suppose
that Wt is a standard Brownian motion (or sheet) and that one observes dYt =
f(t)dt + ǫdWt for t ∈ D, a compact set in R

d. If d = 1 and D = [0, 1], this

may be interpreted as Yt =
∫ t

0
f(s)ds + ǫWt for 0 ≤ t ≤ 1. Take inner products

with elements {ψI , I ∈ I} of a complete orthonormal basis for L2[0, 1] and set
yI = 〈ψI , dY 〉, θI = 〈ψI , f〉 and zI = 〈ψI , dW 〉. This gives an infinite sequence
version of (1), to be used in Section 1.1 below. To recover precisely (1), consider
an initial segment of cardinality n of the index set I. A discrete orthogonal
wavelet transform of model (i) yields an approximation to this initial segment
(after calibrating ǫ = σn−1/2, cf. [10]).

(c) Redundant regression. Suppose that there are given vectors (or signals)
x1, . . . xp ∈ R

n, and that it is thought useful, for reaons of parsimony, interpretabil-
ity or otherwise, to represent µ in terms a few of the xi. Collecting xi as columns
of a “design matrix” X = [x1 · · ·xn], one obtains the standard, homoscedastic
Gaussian linear regression model y = Xβ + ǫz. In traditional parametric regres-
sion analysis, it is supposed that p < n and that µ ∈ span{xi}. However, we
specifically consider two “non-parametric” cases: a) p = n and xi orthogonal (i.e.
equivalent to (1)), and b) p > n and not orthogonal - here the xi might be a class
of basic signals from a (possibly highly) redundant dictionary D and we seek a
parsimonious representation of µ in terms of as few elements of D as possible.

Assessing error. An estimator µ̂ = µ̂(y) is a function of observed data y: we
wish to quantify and compare the quality of estimation as µ̂ varies. Simplest to
work with is mean squared error (MSE):

rǫ(µ̂, µ) = Eµ|µ̂− µ|2 =

∫

|µ̂− µ|2φǫ(y − µ)dy. (2)

Here φǫ(z) denotes the probability density function of ǫz. The notation rǫ(µ̂, µ),
mnemonic for “risk”, hints at the possible and frequently desirable use of more
general error norms ‖µ̂− µ‖ or loss functions L(µ̂, µ).

The error µ̂−µ is usually decomposed into a zero-mean stochastic component
µ̂ − Eµµ̂ and a deterministic component, the bias, Eµµ̂ − µ. For quadratic error
measures, these components are uncorrelated, so that the MSE is the sum of
variance and squared bias terms. In particular, for a linear estimator µ̂L(y) = Ly,

r(µ̂L, µ) = ǫ2tr LLt + |Lµ− µ|2. (3)

The quality of approximation of µ by the operator L is thus balanced against the
complexity of L, as measured by the variance term, which for example becomes
ǫ2m in the case of orthogonal projection onto a subspace of dimension m. Already
visible here is the important role that approximation theory plays in analysing
the deterministic component of error. For non-linear estimators that, implicitly or
explicitly, involve a choice among linear estimators, the analysis of the stochastic
term is facilitated by the concentration of measure phenomenon (Section 4).
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Models and Estimators. A model is a subset M of the full parameter space
R

n. A family of models {Mα, α ∈ A} is one device commonly used to represent
imperfect and partial information about the unknown µ. Often there is a natu-
ral estimator µ̂α associated with each model and in this paper we simplistically
conflate choice of model with choice of the associated estimator.

Examples 2. (a) Spheres and linear shrinkage. For positive α, let Mα be the
sphere |µ| = α: this might correspond to prior information about the signal-
to-noise ratio. Natural corresponding estimators are given by linear shrinkage:
µ̂α = γy where γ = γ(α) is obtained by minimizing the MSE in (3), namely
nγ2 +(1− γ)2|µ|2, on Mα to obtain the Wiener filter γ(α) = α2/(n+α2) ∈ (0, 1).

(b) Subspaces and projections. In the regression setting of Example 1(c) above,
to each subset J ⊂ {1, . . . , p} of the full variable list is associated a linear model
MJ = span {xj , j ∈ J}. The corresponding estimators are orthogonal projections
PJ on MJ : these are the least squares estimators on the assumption that µ ∈MJ .

Ideal Risk Given a family A of models (or corresponding estimators), and for a
given unknown µ, the best attainable MSE is given by the ideal risk

Rǫ(µ,A) = inf
α
R(µ̂α, µ).

Thus, in example (a), the ideal linear shrinkage risk is

Rǫ(µ,LS) = nǫ2|µ|2/(nǫ2 + |µ2|). (4)

Outline of paper. Of course, µ is not known, and without access to an oracle
who divulges the best α, the ideal risk is not attainable by an estimator depending
on the data y alone. Nevertheless, it acts as a useful benchmark, and we seek
estimators that in an appropriate sense optimally mimick the ideal risk. Such
estimators turn out to be non-linear, and in particular, not members of the family
µ̂α. For three settings and estimators, oracle inequalities are presented in Theorems
3, 5 and 8 – we emphasize that the inequalities are non-asymptotic and uniform
in character, holding for all n, ǫ and for all µ ∈ R

n.
Corresponding lower bounds (although asymptotic in n) show that without

some restriction on, or further information about µ, the inequalities cannot be
improved, and thus represent in some sense the necessary “price” for searching
over a class of models/estimators of a given size.

Oracle inequalities are neither the beginning nor the end of a theory, but
when available, are informative tools. For example, Theorems 3, 5 and 8 may
also be used to derive asymptotic (i.e. low noise ǫ) results within a framework of
adaptive minimax estimation: this class of applications is considered in a connected
sequence of “illustrations” in the continuous Gaussian white noise model, which
we now introduce.

1.1 Illustration: Asymptotic Minimax Estimation.

The continuous Gaussian white noise model is that of Example 1(b). Because

of Parseval’s inequality
∫ 1

0
(f̂ − f)2 =

∑

I(θ̂I − θI)
2 = ‖θ̂ − θ‖2, estimation error
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can equally well be measured in the sequence domain. To evaluate estimators, we
use the minimax principle - although inherently conservative and not universally
accepted, we find that it leads to clear structures and informative results. Thus,
estimators are assessed by their worst case risk over a given Θ. The minimax
risk measures the best attainable such maximum risk, within a class E of esti-
mators: RE(Θ, ǫ) = inf θ̂∈E supθ∈Θ rǫ(θ̂, θ). The symbols E = N,L,D, . . . refer to
specific estimator classes: all non-linear, all linear, all threshold rules etc. Finally,
estimator θ̂ is called asymptotically E− minimax if

sup
θ∈Θ

rǫ(θ̂, θ) = RE(Θ, ǫ)(1 + o(1)), ǫ→ 0.

In order to describe a flexible and scientifically meaningful class of parameter
spaces Θ, we employ a dyadic sequence notation, in which I = (j, k), with j =
0, 1, . . . and k = 1, . . . , 2j . The primary motivation comes from orthonormal bases
of wavelets {ψjk}, which, under suitable regularity and decay conditions on the
wavelets, and with suitable modifications to handle intervals, form unconditional
bases for many function spaces of interest ([22, 15, 3]). Thus their norms may
be characterized in terms of conditions on |θI | . For example, let χI denote the
indicator function of the interval [(k−1)2−j , k2−j ]: the sequence of (quasi-)norms
‖ · ‖α,p, defined for 0 < α <∞, 0 < p ≤ ∞ by

‖θ‖pα,p =

∫ 1

0

[
∑

I

(2aj |θI |χI)
2]p/2, a = α+ 1/2,

are equivalent, (for p > 1 and α ∈ N) to the traditional Sobolev norms ‖f‖pWα
p
=

∫ 1

0
|f (α)|p + |f |p. In the Hilbertian case p = 2, these take the simpler form

‖θ‖2α,2 =
∑

j≥0

2jα|θj |2, |θj |2 =
∑

k

|θjk|2.

As parameter spaces, we thus use norm balls: Θα,p(C) = {(θI) : ‖θ‖α,p ≤ C},
which are analogs of size restrictions on derivatives, but measured in Lp norms.

In practice, the values of (α, p, C) will not be known, and rather than seeking
a minimax estimator for a single such Θα,p(C), we look for estimates with an
adaptive minimaxity property. Thus, suppose that a scale of spaces S = {Θν(C) :
ν ∈ V, C > 0} is given, where ν is an order parameter, such as (α, p) above, and

C a scale parameter. Then θ̂ is adaptively E−minimax if (i) the definition of θ̂ is

independent of (ν, C), and (ii) θ̂ is asymptotically E−minimax for all (ν, C).

2 Linear Shrinkage and Orthogonal Invariance

A celebrated result in parametric statistics, due to Stein [24], is the inadmissibility
of the maximum likelihood estimator µ̂0(y) = y in model (1) as soon as n ≥ 3.
Indeed, [17] showed that adaptive linear shrinkage

µ̂JS+(y) = (1− γ̂)+y, γ̂ = (n− 2)ǫ2/|y|2,
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is everywhere better than µ̂0, in the sense that for all µ ∈ R
n, rǫ(µ̂

JS+, µ) <
rǫ(µ̂

0, µ) ≡ nǫ2. Here a+ = max(a, 0). The result was and remains surprising
because it can seem counterintuitive that combining data from statistically com-
pletely independent problems, represented by each coordinate in (1), leads to bet-
ter MSE properties.

A simple proof was later given by Stein [25], using his unbiased estimate of
risk to show that µ̂JS(y) = (1− γ̂)y, necessarily worse than µ̂JS+, satisfies

r(µ̂JS , µ) = Eµ{n− (n− 2)2|y|−2} < n. (5)

(where, for simplicity, ǫ = 1 here.) Using in (5) the fact that the distribution of
|y|2 can be represented as the mixture of central chi-squared distributions χ2

n+2P

with P distributed as a Poisson variate with mean |µ|2/2, and applying Jensen’s
inequality, one obtains our first oracle inequality.

Theorem 3 ([7]). In model (1), suppose n ≥ 3. For all µ ∈ R
n,

E|µ̂JS − µ|2 ≤ 2ǫ2 +
(n− 2)ǫ2|µ|2

(n− 2)ǫ2 + |µ|2 . (6)

In view of (4), this implies

rǫ(µ̂
JS+, µ) ≤ 2ǫ2 +Rǫ(µ,LS). (7)

Thus, the classical James-Stein estimator comes within an additive penalty of 2ǫ2

of mimicking the ideal linear shrinkage estimator. This performance is impressive
when calibrated against the minimax risk RN (Rn, ǫ), in this problem nǫ2.

However it should be noted that this inequality is orthogonally invariant, and
makes no use of the particular basis in which the unknown signal µ is represented.

2.1 Illustration: Levelwise shrinkage in the dyadic sequence model.

In the dyadic sequence model of Section 1.1, group coefficients by level j : yj =

(yjk)
2j

k=1. Form a levelwise James Stein estimator θ̂LJS by applying James-Stein

shrinkage to yj : θ̂
LJS
j = θ̂JS+(yj), at least for levels j below a cutoff J = log2 ǫ

−2,

above which θ̂LJS
j simply estimates zero. [Recall the calibration n = ǫ−2 of Ex-

ample 1(b).] The MSE of the θ̂LJS may then also be represented levelwise:

E‖θ̂LJS − θ‖2 =
∑

j<J(ǫ)

E|θ̂JS+(yj)− θj |2 +
∑

j≥J(ǫ)

|θj |2.

The oracle inequality (7) may be applied to each level j in the first sum, while the
geometric weights 2aj used to define Θα,2 imply that the second sum is negligible
for small ǫ. For the scale of Hilbert spaces S2 = {Θα,2(C) : α > 0, C > 0} :

Theorem 4 ([7]). θ̂LJS is adaptively minimax over S2.
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This recovers and extends a notable result of Efroimovich & Pinsker [14],
originally formulated in the Fourier basis. In fact, one verifies relatively easily that
θ̂ is adaptively minimax among linear estimates (from the ideal linear shrinkage
risk) and then appeals to the celebrated theorem of Pinsker [23]), which shows that
for the ellipsoids occurring in S2, linear minimax rules are actually asymptotically
minimax among all non-linear estimates.

This levelwise application of an oracle inequality is shows how the dyadic se-
quence model allows a “lifting” of results from a symmetric and “parametric” set-
ting (an exchangeable multivariate normal law at each level) to a non-parametric,
infinite-dimensional model. Other examples of this type may be found in [7, 9].

3 Orthogonal Regression and Thresholding

To this point, we have considered only orthogonally invariant estimators. However,
a basic principle is that sparsity of representation of a signal in a given basis leads
to better estimation, and to exploit such sparsity, non-linear estimators are needed.

Thus, assume the orthonormal basis leading to coefficients (1) is chosen so
that {µi} contains few large coefficients, although of course it is not known in
advance which among the co-ordinates are important.

In this orthogonal regression setting, the least squares subset selection estima-
tors have a simple co-ordinatewise representation: the j−th component of µ̂J(y)
equals yj if j ∈ J and 0 otherwise. Thus, the least squares estimators have the
form of diagonal projections (DP below). The mean squared error of µ̂J is then
the sum of terms which measure either variance or bias:

r(µ̂J , µ) =
∑

j∈J

ǫ2 +
∑

j /∈J

µ2
j .

The ideal risk for among all such diagonal projection estimators can therefore be
found by minimizing termwise:

Rǫ(µ,DP ) = inf
J
r(µ̂J , µ) =

∑

j

µ2
j ∧ ǫ2.

To quantify sparsity, order the squared magnitudes of the components of µ via
µ2
(1) ≥ µ2

(2) ≥ . . . ≥ µ2
(n) and define compression numbers c2j =

∑

k>j µ
2
(k). The

number of large coefficients is measured by N(ǫ) = #{j : |µj | > ǫ}, and we have

Rǫ(µ,DP ) = ǫ2N(ǫ) + c2N(ǫ),

which shows an intimate connection between ideal risk and the compressibility of
the signal in this basis.

Various forms of thresholding estimator can be introduced: here we consider
soft thresholding:

µ̂ST
j (y) = sgn(yj)(|yj | − λ)+.

The key points are that the estimator acts co-ordinatewise and that there is a
threshold zone [−λ, λ] in which the data is interpreted as noise and “discarded”.
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Theorem 5 ([6]). If λ =
√
2 log n, then for all µ ∈ R

n,

rǫ(µ̂
ST , µ) ≤ (2 log n+ 1)[ǫ2 +Rǫ(µ,DP )]. (8)

Since the logarithmic penalty is of small order relative to n, the result shows
that sparsity, as measured by ideal risk, implies good estimation. The bound is
valid for all sample sizes and all µ. There has been much work on the choice of
threshold λ - the choice given here is attractive for its conservatism: since for
independent and identically distributed N(0, 1) variates zi, P (max1≤j≤n |zj | >√
2 log n) → 0, it follows that P (µ̂ST = 0|µ = 0) → 1. For more on these issues

and numerical examples, see [11]. Smaller choices of λ, even depending on the
data y, lead to better mean squared error in exchange for less conservatism [7].
Natural extensions of Theorems 5 and 6 to correlated noise exist [19]

Optimality. Absent extra restrictions on µ, the factor 2 log n is optimal:

Theorem 6 ([6]). As n→ ∞,

inf
µ̂

sup
µ∈Rn

r(µ̂, µ)

ǫ2 +Rǫ(µ,DP )
≥ (2 log n)(1 + o(1)).

The lower bound arises from the difficulty of distinguishing rare true signal
components from the also infrequent extremes of the white Gaussian noise zi.
Indeed, suppose ǫ = 1 and that the values µi are drawn independently from a
two point prior distribution with masses of probability 1 − δn at 0 and δn at µ̄n.
Choosing δn = log n/n and µ̄n ∼ (2 log δ−1

n )1/2, it turns out that the posterior
distribution of µi, having observed even a value of yi > µ̄n, is still concentrated
on 0 : P (µ = 0|y = µ̄n + z) ≈ 1, for z large and fixed, as n → ∞. Hence, with
probability δn, the estimator is forced to make an error of order µ̄2

n ∼ 2 log n.

3.1 Illustration: thresholding in the dyadic sequence model.

Return to the dyadic sequence model, and apply soft thresholding at λ =
ǫ
√

2 log ǫ−2 to the first n = ǫ−2 coefficients. In other words, θ̂TI (y) = ηST (yI , λ)
for all I with j < J(ǫ). Applying the thresholding oracle inequality (8) to the first
n co-ordinates,

rǫ(θ̂
T , θ) ≤ c · log ǫ−2 · [ǫ2 +Rǫ(θ,DP )] +

∑

j≥J(ǫ)

|θj |2 (9)

In contrast with the scale S2 of Section 2.1, consider now a broader scale of Sobolev-
type parameter spaces: S = {Θα,p(C) : α > 1/p − 1/2, p > 0, C > 0}. For such
spaces there is a bound relating ideal to minimax risk. First, the geometric weights
in the definition imply ([12]) that for Θ = Θα,p(C) and on setting r = 2α/(2α+1),

Rǫ(Θ, DP ) := sup
Θ

Rǫ(θ,DP ) = sup
θ∈Θ

∑

θ2I ∧ ǫ2 ≤ cαC
2(1−r)ǫ2r.

Second, the minimax risk over Θ is minorized by that over any inscribed hyper-
cube of dimension m and side length ǫ : RN (Θ, ǫ) ≥ c0mǫ

2. Optimizing over the
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dimension m and combining with the previous display, we obtain the basic ideal
to minimax risk inequality:

Rǫ(Θ, DP ) ≤ cαC
2(1−r)ǫ2r ≤ c′αRN (Θ, ǫ). (10)

In combination with the oracle inequality and negligibility of the tail sum in
(9), this yields an adaptive near -minimaxity property for thresholding:

Theorem 7. For all Θα,p(C) ∈ S,

sup
Θα,p(C)

rǫ(θ̂
T , θ) ≤ cα,p · log ǫ−2 ·RN (Θα,p(C), ǫ).

The term near-minimaxity refers to the logarithmic term in the upper bound,
which is negligible with respect to the algebraic rate ǫ2r. In fact, this logarithmic
term can also be removed by a lower, data-dependent choice of threshold [7, 18].

Important here is that in contrast to the linear adaptivity of Theorem 4, this
result applies for all p > 0, and in particular for p < 2. These latter spaces
contain spatially inhomogeneous functions with localized discontinuities or other
singularities. The ability of an estimator to adapt to such functions is in practice
more important than the attractive, but limited adaptation of the levelwise James-
Stein estimator, and its cousins, the spatially homogeneous kernel methods, even
with bandwidth selected from data. This is discussed further in [11].

4 Redundant Dictionaries & Complexity Penalized Model Selection

In seeking a sparse representation for a signal, one may build build rich dictionaries
D = {x1, . . . , xp} in various ways: for example by combining many orthonormal
bases (as in libraries of wavelet and cosine packets, [4]), or by considering redun-
dant discretizations of continuously parametrized families, or by allowing products
(interactions) of many simple elements, such as B-splines with knots at individual
data locations (e.g. [16]). In all these cases, the dictionary size p greatly exceeds
that data size n, and estimation methods will have to allow for the effects of
searching over such a vast domain (in principle, 2p models).

Recalling Examples 1(c) and 2(b), the data may be represented in the form
y = Xβ + ǫz, where we now assume that span(X) = R

n. Thus, the models of
interest correspond to subsets J ⊂ {1, . . . , p}, MJ = span {xj : j ∈ J}, and µ̂J =
PJy, orthogonal projection on MJ . The risk of individual projection estimators is
given by (3), so the ideal risk of subset selection from dictionary D becomes

Rǫ(µ, SS(D)) = min
J
rǫ(µ̂J , µ) = min

J
|µ− PJµ|2 + ǫ2rank(PJ ).

To obtain an estimator that mimicks ideal risk, we use the penalized least
squares principle. This balances the fit of the estimate, which in the absence of
any penalty could be made arbitrarily close to the data, against some measure of
complexity of the estimate:

µ̂P = argminµ̃|y − µ̃|2 + ǫ2P (µ̃).
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In the orthonormal basis setting, µ̂P can be evaluated explicitly when the penalty
P has an additive form: for example, P (µ) = c

∑

µ2
i implies linear shrinkage,

P (µ) = 2λ
∑ |µi| implies soft thresholding, and P (µ) = λ2

∑

I{µi 6= 0} implies
µ̂P,i(y) = yiI{|yi| > λ}, or hard thresholding. For the redundant linear model
y = Xβ + ǫz, we generalize the third case by setting

P (µ) = λ2N(µ), N(µ) = min{|J | : µ =
∑

j∈J

βjxj}.

The resulting penalized least squares estimator may expressed in terms of the
residual sums of squares RSSJ = |y − µ̂J |2 of the possible models:

min
µ̃

|y − µ̃|2 + λ2ǫ2N(µ̃) = min
J
RSSJ + λ2ǫ2rank(PJ).

Hence we call this the Complexity Penalized Residual Sum of Squares (CPRSS)
estimate. Certain choices of the factor λ lead to well known estimators: λ2 =
2 (AIC), log p (BIC), 2 log n (RIC) (For details and references see [8]).

Theorem 8 ( [8]). Let ζ > 1, β > 0 and λ = λp = ζ[1 +
√

2(1 + β) log(p+ 1)].
Then for all n, p ≥ n,and µ ∈ R

n,

rǫ(µ̂CPRSS , µ) ≤ Lp[(2 + γp)ǫ
2 +Rǫ(µ, SS(D))], (11)

where Lp = (1− ζ−1)−1λ2p, and γp = γ(p, β) → 0 as p→ ∞.

The penalty factor λ2p is slightly larger than 2 log p, where p is the cardinality
of the dictionary. We emphasize that the result holds for all µ, n and p ≥ n, and
in particular the inequality depends only on p, not n! Building on the remarkable
[1], Birgé & Massart are conducting a thorough study of penalties P (µ) for which
such oracle inequalities and improvements hold. While the constant Lp in (11) is
certainly not optimal, there is a lower bound similar to Theorem 6:

Theorem 9 ( [8]). For each fixed r ∈ N, there exists a sequence of dictionaries
Dn with p(n) = |Dn| ≍ nr such that as n→ ∞,

inf
µ̂

sup
µ∈Rn

E|µ̂− µ|2
ǫ2 +Rǫ(µ, SS(D))

≥ [2 log p(n)](1 + o(1)].

Role of Concentration Inequalities. The stochastic part of the proof
of Theorem 8 depends on an early example (due to Cirelson-Ibragimov-Sudakov [2,
21]) of what are now in probability called concentration (or deviation) inequalities.
Suppose f : Rn → R is Lipschitz with ‖f‖Lip = L. If Z ∼ Nn(0, I), then

P{f(Z) ≥ Ef(Z) + t} ≤ exp{−t2/2L2}.
The key points are the Gaussian tail behaviour of f(Z) and the fact that it does
not depend on dimension n - hence the dimension-free aspect of Theorem 8. This
inequality can then be applied to all projections onto model subsets of cardinality
|J | = ℓ, and then summed over ℓ. Thus, since f(z) = ‖PJz‖ has ‖f‖Lip = 1, and

since Ef(Z) ≤
√
ℓ, we have, on setting t =

√

2ℓ(1 + β) log p,

P{ sup
|J|=ℓ

‖PJz‖ ≥
√
ℓ+ t} ≤

(

p

ℓ

)

p−ℓ(1+β) ≤ 1

pℓβℓ!
.
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4.1 Illustration: Minimaxity for non-standard function classes

The penalized least squares formalism can be applied in situations where no un-
conditional basis exists. To give a simple example, consider again the model
dYt = fdt + ǫdWt, where now t ∈ [0, 1]2, and the horizon model for edges in im-
ages, studied earlier by, for example, Korostelev and Tsybakov [20]. It is supposed
that f takes only the values 0 and 1, and further that the boundary is such that
f(t1, t2) = I{t2 ≤ θ(t1)}. The boundary, or horizon, is supposed to be Hölder con-
tinuous: more specifically, we say that f ∈ Hölders(B) if ‖θ‖∞ + ‖θ(r)‖β ≤ B,
where r ∈ N, β = s− r ∈ (0, 1] and ‖g‖β = sup |g(t)− g(t′)|/|t− t′|β . . . . ]

Dictionaries and minimax risk. While D is often conceptually infinite, in
practice one must work with a family of finite subdictionaries Dǫ with cardinality
m(ǫ) being at most a polynomial function of ǫ−2 : m(ǫ) ≤ β1ǫ

−2β2 . [8] defines a
notion of universal dictionary for a scale S = {Fν(C)}offunctionclasses, which
has as consequence the same type of ideal to minimax risk inequality as used in
the orthobasis case (compare (10)): for all Fν(C) ⊂ S and ǫ < ǫ(ν, C), there exists
r = r(ν) such that

Rǫ(Fν(C),Dǫ) ≤ KνC
2(1−r)ǫ2r ≤ K ′

νRN (Fν(C), ǫ).

This may then be combined with the oracle inequality of Theorem 8 to obtain
adaptive near-minimaxity.

Thus, in the horizon example, we start with a continuum trapezoid dictionary,
parametrized by γ = (a, b, c, d), representing a function taking value 1 on the
trapezoid in [0, 1]2 with abscissae a < b and corresponding ordinates c, d. Thus
DTrap = {Tγ : γ ∈ [0, 1]4, b ≥ a}. To obtain finite subdictionaries, discretize the
unit interval into IN = {i/N : 0 ≤ i ≤ N} and set DN = {Tγ : γ ∈ I2N × I2N2}.
Choose N(ǫ) = ǫ−2, and set Dǫ = DN(ǫ). It can be verified [8] that DTrap is

universal for S = {Hölders(B) : 0 < s ≤ 2, 0 < B}, with ν = s/2, C = B1/2.

Corollary 10 ([8]). On Hölders(B), for 0 < s ≤ 2, and setting r = s/(s+1),

rǫ(f̂CPRSS , f) ≤ c0 · log2 ǫ−2 ·B1−rǫ2r.

A key remark is that this adaptively (near minimax) rate of convergence is
better than the rate attainable using a two dimensional tensor product wavelet
basis when s > 1.

Nevertheless, a serious practical defect of Theorem 8 is the combinatorial
search implicit in the definition of µ̂CPRSS . The development of fast algorithms
suitable for specific cases is an active direction of current research [5, 13].
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