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Branhing Proesses, Random Trees and Superproesses
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Abstract. We present some recent developments concerning the ge-
nealogy of branching processes, and their applications to superprocesses.
We also discuss connections with partial differential equations, statistical
mechanics and interacting particle systems.
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1 Discrete and continuous genealogical trees

(1.1) Galton-Watson processes and trees. A Galton-Watson branching process
describes the evolution in discrete time of a population where each individual gives
rise, independently of the others, to a random number of children distributed to a
given offspring distribution. To be specific, consider an integer k ≥ 0 representing
the initial population, and a probability distribution ν on the set N of nonnegative
integers. The corresponding Galton-Watson process is the Markov chain (Nn, n ≥
0) in N such that, conditionally on Nn,

Nn+1
(d)
=

Nn
∑

i=1

Ui

where U1, U2, . . . are independent and distributed according to ν.
It is obvious that the genealogy of such a branching process can be described

by k discrete trees. Take k = 1 for simplicity. Then the genealogical tree of the
population is defined in the obvious way as a random subset T of

⋃∞
n=0(N

∗)n,
where N

∗ = {1, 2, 3, . . .} and (N∗)0 = {∅} by convention (cf Fig.1 for an example).
Here ∅ labels the ancestor of the population and, for instance, (3, 2) corresponds
to the second child of the third child of the ancestor.

Throughout this article, we will concentrate on the critical or subcritical case
wherem =

∑∞
j=0 jν(j) ≤ 1 and we also exclude the (trivial) case where ν({1}) = 1.

Then the population becomes extinct in finite time and so the tree T is a.s. finite.

(1.2) Continuous-state branching processes. Continuous-state branching pro-
cesses (in short, CSBP’s) are the continuous analogues of Galton-Watson pro-
cesses. Formally, a CSBP is a Markov process Y in R+ whose transition ker-
nels (Pt(x, dy); t ≥ 0, x ∈ R+) satisfy the additivity or branching property

Documenta Mathematica · Extra Volume ICM 1998 · III · 279–289



280 Jean-François Le Gall

Pt(x + x′, ·) = Pt(x, ·) ∗ Pt(x′, ·). Lamperti [15] has shown that these processes
are exactly the scaling limits of Galton-Watson processes. Start from a sequence
Nn of Galton-Watson processes with initial values kn and offspring distributions
νn depending on n. Suppose that there exists a sequence of constants an ↑ ∞ such
that

lim
n→∞

( 1

an
Nn

[nt], t ≥ 0
)

= (Yt, t ≥ 0) (1)

in the sense of weak convergence of the finite-dimensional marginals. Then the
limiting process Y must be a CSBP, and conversely any CSBP can be obtained in
this way.

The distribution of a CSBP can be described analytically as follows. Here
again, we restrict our attention to the critical or subcritical situation where
∫

y Pt(x, dy) ≤ x. Then, the Laplace functional of the kernels Pt(x, dy) must
be of the form

∫

Pt(x, dy) e
−λy = exp(−xut(λ)), and the function ut(λ) solves the

ordinary differential equation

∂ut(λ)

∂t
= −ψ(ut(λ)) , u0(λ) = λ, (2)

with a function ψ of the type

ψ(u) = αu+ βu2 +

∫

(0,∞)

π(dr) (e−ru − 1 + ru), (3)

where α, β ≥ 0 and π is a σ-finite measure on (0,∞) such that
∫

(r∧r2)π(dr) <∞.
Conversely, for any choice of a function ψ of the type (3), there exists an associated
CSBP, which we will call the ψ-CSBP.

The case when ψ(u) = βu2 (quadratic branching mechanism) is of special
importance. The associated process is called the Feller diffusion. It occurs as the
limit in (1) when νn = ν has mean 1 and finite variance, and kn ≈ λn, an = n.

In contrast with the discrete setting, it is no longer straightforward to define
the genealogical structure of a CSBP. At an informal level, one would like to answer
questions of the following type. Suppose that we divide the population at time t
in two parts, say green individuals and red individuals. Then which part of the
population at time t+s does consist of descendants of green individuals, resp. red
individuals ? This should be answered in a consistent way when s and t vary.

(1.3) The quadratic branching case. It has been known for some time that the
genealogical structure of the Feller diffusion can be coded by excursions of linear
Brownian motion. To explain this coding, we will recall a result of Aldous [1].

Start from an offspring distribution ν on N with mean 1 and finite variance.
Consider the Galton-Watson tree with offspring distribution ν, conditioned to
have exactly n edges (some mild assumption on ν is needed here so that this
conditioning makes sense). Then, provided we rescale each edge by the factor
1/
√
n, this conditioned tree, denoted by T(n), converges in distribution as n→ ∞

to the so-called Continuum Random Tree (CRT).
To give a precise meaning to the last statement, we need to say what the

CRT is and to explain the meaning of the convergence. The easiest definition of
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the CRT is via the coding by a continuous function. Let e = (e(s), s ≥ 0) be a
continuous function from R+ into R+ with compact support and let σ denote the
supremum of the support of e. We can then think of this function as coding a
“continuous tree” through the following prescriptions:

• Each s ∈ [0, σ] labels a vertex of the tree at generation e(s).

• The vertex s is an ancestor of the vertex s′ if e(s) = infr∈[s,s′] e(r). (In general,
the quantity infr∈[s,s′] e(r) is the generation of the last common ancestor to
s and s′.)

• The distance on the tree is d(s, s′) = e(s) + e(s′) − 2 infr∈[s,s′] e(r), and we
identify s and s′ if d(s, s′) = 0.

According to these definitions, the set of ancestors (line of ancestors) of a given
vertex s is isometric to the segment [0, e(s)]. The lines of ancestors of two vertices
s and s′ have a common part corresponding to the segment [0, infr∈[s,s′] e(r)].
More generally, for any finite set s1, . . . , sk of vertices, we can make sense of the
reduced tree consisting of the lines of ancestors of s1, . . . , sk (see [1] and [17] for
more details).

The CRT is the (random) continuous tree that corresponds in the previ-
ous coding to the case when the function e is a normalized Brownian excursion
(positive Brownian excursion conditioned to have duration 1). Furthermore, the
convergence of discrete trees towards the CRT should be understood as follows.
Consider for each conditioned tree T(n), the contour process of the tree (cf Fig.1).
Provided that we rescale space by the factor 1/

√
n and space by the factor 1/(2n),

the contour process of T(n) converges in distribution towards the normalized Brow-
nian excursion.

❆
❆
❆

❆

✁
✁
✁
✁

❆
❆
❆

❆

✁
✁
✁
✁

❆
❆
❆

❆

✁
✁
✁
✁

∅

1 2

11 12 13

121 122

Galton-Watson tree

☎
☎
☎
☎☎
☎
☎
☎
☎☎❉
❉
❉
❉❉☎
☎
☎
☎☎
☎
☎
☎
☎☎❉
❉
❉
❉❉☎
☎
☎
☎☎❉
❉
❉
❉❉
❉
❉
❉
❉❉☎
☎
☎
☎☎❉
❉
❉
❉❉
❉
❉
❉
❉❉☎
☎
☎
☎☎❉
❉
❉
❉❉

contour process height process

✄
✄
✄
✄
•✄
✄
✄
✄
• •✄

✄
✄
✄
• •

❈
❈
❈
❈•
❈
❈
❈
❈•

Figure 1

To summarize the previous considerations, we can say that the genealogical struc-
ture of the Feller diffusion (ψ(u) = βu2) is coded by excursions of linear Brownian
motion. This fact has appeared in different forms in many articles relating random
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walks or linear Brownian motion to branching processes (see in particular Harris
[14], Dwass [9], Neveu-Pitman [22], etc.). It is also implicit in the Brownian snake
construction of quadratic superprocesses [16], to which we will come back later.

In the next section, we will address the question of extending the previous
coding to a general branching mechanism ψ.

2 Coding the genealogy of continuous-state branching processes

(2.1) The discrete coding. Consider a sequence T1, T2, . . . of independent ν-Galton-
Watson trees. Write σk for the number of vertices (or individuals) in the tree Tk.
Then suppose that we enumerate the vertices of the trees T1, T2, . . . in lexicograph-
ical order: We write Tk = {uσ1+···+σk−1

, uσ1+···+σk−1+1, . . . , uσ1+···+σk−1} where
uσ1+···+σk−1

, uσ1+···+σk−1+1, . . . , uσ1+···+σk−1 are the vertices of the tree Tk listed
in lexicographical order.

Then for every n ≥ 0, let Hn be the length (or generation) of the vertex un.
The (random) process (Hn, n ≥ 0) is called the discrete height process (cf Fig.1
for an example with one tree). It is a variant of the contour process that was
mentioned previously. It is easy to see that the data of the sequence (Hn, n ≥ 0)
completely determines the sequence of trees and in this sense provides a coding of
the trees. The interest of this coding comes from the following elementary lemma.

Lemma 2.1 There exists a random walk (Sn, n ≥ 0) on Z, with initial value S0 = 0
and jump distribution µ(k) = ν(k + 1) for k = −1, 0, 1, 2, . . ., such that, for every
n ≥ 0,

Hn = Card{j ∈ {0, 1, . . . , n− 1}, Sj = inf
j≤k≤n

Sk}. (4)

Note that the random walk S is “left-continuous” in the sense that its negative
jumps are of size −1 only. This lemma is taken from [19]. Closely related discrete
constructions can be found in Borovkov-Vatutin [3] and Bennies-Kersting [2].

(2.2) The continuous height process. The previous lemma gives an explicit formula
for the height process coding a sequence of Galton-Watson trees in terms of a
random walk. Following [19], we will explain how this formula can be generalized
to the continuous setting, thus yielding a coding of the genealogy of a CSBP in
terms of a Lévy process with no negative jump (the continuous analogue of the
left-continuous random walk S).

We start from a Lévy process X with no negative jump. We assume that
X0 = 0 and that that X does not drift to +∞. Then the law of X is characterized
by its “Laplace transform” E[exp(−λXt)] = exp(tψ(λ)) (for λ > 0), where the
possible functions ψ are exactly of the type (3), with the same assumptions on
α, β and π. We assume in addition that β > 0 or

∫

rπ(dr) = ∞ (or both these
properties). This is equivalent to assuming that the paths of X are of infinite
variation. (A simpler parallel theory can be developed in the finite variation case.)
An important special case is the stable case ψ(λ) = λ1+b, 0 < b < 1.

Our first aim is to give a continuous analogue of the discrete formula (4).

For every fixed t ≥ 0, we let X(t) = (X
(t)
s , 0 ≤ s ≤ t) be the time-reversed

process X
(t)
s = Xt−X(t−s)−, and M

(t)
s = supr≤sX

(t)
r be the associated maximum
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process. Note that (X
(t)
s , 0 ≤ s ≤ t)

(d)
= (Xs, 0 ≤ s ≤ t). The process M (t) −X(t)

is a Markov process in R+ and under our assumptions 0 is a regular point for this
Markov process. This enables us to set the following definition.

Definition 2.2 For every t ≥ 0, let Ht denote the local time at level 0 and at
time t of the process M (t) − X(t). The process (Ht, t ≥ 0) is called the ψ-height
process.

A few comments are in order here. First, one needs to specify the normaliza-
tion of local time. This can be achieved via the following approximation

Ht = P − lim
ε→0

1

ε

∫ t

0

ds 1{M(t)
s −X(t)

s <ε}.

Secondly, we have defined Ht for every fixed t, and the measurability properties
of the process (Ht, t ≥ 0) are not obvious. One can in a canonical way construct
a lower-semicontinuous modification of the process (Ht, t ≥ 0) (see [19]).

In one special case, namely when β > 0, one can give a much simpler formula
for Ht: If I

s
t = inf{Xr; s ≤ r ≤ t}, we have Ht = β−1m({Ist ; 0 ≤ s ≤ t}), where m

denotes Lebesgue measure on R (from this formula one immediately sees that H
has continuous paths when β > 0). In the quadratic case ψ(λ) = βλ2 (X is then
a linear Brownian motion), we get that Ht = β−1(Xt − I0t ) is a reflected linear
Brownian motion, which agrees with the considerations in (1.3).

We now (informally) claim that H codes the genealogy of a ψ-CSBP “starting
with an infinite mass”. This should be understood in the sense of the coding
of continuous trees via functions as explained previously. (Our present setting
is slightly more general because the process H does not always have continuous
sample paths.) Analogously to the discrete case, we get the genealogy of a ψ-CSBP
starting at ρ > 0 by stopping H at Tρ = inf{t ≥ 0, Xt = −ρ}.

In what follows, we will give several statements that provide a rigorous justifi-
cation of the previous informal claim. We first state a “Ray-Knight theorem” that
formalizes the naive idea that the number of visits of H at a level a corresponds
to the population of the tree at that level.

Theorem 2.3 [19] For every a ≥ 0, the formula

Lat = P − lim
ε→0

1

ε

∫ t

0

ds 1{a<Hs<a+ε}

defines a continuous increasing process (Lat , t ≥ 0). If Tρ = inf{t ≥ 0, Xt = −ρ},
the process (LaTρ

, a ≥ 0) is a ψ-CSBP started at ρ.

When ψ(u) = β u2, Theorem 2.3 reduces to a classical Ray-Knight theorem
for Brownian local times. In general, Theorem 2.3 can be applied to study the
sample path continuity of H.

Theorem 2.4 [19] The process H has a continuous modification if and only if
∫∞ du

ψ(u) <∞.
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This condition holds in particular when β > 0 and in the stable case.

(2.3) From discrete trees to continuous trees. Our next result shows that if a
sequence of rescaled Galton-Watson processes converges to a ψ-CSBP, the cor-
responding discrete height processes, suitably rescaled, also converge to the con-
tinuous height process H. This is analogous to Aldous’ result in the quadratic
branching case and proves in some sense that whenever rescaled Galton-Watson
processes converge, their genealogical structure also converges to that of the lim-
iting CSBP.

We consider a sequence (νn) of offspring distributions and a sequence (an)
of positive numbers with lim an = ∞. For every n let Nn be a Galton-Watson
process with offspring distribution νn and initial value Nn

0 = [an].

Theorem 2.5 [19],[7] Suppose that the convergence (1) holds and that Y is a ψ-
CSBP. For every n ≥ 1, let Hn be the discrete height process associated with a
sequence of independent νn-Galton-Watson trees. Then,

lim
n→∞

( 1

n
Hn

[nant]
, t ≥ 0

)

= (Ht, t ≥ 0) (5)

in the sense of weak convergence of finite-dimensional marginals.

The last convergence can be shown to hold in a functional sense, provided
that some regularity conditions are satisfied (Duquesne [7]). This reinforcement is
important in various applications to invariance principles for functionals of Galton-
Watson trees. For instance, one may want to look at the limiting behavior of the
reduced tree that consists only of the ancestors of individuals alive at time p. The
point is that this reduced tree can be written as an (almost) continuous functional
of the discrete height process. Thus the (reinforced) convergence (5) allows one to
pass to the limit and to obtain a limiting tree that is a simple functional of the
height process H (see [7]).

3 Superprocesses

(3.1) The snake construction. Roughly speaking, superprocesses are obtained by
combining a continuous branching mechanism with a Markovian spatial motion.
To give a formal definition, consider a function ψ of the type (3) and a Borel
right Markov process (ξt, t ≥ 0;Πx, x ∈ E) with values in a Polish space E. Let
Mf (E) stand for the space of finite measures in E. The (ξ, ψ)-superprocess is the
Markov process Z with values in Mf (E) whose transition kernels are determined
as follows. For every 0 ≤ s < t and every bounded continuous function g on E,
E[exp−

〈

Zt, g
〉

| Zs] = exp(−
〈

Zs, vt−s
〉

), where (vt(x), t ≥ 0, x ∈ E) is the unique
nonnegative solution of the integral equation

vt(x) + Πx

(
∫ t

0

dsψ(vt−s(ξs))

)

= Πx(g(ξt)). (6)

(Compare with (2).) When ξ is a diffusion process with generator L, (6) is the
integral form of the partial differential equation ∂v

∂t = Lv − ψ(v), v0 = g. In the
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special case when ξ is Brownian motion in R
d and ψ(u) = β u2, Z is called super-

Brownian motion (see Perkins [23] for a discussion of super-Brownian motion and
related processes).

We will now use our approach to the genealogy of the ψ-CSBP to give a
construction of the (ξ, ψ)-superprocess. The idea is to use the height process H
to construct in a Markovian way the individual spatial motions of the “particles”
of the superprocess. To simplify the presentation, we assume that the condition
of Theorem 2.4 holds, so that H has continuous sample paths.

Let us fix a starting point x ∈ E. Conditionally on (Hs, s ≥ 0), we define
a path-valued (time-inhomogeneous) Markov process (Ws, s ≥ 0) whose law is
characterized by the following properties:

• For every s ≥ 0, Ws = (Ws(t), 0 ≤ t ≤ Hs) is a finite cadlag path in E started
at x and defined on the time interval [0, Hs].

• If s < s′,Ws′(t) =Ws(t) for every t ≤ m(s, s′) := inf [s,s′]Hr, and, conditionally
on Ws(m(s, s′)), (Ws′(m(s, s′)+ t), 0 ≤ t ≤ Hs′ −m(s, s′)) is independent of
Ws and distributed according to the law of ξ started at Ws(m(s, s′)).

Informally,Ws is a path of ξ started at x with length Hs. When Hs decreases,
the path erases itself and when Hs increases the path extends itself by following
the law of the spatial motion ξ. To summarize the previous properties, we will say
that W is the snake driven by H with spatial motion ξ (and initial point x).

The connection with superprocesses is contained in the next theorem, which
is essentially the main result of [20]. Recall the definition of Lat in Theorem 2.3.

Theorem 3.1 For every a ≥ 0, let Za be the random measure on E defined by

〈

Za, g
〉

=

∫ Tρ

0

dsL
a
s g(Ws(a)).

Then (Za, a ≥ 0) is a (ξ, ψ)-superprocess started at ρ δx.

To keep track of the dependence on the initial point x, we will use the notation
Px for the probability under which W is defined.

(3.2) The Brownian snake and partial differential equations. We now concentrate
on the quadratic case ψ(u) = βu2 and take β = 1/2 for definiteness. As pointed
out previously, the process H is then a (scaled) reflected linear Brownian motion
and in particular is Markovian. As a consequence, the process (Ws, s ≥ 0), which is
now called the Brownian snake, is (time-homogeneous) Markov and indeed verifies
the strong Markov property. This plays a crucial role in the applications that are
outlined below.

From now on, we suppose that ξ is Brownian motion in R
d. An easy ap-

plication of the Kolmogorov criterion shows that W has a modification that is
continuous with respect to the uniform topology on stopped (continuous) paths.

Our goal is to give some applications of the snake construction to connections
between superprocesses and partial differential equations. These connections have

Documenta Mathematica · Extra Volume ICM 1998 · III · 279–289



286 Jean-François Le Gall

been investigated by Dynkin in a series of important papers (see in particular [10],
[11]). The Brownian snake turns out to be a useful tool in the quadratic branching
case. The key to the connections with partial differential equations is the next
theorem, which reformulates in terms of the Brownian snake a result of Dynkin
[10] valid for superprocesses with a more general branching mechanism. We let D
be a domain in R

d and for every path w, we denote by τ(w) = inf{t ≥ 0, w(t) /∈ D}
the first exit time of D by w (with the convention inf ∅ = ∞).

Theorem 3.2 Let x ∈ D. The limit

〈

ZD, g
〉

= lim
ε→0

1

ε

∫ T1

0

ds 1{τ(Ws)<Hs<τ(Ws)+ε}g(Ws(τ(Ws)))

exists Px-a.s. for every continuous function on ∂D, and defines a random mea-
sure ZD on ∂D called the exit measure from D. If D is regular (in the classical
potential-theoretic sense) and g is continuous and nonnegative on ∂D, the formula

u(x) = − logEx(exp−
〈

ZD, g
〉

) x ∈ D (7)

defines the unique nonnegative solution of the equation ∆u = u2 in D with bound-
ary value u|∂D = g.

A nice feature of the probabilistic representation formula (7) is that it can be
used to produce many other solutions via suitable passages to the limit. In the
setting of our next result, a generalized form of this representation holds for any
nonnegative solution.

We denote by RD the random set {Ws(t); 0 ≤ s ≤ T1, t ≤ τ(Ws) ∧Hs}.

Theorem 3.3 [18] Let D be a domain of class C2 in R
2. Then, for every x ∈ D,

Px a.s., the random measure ZD has a continuous density zD(y), y ∈ ∂D with
respect to Lebesgue measure on ∂D. Furthermore, the formula

u(x) = − logEx
(

1{RD∩K=∅} exp−
〈

γ, zD
〉)

, x ∈ D (8)

gives a one-to-one correspondence between nonnegative solutions of ∆u = u2 in D
and pairs (K, γ), where K is a closed subset of ∂D and γ is a Radon measure on
∂D\K.

In the representation of Theorem 3.3, both K and γ can be determined an-
alytically in terms of the boundary behavior of u: K is the set of points in ∂D
where u blows up like the inverse of the squared distance to the boundary, and γ
corresponds to the usual trace of u on ∂D\K.

The analytic part of Theorem 3.3 has been extended by Marcus and Véron [21]
to the equation ∆u = up, p > 1 in a smooth domain of Rd, provided that d < p+1

p−1 .

(see also Dynkin and Kuznetsov [12],[13]). In the supercritical case d ≥ p+1
p−1 , things

become more complicated: One can still define the trace of a general nonnegative
solution as a pair (K, γ), but a solution is in general not uniquely determined by
its trace, and not all pairs (K, γ) are admissible traces (see [21], [13]). Recently,
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Dynkin and Kuznetsov [13] have proposed a finer definition of the trace that might
lead to a one-to-one correspondence even in the supercritical case.

A remarkable feature of the connections between superprocesses or snakes
and semilinear partial differential equations is the fact that almost all important
probabilistic questions correspond to basic analytic problems, and conversely. We
will give a last example involving on one hand a Wiener-type test for the Brownian
snake and on the other hand solutions with boundary blow-up. We use the notation
c2,2 for the Sobolev capacity associated with the Sobolev space W 2,2.

Theorem 3.4 [6] Let D be a domain in R
d. The following statements are equiv-

alent.

(i) There exists a nonnegative solution of ∆u = u2 in D that blows up everywhere
at the boundary.

(ii) Let T = inf{s ≥ 0,Ws(t) /∈ D for some t ∈ (0, Hs]}. Then Py(T = 0) = 1
for every y ∈ ∂D.

(iii) d ≤ 3, or d ≥ 4 and for every y ∈ ∂D,

∞
∑

n=1

2n(d−2)c2,2(D
c ∩ {z ∈ R

d, 2−n ≤ |z − y| < 2−n+1}) = ∞.

4 Statistical mechanics and interacting particle systems

(4.1) Lattice trees. A lattice tree with n bonds is a connected subgraph of Zd with
n edges in which there are no loops.

We are interested in a limit theorem that gives information on the typical
shape of a lattice tree when n is large. To this end, let Qn(dω) be the uniform
probability measure on the set of all lattice trees with n bonds that contain the
origin of Zd. For every tree ω, letXn(ω) be the probability measure on R

d obtained
by putting mass 1

n+1 to each vertex of the rescaled tree cn−1/4ω. Here c > 0 is a
positive constant.

Provided that the dimension d is large enough, Derbez and Slade [5] proved
that the limiting behavior of the law of Xn under Qn involves a random measure
which is closely related to Aldous’ CRT. To define this random measure, consider
the snake W driven by a normalized Brownian excursion (e(s), 0 ≤ s ≤ 1), assum-
ing again that the spatial motion is Brownian motion in R

d (and the initial point
is 0). Then the formula

〈

I, f
〉

=

∫ 1

0

ds f(Ws(e(s))

defines a random measure in R
d, sometimes called Integrated Super-Brownian

Excursion (ISE).

Theorem 4.1 [5] For d sufficiently large and for a suitable choice of the constant
c = c(d) > 0, the law of Xn under Qn converges weakly to the law of I.
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It is expected that the result holds when d > 8 (which is the condition needed to
ensure that the topological support of I is a tree). This is true [5] if one considers
“spread-out” trees rather than nearest-neighbor trees. A recent work of Hara and
Slade indicates that ISE also appears as a scaling limit of the incipient infinite
percolation cluster at the critical temperature, again in high dimensions (d > 6).

(4.2) Interacting particle systems. A number of recent papers explore the connec-
tions between the theory of superprocesses and some of the most classical interact-
ing particle systems. Durrett and Perkins [8] show that the asymptotic behavior of
the contact process in Z

d can be successfully analysed in terms of super-Brownian
motion. Here we will concentrate on the classical voter model and follow a work in
preparation in collaboration with M. Bramson and T. Cox. Closely related results
can be found in a forthcoming article by Cox, Durrett and Perkins.

At each site of Zd sits an individual who can have two possible opinions, say 0
or 1. At rate 1 each individual forgets his opinion and gets a new one by choosing
uniformly at random one of his nearest neighbors and taking his opinion. Suppose
that at the initial time all individuals have type 0, except for the individual at the
origin who has type 1. For every t > 0, let Ut denote the set of individuals who
have type 1 at time t, and let Ut be the random measure

Ut =
∑

x∈Ut

δx/
√
t.

Then P [Ut 6= ∅] = P [Ut 6= 0] tends to 0 as t→ ∞, and the rate of this convergence
is known [4]. One may then ask about the limiting behavior of Ut conditionally
on {Ut 6= 0}.

The answer to this question can be formulated in terms of the snakeW driven
by a Brownian excursion conditioned to hit level 1, with spatial motion given by
(d−1/2 times) a standard Brownian motion in R

d. We have the following result in
dimension d ≥ 3 (an analogous result holds for d = 2).

Theorem 4.2 The law of t−1Ut conditionally on {Ut 6= 0} converges as t → ∞
to the law of cdH, where cd > 0 and the random measure H is defined by

〈

H, f
〉

=

∫ ∞

0

dL1
s f(Ws(1)),

where L1
s is as previously the local time of the excursion at level 1 and at time s.

To interpret this last theorem, one may say, for the voter model as well as
for the (long-range) contact process [8], that the limiting behavior of the process
depends on a pseudo-branching structure, which asymptotically comes close to the
genealogical structure of the Feller diffusion.
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