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Brownian Motion and Random Obstales

Alain-Sol Sznitman

Abstract. The investigation of Brownian motion and random obstacles
exhibits a rich phenomenology and displays paradigms which appear in
several other areas of random media. We provide here a brief survey of
some recent developments.
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0. Introduction

Much effort has been devoted to the investigation of random media over the last
two decades. This field offers a broad selectio n of surprising effects and represents
a mathematical challenge. The above applies in particular to the topic of Brownian
motio n and random obstacles, which has given rise to new ideas, results and
techniques. We shall now explain what the subject is abo ut.

A common example of random obstacles are the soft Poissonian potentials:

(0.1) V (x, ω) =
∑

i

W (x− xi), x ∈ lRd ,

where ω =
∑

i δxi
is a typical cloud configuration for the Poisson measure lP

with constant intensity ν > 0, and W (·) is a bounded measurable nonnegative
function, compactly supported and not a.e. equal to 0. Of central i nterest is the
investigation of the interaction of Brownian motion with the random obstacles.
Several path measures of interest arise in this context, for instance

- Brownian motion in a Poissonian potential, described by:

(0.2) Qt,ω =
1

St,ω
exp

{
−
∫ t

0

V (Zs, ω)ds
}
P0, (quenched measure),

with ω a lP-typical cloud configuration, Z. the canonical d-dimensional Brownian
motion, P0 the Wiener measure, St,ω the normalizing constant,

(0.3) Qt =
1

St
exp

{
−
∫ t

0

V (Zs, ω)ds
}
P0 ⊗ lP, (annealed measure) ,

with St the normalizing constant,
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- Brownian crossings in a Poissonian potential, described by:

(0.4) P̂λ
x,ω =

1{H(x) <∞}
eλ(0, x, ω)

exp
{
−
∫ H(x)

0

(λ+ V (Zs, ω))ds
}
P0,

(quenched measure) ,

with ω as in (0.2), λ ≥ 0, x ∈ lRd, H(x) the entrance time of Z. in the unit ball
around x, eλ(0, x, ω) the normalizing constant,

(0.5) P̂λ
x =

1{H(x) <∞}
ēλ(x)

exp
{
−
∫ H(x)

0

(λ+ V (Zs, ω))ds g P0 ⊗ lP,

(annealed measure),

with ēλ(x) the normalizing constant.

Trapping problems provide natural interpretations for these path measures.
In this light, V (x, ω) can be viewed as the random rate of absorption at location x
for a particle diffusing in the environment ω. Thus (0.2), (0.3) govern the so-calle
d quenched and annealed behaviors of a particle conditioned to survive absorption
up to a (long) time t, whereas (0.4), (0.5) govern the quenched and annealed
behaviors of a particle conditioned to perform a (long) crossing without being
absorbed. Ther e are other physical interpretations, and for instance (0.2) also
comes as a model of “flux lines in dirty-high-temperature su perconductors”, cf.
Section 4.6.3 of Krug [13], or Krug-Halpin Healy [14]. In this case t represents
the transvers al thickness of a material with “columnar defects”, rather than time.
Discrete analogues of the above path measures also aris e in the literature, see for
instance Bolthausen [3], Khanin et al. [12]. It may be helpful to mention that
quenched measures describe the evolution in a lP-typical environment of a particle
starting at the origin, whereas for the annealed m easures the lP-integration should
be viewed as the result of an ergodic average over the starting point of the particle.
It i s a recurrent theme of random media that quenched and annealed behaviors
can be substantially different.

I. Normalizing constants for (0.2), (0.3)

Analyzing the principal asymptotic behavior of normalizing constants is a first
step in the understanding of the path measures attached to Brownian motion in
a Poissonian potential.

With the help of the Feynman-Kac formula, the normalizing constants St,ω

and St can respectively be expressed as:

(1.1) St,ω = uω(t, 0) and St = lE[uω(t, 0)] ,

where uω(t, x) is the bounded solution of

(1.2)

{
∂t uω = 1

2 ∆uω − V uω ,

uω(0, x) = 1 .
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Their principal asymptotic behaviors as t→ ∞, are governed by:

(1.3) lP−a.s., St,ω = exp{−c(d, ν) t(log t)−2/d(1 + o(1))} ,

(1.4) St = exp{−c̃(d, ν) t d
d+2 (1 + o(1))} .

The constants c and c̃ are “explicit”, and independent of the specific choice ofW (·)
in (0.1). If λ(U) and |U | respectively denote the principal Dirichlet eigenvalue of
− 1

2 ∆ in U and the volume of U , one has:

(1.5) c(d, ν) = λ(B(0, R0)), with R0 =
( d

ν|B(0, 1)|
)1/d

, whereas

(1.6)

c̃(d, ν) = inf
U open

{ν|U |+ λ(U)} = ν|B(0, R̃0)|+ λ(B(0, R̃0)), with

R̃0 =
(2λ(B(0, 1))

dν |B(0, 1)|
) 1

d+2

.

The annealed asymptotics (1.4) goes back to Donsker-Varadhan [5], where it was
obtained as an application of large deviati on theory for occupation times of Brow-
nian motion on a torus. Both asymptotics have also been derived through the
analysis of p rincipal Dirichlet eigenvalues of − 1

2 ∆ + V (·, ω) in large boxes, and
the method of enlargement of obstacl es, cf. [24], [33], [36]. Sharper versions of
(1.3), (1.4) can also be found in [36].

Intuitively for the quenched asymptotics, the contribution in the Feynman-
Kac formula

(1.7) St,ω = E0

[
exp

{
−
∫ t

0

V (Zs, ω)ds
}]

of Brownian paths going to some obstacle-free ball of radius of order R0(log t)
1/d,

typically occurring within distance slightly less than t from the origin, and staying
there up to time t, has the principal asymptotic behavior (1.3). On the other hand
for the annealed asymptotics, the contribution in the representation

(1.8) St = lE⊗ E0

[
exp

{
−
∫ t

0

V (Zs, ω)ds
}]

,

of largely deviant environments, for which an obstacle-free ball of radius of order

R̃0 t
1

d+2 contains the origin, and of Brownian trajectories, which stay in the ball up
to time t, has the principal behavior (1.4). Of course, under standing whether and
up to what point these heuristics truly govern the quenched and annealed path
measures (0.2), (0.3) is qui te another matter. As it turns out, the loose concept
of pockets of low local principal Dirichlet eigenvalue for − 1

2 ∆ + V (·, ω), plays
an important role in the analysis of (0.2), (0.3). The predominance of atypical
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“pocket s of abnormally low eigenvalues” locally describing a system is a recurrent
paradigm of random media, which for instance shows up in models of intermittency,
cf. Gärtner-Molchanov [8], [9], Molchanov [17], in random walks in random envi
ronment, cf. [4], [19], [20], [35], or in stochastic dynamics of spin systems with
random interactions, cf. [16] and references therein.

II. Pinning effect and confinement property

The large t behavior of the quenched path measure Qt,ω is governed by a “com-
petition” between the various “pockets o f low local eigenvalues”, resulting in a
pinning effect: the path tends to get attracted to near minima of a certain random
va riational problem. The discussion of the real pinning effect would go beyond
the scope of this expository article, and we restr ict here to a simplified version.
We refer to [32] or [36] for the “real story”. We denote by λω(U) the principal
D irichlet eigenvalue of − 1

2 ∆ + V (·, ω) in U , and for sufficiently small χ > 0,

consider the random function on lRd.

(2.1) Ft(x, ω) = α0(x) + tλω(B(x,Rt)) ,

with Rt = exp{(log t)1−χ}, a “small scale” growing slower than any positive power
of t, and α0(·) a certain deterministic norm, the so-called quenched 0-th Lyapunov
coefficient, see Section IV below, (the role of α0(·) is somewhat cosmetic in the
simplified pinning effect we discuss here). Minimizing Ft(·, ω) induces a competitio
n between distance to the origin and occurrence of pockets of low local eigenvalues.
One can show, cf. [32], [36], that

(2.2) lP-a.s., inf Ft(·, ω) ∼ c(d, ν) t(log t)−2/d, as t→ ∞ ,

with c(d, ν) as in (1.5). Defining a skeleton of near minima of Ft(·, ω) via

(2.3) Lt,ω =
{
x ∈ 1√

d
ZZd, Ft(x, ω) ≤ inf Ft(·, ω) + t(log t)−χ− 2

d } ,

it can be shown that this set “lies almost at distance t” from the origin. The
(simplified) pinning effect asserts that

Theorem: For small χ > 0,

(2.4) lP-a.s., lim
t→∞

Qt,ω(C) = 1, where

(2.5)
C = {Z. comes before time t within distance 1 of some x ∈ Lt,ω from

which it then does not move further away than Rt up to time t} .

As a by-product of the proof one also has the refinement of (1.3):

(2.6) lP-a.s., logSt,ω + inf Ft(·, ω) = o(t(log t)−χ− 2
d ) .

The true pinning effect is substantially sharper but involves certain random scales
which would take too long to introduce here . In particular in the one-dimensional
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case it can be shown that for ǫ > 0, with lP × Qt,ω-probability ten ding to 1 as
t → ∞, Z. gets pinned within time ǫ t in scale t(log t)−3 within an interva l of
length 2(log t)2+ǫ, cf. [32], [36].

Loosely speaking, in the quenched situation the particle “goes the extra mile”
to find an adequate pocket of low local eigenv alue. The annealed situation is quite
different and favours a “good location” for the starting point of the path which
then t ends to remain “confined” there. For instance in the case of hard obstacles,
i.e. for the path measure

(2.7) Qt = lP⊗ P0[ · |T > t] ,

with T the entrance time of Z. in the obstacle set
⋃

i xi +K, ω =
∑

i δxi
and K

a fixed nonpola r compact set, one has the confinement property:

Theorem: For any d ≥ 1,

(2.8) lim
t→∞

Qt[ sup
0≤u≤t

|Zu| ≤ 2 t
1

d+2 (R̃0 + ǫ(t))] = 1 ,

with R̃0 as in (1.6), and ǫ(t) a suitable function tending to 0, when t tends to ∞.

Thus the path “typically lives in scale t
1

d+2 under Qt”. The result is consider-
ably harder to prove when d ≥ 2. The two-dimensional case goes back to [26]. The
case of dimension d ≥ 3 was proved by Povel [21], who used a recent version of the
method of enlargement of obstacles (cf. next section), and certain isoperimetric
controls of R.R. Hall [?], which play the role of the Bonnesen’s inequality in the
two-dimensional proof. In fact in the two-dimensional case, it was proved in [26]
that

Theorem: (d = 2)

(2.10)

There exists a measurable map Dt(ω), B(0, t1/4 (R̃0 + ǫ(t)))-valued,
such that with Qt-probability tending to 1, as t→ ∞, Z[0,t] is

included in B(Dt, t
1/4(R̃0 + ǫ(t))) and no obstacle fall in

B(Dt, t
1/4(R̃0 − ǫ(t))) .

In the case of the simple random walk on ZZ2, Bolthausen proved in [3] a version of
this result using a refined version of D onsker-Varadhan’s large deviation principles.
It is also possible to obtain further information on the “spherical clearing” w here
the process lives, cf. Schmock [23], when d = 1, [26], when d = 2, and [21], when
d ≥ 3:

(2.11)

As t→ ∞, t−
1

d+2Z
· t

2
d+2

converges in law under Qt, to the

mixture with weight ψ(x)/
∫
ψ of the laws of Brownian motion

starting from 0 conditioned not to exit B(x, R̃0), with ψ the

principal Dirichlet eigenfunction of − 1
2 ∆ in B(0, R̃0) .
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III. the method of enlargement of obstacles

As mentioned above, in many questions related to Brownian motion in a Poissonian
potential, the analysis of local principal Dir ichlet eigenvalues of − 1

2 ∆ + V (·, ω)
plays in important role. Indeed these numbers control in a very qu antitative
fashion the decay properties of the Dirichlet-Schrödinger semigroup. This is illus-
trated by the estimat e:

(3.1) sup
x

Ex

[
exp

{
−

∫ t

0

V (Zs, ω)ds
}
, TU > t

]
≤ c(1 + (λω(U)t)d/2) e−λω(U)t ,

with c a merely dimension dependent constant and TU the exit time of Z. from
U , cf. [36]. The method of enlargement o f obstacles in particular provides an
efficient way of deriving uniform controls on the numbers λω(U) close to 0 (i .e.
the bottom of the spectrum of − 1

2 ∆ + V (·, ω) in lRd), as U and ω vary. The
rough idea is to remodel the region V > 0, and construct a coarse grained picture
with lower combinatorial complexity than the original clo ud configuration, which
for probabilistic purpose is simpler to analyze, but still has principal eigenvalues
close to the origi nal objects. This remodeling of the region V > 0 brings into
play a trichotomy of lRd. In a first region, true obstacles a re quickly sensed by
Brownian motion, and obstacles can be “enlarged” by imposing Dirichlet condition
on this set. A second r egion where obstacles are insufficiently present and where
enlargement of obstacles could possibly influence eigenvalues is sho wn to have
little volume and thus little effect on probabilistic estimates. The third and last
region receives no point of the cloud. In a sense, this parallels the trichotomy
associated to any compact set K by considering the set of regular points of K, the
set of irregular points of K and the complement of K.

Specifically after scaling the problem so that ǫ represents the size of the true
obstacles, 1 the size of the pocket s of interest in the scaled cloud configurations
(still denoted by ω), one constructs a density set Dǫ( o) where obstacles are en-
larged and a bad set Bǫ(ω) where obstacles are untouched, so that:

(3.2)

i) Dǫ(ω), Bǫ(ω), lR
d\(Dǫ(ω) ∪ Bǫ(ω)) ; partition lRd,

ii) no point of ω falls in lRd\(Dǫ(ω) ∪ Bǫ(ω)),

iii) for each box C of size 1, the maps ω → C ∩ Dǫ(ω) and

ω → C ∩ Bǫ(ω) have range of cardinality smaller then 2ǫ
−dβ

,
with β ∈ (0, 1) a fixed number.

Denoting by Vǫ(·, ω) =
∑

i ǫ
−2W ( ·−xi

ǫ ) the scaled potential, the construct ion can
be done so that for a suitable α ∈ (0, β), Brownian motion, when starting on
Dǫ(ω), strongly feels the obstacles before moving at distance ǫα:

Theorem A0: (pointwise absorption estimate). There exists ρ0 > 0, such that

(3.3)
lim
ǫ→0

ǫ−ρ0 sup
ω,x∈ωverlineDǫ(ω)

Ex

[
exp

{
−
∫ Hǫα

0

Vǫ(Zs, ω)ds
}]

< 1, with

Hǫα = inf{s ≥ 0, |Zs − Z0| ≥ ǫα} ,
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and on the other hand the bad set has small volume:

Theorem B: (volume estimate)

(3.4) ∃κ > 0, lim
ǫ→0

sup
riptsize C box of size 1, ω

ǫ−κ |Bǫ(ω) ∩ C| < 1 .

The construction of the trichotomy (3.3) i) relies on a type of quantitative Wiener
test involving a series of capacities of a skeleton of the true obstacles at scales
intermediate between ǫβ and ǫα. In a sense (3.4), (3.5) parallels the Wiener test
characterization of regular points of a compact set and the Kellog-Evans theorem
on the smallness of the set of ir regular points of a compact set. As an application
of the pointwise absorption estimates (3.3) one can in particular obtain eig envalue
estimates:

Theorem A: (eigenvalue estimate)
(3.5)
∃ρ > 0, ∀M > 0, lim

ǫ→0
ǫ−ρ sup

ω,U
(λǫpsilonω(U\Dǫ(ω)) ∧M − λǫω(U) ∧M) = 0 ,

with λǫω(O) = principal Dirichlet eigenvalue of − 1
2 ∆+ Vǫ(·, ω) in O.

In other words this shows that in the asymptotic regime, provided λǫω(U) has
value of order unit, an addition al Dirichlet condition on Dǫ(ω) does not essentially
increase the principal eigenvalue.

The method of enlargement of obstacles has numerous applications to the
quenched and annealed situation, cf. [36]. The method e asily applies to non-
Poissonian obstacles (uniformity of controls in ω is very handy), cf. [28], to shrink-
ing obstacles, cf. [25], see also [2], to confidence intervals on principal eigenvalues,
cf. [33], see also [39]. A version of the method in the discrete setting can be found
in Antal [1]. Recently L. Erdös applied in [6] a version of the method to the study
o f the Lifschitz tail effect for the density of states of the magnetic Schrödinger
operator with Poissonian obstacles.

IV. Lyapunov norms

The technique of Lyapunov norms has been very helpful in the investigation of
“off-diagonal” properties of the path measures (0.2), (0.3), in particular in the
derivation of large deviation principles governing the location of Zt. The Lyapunov
norms describe the principal exponential decay of the normalizing constants in
(0.4), (0.5). In a one-dimensional setting, in the co ntext of wave propagation in
random media, they can be traced back to the work of Gärtner and Freidlin, cf.
Chapter 7 of Frei dlin [7].

At the heart of the method lies the fact that the functions eλ(x, y, ω) satisfy
an almost supermultiplicative property and still contain much information about
Brownian motion in a Poissonian potential. An important role is played by certain
sha pe theorems (analogous to shape theorems of first passage percolation, cf.
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Kesten [11]), which construct two families of norms on lRd, βλ(·) ≤ αλ(·), λ ≥ 0,
the annealed and quenched Lyapunov coeffici ents:

(4.1) lP-a.s. for M > 0, lim
x→∞

sup
0≤λ≤M

1

|x| | − log eλ(0, x, ω)− αλ(x)| = 0 ,

(4.2) for M > 0, lim
x→∞

sup
0≤λ≤M

1

|x| | − log tog(lE[eλ(0, x, ω)])− βλ(x)| = 0 .

These shape theorems are quite robust and one can replace in (4.1), (4.2),
eλ(0, x, ω) by the λ-Green function gλ(0, x, ω), or eλ(x, 0, ω), or exp{−dλ(0, x, ω)},
with dλ certain natural random distance functions (in general nongeodesic) con-
structed with the eλ, cf. [36]. The Lyapunov coefficients enter several large d
eviation theorems, cf. [29], [30], [31], as well as the random variational problem of
the pinning effect. For instance when arphi(t) → ∞,

(4.3)

lP-a.s. under Qt,ω, Zt/ϕ(t) satisfies a large deviation principle
at rate ϕ(t), with rate function:

i) α0(x), if ϕ(t) = t(log t)−2/d, cf. [31],

ii) α0(x), if t(log t)
−2/d << ϕ << t, cf. [29],

iii) I(x) = sup
λ≥0

(αλ(x)− λ), if ϕ(t) = t, cf. [29].

Similar results hold under the annealed measure Qt, when d ≥ 2, with t
d

d+2 in place
of t(log t)−2/d and βλ(·) in place of αλ(·), (the one-dimensional case is singular,
cf. Povel [22]). In the discrete setting (4.3) iii) has been proved by Zerner in [40].
In fact the above strategy also applies in the context of random walks in random
environments, cf. Zerner [41]. This is especially interesting since there are few
mathematical results on this model.

The understanding of crossing Brownian motion in a Poissonian potential, see
(0.4), (0.5), is so far rather primitive. However recently for rotationally invariant
truncated Poissonian potentials, Wüthrich has been able to relate in [37], the
fluctuatio n properties of − log eλ(0, x, ω) to transversal fluctuations of the path
under the path measure (0.4). In a slightly d ifferent situation (“point to line”
model), he was also able to obtain a result about the superdiffusive nature of
transversa l fluctuations, cf. [38]. This is qualitatively similar to what happens in
first passage percolation, cf. Licea-Newman-Piza [15], Newman-Piza [18].
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