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Geneti Linkage Analysis: an Irregular

Statistial Problem

David Siegmund

Abstract. Linkage analysis, which has the goal of locating genes as-
sociated with particular traits in plants or animals (especially inherited
diseases in humans), leads to a class of “irregular” statistical problems.
These problems are discussed with reference to an idealized model, which
serves as a point of departure for more realistic versions of the problem.
Some general results, adapted from recent research into “change-point”
problems, are presented; and more specific problems arising out of the
underlying genetics are discussed.
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1. Introduction. The goal of gene mapping, or linkage analysis, is to locate
genes that affect particular traits, especially genes that affect human susceptibility
to particular diseases and also genes that affect productivity of agriculturally im-
portant species. An artificially simplified, but illuminating genetic model leads to
the following class of statistical problems. Observations are available on a doubly
indexed set of random variables Z(c, i∆), where c = 1, · · · , 23 indexes the set of
human chromosomes of genetic lengths ℓc and i∆, 0 ≤ i∆ ≤ ℓc are the locations of
markers spaced at intermarker distance ∆ along each chromosome. For different
values of c the random variables are independent. For each fixed c, Z(c, t) is a
stationary Gaussian process in t, which satisfies

Var[Z(c, t)] = 1, Cov[Z(c, s), Z(c, t)] = R(t− s). (1)

A case of particular interest is R(t) = exp(−β|t|). For most or perhaps all values
of c

E[Z(c, t)] = 0 for all t, (2)

while for some c′, 0 < τ < ℓc′ and ξ > 0

E[Z(c′, t)] = ξR(t− τ). (3)

The values of c′, τ, and ξ are all unknown. Thus the data consist of a large number
of zero mean Gaussian processes observed at equally spaced “time” points. A small
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number of these processes are superimposed on a mean value function defining a
“peak” of an unknown height ξ at an unknown location τ , and having a known
shape R. The statistical problems are to decide which chromosomes, if any, harbor
such a location τ and estimate the location by a confidence region. These problems
are “irregular” for two reasons: (i) the parameter τ is not identifiable when the
nuisance parameter ξ = 0; the log likelihood function, which is proportional to
Z(c, τ), is not a smooth function of the parameter τ , even if we are able to make
continuous observations in t.

The purpose of this paper is (a) to explain briefly the genetic background
of the preceding problems as they relate to mapping human disease genes, (b)
propose a framework for their solutions that is useful as a point of departure for
discussing more realistic versions of the problems, and (c) describe some alternative
models designed to capture the complicating features arising in practice. Special
consideration is given to the issue of multiple comparisons that arises through
examining the large number of variables Z(c, i∆) in searching for the relatively
few values of c′, t where the expected value is substantially different from 0, and
to estimation of τ by confidence regions. Some of these problems can be understood
in terms of recent literature on “change-point” problems, to which they are closely
related.

2. Genetic Background. Given two related individuals, at a given locus in
the genome two alleles are said to be identical by descent if they are inherited
from a common ancestor. For example, a pair of half siblings can inherit zero
or one allele identical by descent from their common parent, and according to
Mendel’s laws each of these possibilities has probability 1/2. Genes on different
chromosomes segregate independently, while genes on the same chromosome tend
to be inherited from the same parental chromosome, and are said to be linked.
More precisely, if two half siblings share an allele identical by descent at locus t,
they will share an allele identical by descent at a locus on a different chromosome
with probability 1/2 and at a locus s on the same chromosome with a probability
(1−φ) ∈ (1/2, 1). This probability is a decreasing function of the distance between
s and t.

A pair of siblings can inherit zero or one allele identical by descent from their
mother and similarly from their father, hence 0, 1, or 2 overall. For some purposes
a single sib pair can be regarded as two independent half sib pairs, but in general
siblings require a more complicated analysis. For ease of exposition, we consider
only the much simpler case of half siblings.

The basic logic of linkage analysis is that if two relatives, e.g., half siblings
or siblings, share an inherited trait, e.g., a disease, that is relatively rare in the
population, it is likely that they share an allele predisposing them to the trait
that has been inherited identical by descent. Thus the probability of identity by
descent for an affected relative pair at a marker locus close to a trait locus is
greater than the value given by Mendel’s laws (1/2 in the case of half siblings).
Our problem is to scan the genome of a sample of affected relatives in search of
regions where the identity by descent exceeds the expected proportion by more
than can be explained as a chance fluctuation.
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A mathematical model for a pair of half siblings is as follows. Let Xt be 1
or 0 according as the half siblings are or are not identical by descent at locus t
(on a chromosome c, which henceforth is suppressed in the notation). Then for a
random pair of half siblings,

P{Xt = 1} = P{Xt = 0} = 1/2 (4)

for all t; and for loci s and t on the same chromosome

P{Xs = 1|Xt = 1} = P{Xs = 0|Xt = 0} = 1− φ. (5)

Assume that τ denotes a genetic locus predisposing to inheritance of the trait (and
that there is no other trait locus on the given chromosome). Then for two half
siblings sharing a trait in common,

P{Xτ = 1} = (1 + α)/2 > 1/2, (6)

while the conditional probability (5) continues to hold for loci s, t on the same side
of τ . In particular by taking t = τ in (5) we obtain P{Xs = 1} = [1+α(1−2φ)]/2.
The value of φ in terms of the parameters s and t depends on the model used for
the genetic process of recombination. According to the commonly used model
suggested by Haldane in 1919,

φ = [1− exp(−β|t− s|)]/2, (7)

and more generally
φ ∼ β|t− s|/2 as |t− s| → 0. (8)

The value of β is determined by the relation of the relative pair. For half siblings
it is 0.04 when the units of genetic distance along a chromosome are centimor-
gans (cM). (One cM is defined as the distance for which the expected number
of crossovers per meiosis is 0.01. The average length of a human chromosome is
roughly 140 cM. See Suzuki et al. for a more thorough discussion.)

Assuming now that one observes identity by descent data for N independent
half sibling pairs at marker loci, denoted i∆, equally spaced at intermarker distance
∆ throughout the genome, we form the statistics

Zi∆ = N−1/2ΣN
j=1[2X

j
i∆ − 1], (11)

where the summation is over all half sibling pairs. It is possible starting from (11)
to address the basic questions of Section 1 (cf. Feingold, 1993, Tu and Siegmund,
1998). A somewhat simpler and more complete analysis is possible if we introduce
an additional approximation. It follows from the central limit theorem that as
N → ∞ and α → 0 in such a way that N1/2α → ξ ≥ 0 the process Zi∆ defined
in (11) converges in distribution to a process, which by (4)-(7) has the properties
described in (1) - (3). By an abuse of notation we continue to denote this new
process by Zi∆. Thus we return to the problems already formulated in Section 1.
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3. Genome wide false positive error rate. If i∆ in (11) is equal to τ , it
follows from (6) that (11) is the score statistic for testing whether α = 0; it is also
the likelihood ratio statistic in the approximating Gaussian model. Since usually
τ is unknown, to test for linkage somewhere on the genome we use

max
c

max
i

Zi∆. (12)

To evaluate approximately the false positive error rate, i.e., the probability under
the hypothesis of no linkage throughout the entire genome that (12) exceeds a
threshold b, we assume that b → ∞ and ∆ → 0, in such a way that b∆1/2

converges to a positive constant. Then for a genome wide search

P
{

max
c

max
i

Zi∆ > b
}

≈ 1− exp{−C
[

1− Φ(b)
]

− βLbϕ(b)ν
(

b{2β∆}1/2
)

}. (13)

Here Φ and ϕ are the standard normal distribution function and density function,
respectively, C is the number of chromosomes and L = Σcℓc is the total length
of the genome in cM. The function ν, which arises in the fluctuation theory of
random walks developed by Spitzer in the 1950’s, is defined by

ν(x) = 2x−2 exp[−2Σn−1Φ(−xn1/2/2)]. (14)

For small x it is easily evaluated via the relation ν(x) = exp(−ρx) + o(x2), where
ρ = −ζ(1/2)/(2π)1/2 ≈ 0.583, while the series in (14) converges very rapidly for
large x. For a numerical example, for markers every ∆ = 1 cM and a human
genome of 23 chromosomes of average length 140 cM the threshold b = 3.91 gives
a false positive error rate equal to the conventional 0.05. The approximation
(13) was given by Feingold, Brown and Siegmund (1993), as an application of the
method of Woodroofe (1976).

4. Power. To obtain an approximation to the power that we detect a disease
locus on a correct chromosome (for simplicity we assume there is at most one on
any given chromosome), we first suppose that the disease locus τ is itself a marker
locus. We then have the approximation

P
{

max
k

Zk∆ ≥ b
}

≈ 1− Φ(b− ξ) + ϕ(b− ξ)
[

2ν/ξ − ν2/(b+ ξ)2
]

, (15)

where ν = ν
(

b{2β∆}1/2
)

, as defined above. The first term in (15) is simply

the probability that the process exceeds the threshold b at the disease locus. A
disease locus between marker loci needs a similar but more complicated argument
involving the (correlated) process Zi∆ at the two flanking markers. The resulting
approximation requires a one dimensional numerical integration for its numerical
evaluation.

For the 1 cM intermarker distance and threshold b = 3.91 considered in the
preceding section, and a disease locus midway between two markers a noncentrality
parameter of ξ = 5.03 is needed to achieve power of 0.9 to detect the disease locus.
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For a given value of the genetic parameter α, this can be converted to a sample
size requirement by virtue of the relation ξ = N1/2α.

5. Confidence regions. A confidence region can be used to identify a chromo-
somal region in which to concentrate the search for the exact location of a disease
gene. We discuss here two methods that are motivated by the recent literature
on “change-point” problems, which have essentially the same structure. These
methods are (i) support regions and (ii) Bayesian credible sets. (See Siegmund,
1989, for a review of the change-point literature). Note that as a consequence
of the irregularity of this problem, the maximum likelihood estimator of τ is not
normally distributed, so it is not correct to use the maximum likelihood estimator
plus or minus two estimated standard errors as an approximate 95% confidence
interval.

We assume that a disease gene has been correctly identified to lie on a partic-
ular chromosome, which contains no other disease gene. For simplicity we assume
that the locus τ is exactly a marker locus. Since many investigators type addi-
tional markers in the proximity of an apparent disease gene, this latter assumption
is often approximately true in practice.

The traditional genetic technique for estimating the location of a disease gene
is a support region, which for our purposes can be defined as follows. Given c > 0,
a support region contains all loci j∆ such that

Z2

j∆ ≥ max
i

Z2

i∆ − c. (16)

Within the framework of the approximate Gaussian model, this is equivalent to
the standard statistical technique of inverting the likelihood ratio test that j∆
is the disease locus, to obtain a confidence region. If the problem were regular,
which in this case would require that Zt be twice continuously differentiable in t,
the probability of (16) would be given approximately by a χ2 distribution with
one degree of freedom; but that approximation is not correct here. By methods
similar to those used to obtain (13) one can approximate the probability of (16)
and show that (16) yields an approximate confidence region for the disease locus
(Feingold, Brown and Siegmund, 1993, Lander and Kruglyak, 1995, Dupuis and
Siegmund, 1998).

Because of the local linear decay near τ displayed in (3), the inequality (16)
will be satisfied at all loci within a distance from τ of roughly c/2βξ2. Since ξ is
proportional to N1/2, the expected size of the support region is proportional to
N−1. This stands in contrast to regular problems, where the likelihood function
decays quadratically, and the size of a confidence region is proportional to N−1/2.
It may be shown by more detailed analysis that a value c ≈ 4.5 corresponds
roughly to a 90% confidence interval when ∆ = 1 and β = 0.04. Then for ξ ≈ 5,
the value indicated above that one needs to detect linkage with power about 0.9,
the expected size of a support region is about 5 cM. Since this corresponds to
about 5 × 106, base pairs, one still needs additional information, invariably of a
qualitatively different kind, to locate the gene with precision at the base pair level.

In his study of the closely related change-point problem, Cobb (1978) ob-
served that if ξ were known, the problem of estimation of τ would have essentially
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the same structure as estimation of a location parameter. Hence Fisher’s (1934)
suggestion for estimating a location parameter, to use the conditional distribution
of the maximum likelihood estimator given the ancillary statistic, in our case the
local rate of decay of the likelihood function, is very attractive. Moreover, this
suggestion has minimal computational requirements, since it can be effected by a
formal Bayesian credible region based on a uniform prior distribution for τ . To
accommodate unknown ξ, one can introduce a prior distribution for ξ or use the
profile likelihood function obtained by maximization with respect to ξ for each
fixed τ.

Dupuis and Siegmund (1998) have compared these two methods and find that
they are roughly comparable, although the former is more robust under a variety
of conditions.

6. Multilocus models. There are many additional problems that require a
more detailed understanding of the underlying genetics than we have presented so
far. In this section we discuss traits involving more than one gene, while in the
next we very briefly point out several additional problems.

While some inherited human diseases are governed by a single gene, most of
the more common ones having a genetic component, e.g., diabetes, breast cancer,
Alzheimer’s disease, are known or thought to involve multiple genes. Conceptually
the simplest of these are heterogeneous traits, where susceptibility increases by
virtue of a mutant allele at any one of several loci. It is, of course, possible that
the genome scan defined above would identify several disease loci, even though
there is no particular effort to do so. Typically a much larger sample size would
be required than for a single gene trait having a comparable degree of heritability,
since the evidence for linkage is divided among the different disease loci.

Three methods have been suggested to deal with heterogeneous traits: (i)
simultaneous search, (ii) conditional search and (iii) homogenization. In simulta-
neous search, suggested originally by Lander and Botstein (1986), one hypothesizes
a specific number, say two, trait loci and searches over combinations of putatitve
loci to identify both simultaneously. Because there is a much larger number of
multiple comparisons, a suitable threshold under the conditions assumed above
would increase from the neighborhood of 4 to about 5 (in searching for two loci).
Conditional search, which is appropriate after some trait loci have already been
identified, involves stratification of the sample according to the identity by descent
status at the (estimated) location of the already discovered loci in order to increase
precision in searching for additional trait loci. See Dupuis, Brown and Siegmund
(1995) for a theoretical analysis of these two methods. An interesting application
of conditional search is contained in Morahan et al. (1996), who identified a gene
on chromosome two for insulin dependent diabetes by conditioning on the identity
by descent status of their sample of sib pairs at the HLA locus on chromosome 6,
which had been implicated in several earlier studies.

A third approach to alleviate the problem of heterogeneity is to develop a
narrow definition of the disease, in order to make the disease more homogeneous.
In some cases this definition can be achieved statistically. A notable success was
the identification of the breast cancer gene BRCA1 by defining the trait to be
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early onset breast cancer. A recent attempt in the same direction involved a
search for a gene contributing to noninsulin dependent diabetes (Mahtani et al.,
1996). After failing to find evidence of linkage in the complete study group, the
pedigrees in the study were identified with their average level of a quantitative
covariate thought to be associated with the trait. The analysis was repeated with
only those pedigrees in the most extreme 25% of the distribution of this covariate,
then the most extreme 50%, then the most extreme 75%. The genome scan in the
most extreme 25% turned up a value that would have been marginally significant
at the 0.05 level if the phenotype had been defined a priori, but now there is
the second dimension of multiple comparisons (i.e., the search over levels of the
covariate) to account for.

A suitable model to analyze this two dimensional search within the Gaussian
framework introduced above is as follows. Let Z(t, k) for k = 1, · · · ,m be indepen-
dent identically distributed Gaussian processes in t as defined in Section 1. Here
k denotes levels of the covariate and for convenience is assumed to involve equal
quantiles of its distribution. Then let

S(t, k) = k−1/2Σk
i=1Z(t, i).

Linkage is detected if
max

1≤k≤m
max

c
max

j
S(j∆, k) ≥ b (17)

for a suitable threshold b. Using the method of Siegmund (1988), which generalizes
Woodroofe (1976) to multidimensional time, one finds under the hypothesis of no
linkage that the probability of (17) is approximately

1− exp
(

−βLν[b(2β∆)1/2]b3φ(b)

∫ ∞

bm−1/2

x−1ν(x) dx
)

. (18)

For the threshold b = 3.91 appropriate for the simple scan of Section 1 when ∆ = 1,
we find when m = 4 that (18) is about 0.15. To obtain a false positive rate of
0.05, one must increase the threshold to b = 4.2. Some rough calculations, which
should be more carefully analyzed, indicate that if the covariate is effective in
“homogenizing” the original sample, one can sometimes achieve substantial gains
in power after allowing for the increase in threshold.

In the paper of Mahtani et al. (1996) there was the additional problem that
the study design required pedigrees to have at least three affecteds and employed
a statistic whose distribution under the hypothesis of no linkage is skewed to the
right. (See (iii) in Section 7 below.) As a consequence the p-value of their result
was about 0.24 after one adjusts for skewness in addition to the two dimensional
search.

7. Additional problems. Linkage analysis involves a large number of problems
in addition to those discussed above. A few that have been the subject of recent
research follow.

(i) The identity by descent data that form the basis of our previous discussion
are intrinsically incomplete and require complicated algorithms to process. For
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example, for a given relative pair a particular marker may be “informative,” so
that we can observe the identity by descent status at that marker, or it may be
“uninformative.” Intermediate possibilities also exist. Since by (5) identity by
descent status is correlated at nearby markers, it may be possible to infer that
status at an uninformative marker from the status at nearby informative markers.
For example, for half siblings it follows from (6) that the likelihood function (for
the case of completely informative markers, when the trait locus τ is itself a marker
locus) equals

ΠN
j=1 (1 + α)X

j
τ (1− α)1−Xj

τ .

Let G denote the observed genotypes of all individuals at all markers, and let
P0 denote probability under the hypothesis of no linkage. Then the likelihood
function (relative to P0) when some of the Xj

τ may not be observable is

ΠN
j=1E0[(1 + α)X

j
τ (1− α)1−Xj

τ |G] = ΠN
j=1[1 + α(2Y j

τ − 1), (19)

where Y j
τ = E0[X

j
τ |G]. Kruglyak et al. (1996) use hidden Markov chains to cal-

culate the required conditional expectations. Their algorithm works best for a
possibly large number of small pedigrees. Additional techniques are required for
studies involving large pedigrees, which can make the required calculations ex-
tremely onerous (cf. Thompson, 1994). By differentiating (19) one sees that the
score statistic for testing α = 0 is

Ẑτ = Σj [Y
j
τ − 1/2]/[ΣjVar(Y

j
τ )]

1/2,

which reduces to (11) in the case of complete data. Since τ is unknown, we
use maxc maxi Ẑi∆ to search the genome for evidence of linkage. By studying
the correlation function of Ẑi∆, Teng and Siegmund (1998) show under certain
conditions that a threshold b appropriate for the case of completely informative
markers studied above is approximately correct for Ẑi∆ as well. They also study
the effect of incompletely informative markers on the power to detect linkage.
These problems are difficult, and pose a number of impediments to a completely
satisfactory solution.

(ii) Many traits are defined by quantitative measurement rather than a yes/no
dichotomy. Understanding the genetic basis of quantitative traits is also of interest
in experimental genetics, e.g., for agriculturally important species or for animal
models of human diseases. At the level of abstraction provided by Gaussian ap-
proximations one finds that linkage analysis of quantitative traits in humans and in
experimental genetics has much in common with the problems discussed above, but
many details are quite different–particularly when one considers various breeding
designs available in experimental genetics (cf. Lander and Botstein, 1989; Dupuis
and Siegmund, 1998).

(iii) The normal approximation suggested in Section 1 is adequate for the
simple case of half siblings discussed there, because under the hypothesis of no
linkage (11) is symmetrically distributed. In general, particularly when pedigrees
contain more than two affecteds or distant affected relatives, the statistic is not
symmetrically distributed and the normal approximation can be very poor. For
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example, for first cousins the probability of identity by descent at an arbitrary
locus is 1/4, so the statistic corresponding to (11) has a distribution skewed to the
right; and the approximation (13) is anti-conservative. While it is possible to give
approximations based directly on (11) or its analogue in more complex cases, these
approximations can be onerous to evaluate numerically. A simple modification of
(13) is given by Tu and Siegmund (1998). Let γ be the third moment of Zt under
the hypothesis of no linkage and θ = [−1+(1+2bγ/N1/2)1/2]/γ. Then for a single

chromosome of genetic length ℓ

P{ max
0≤i∆<ℓ

Zi∆ ≥ b}

≈ [1−Φ(b)] exp(γb3/6N1/2)+νβℓb[2π(1+γθ)]−1/2 exp[−Nθ2(1+2γθ/3)/2], (20)

where ν = ν[b(2β∆)1/2]. Note that θ ∼ b/N1/2 as either N → ∞ or γ → 0, and
then (20) reduces to (13). An application of the analogous extension of (18) was
described at the end of Section 6.
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