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Within and Beyond the Rea
h

of Brownian Innovation

Boris Tsirelson

Abstract. Given a system whose time evolution is random, we often
try to describe it as a deterministic system under independent random
influences. Doing so, we reduce complicated statistical correlations to
a complicated but deterministic mechanism, and a stochastic but un-
correlated noise. That is the idea of innovation. The corresponding
mathematics is surprisingly interesting.
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1. The name of the game

An innovation is a real-time transformation of a noise into a given random process.

Out of the four terms, only one, “random process”, is standard. The notion
of a real-time transformation was introduced repeatedly, and used under various
names: “lifting” (of a filtered probability space) [19, (7.1–7.3)], “Hypothèse (H)”
[7, Sect. 2.4], “extension” (of a filtered probability space) [22, Chap. 2, Def. 7.1],
[8, Def. 6.1], with no name [44, 17.3.1(a)], [2, Lemma 7(c)], “morphism” (from one
filtration to another) [33, Def. 1.1], “immersion” (of one filtration into another) [4],
“orthogonal factor” (of a reverse filtration) [15, Sect. 2]. My favorite “real-time
transformation” appeared in [33].

A noise in the discrete-time framework amounts to an independent sequence
(of random variables or σ-fields), or a product (of a sequence of probability spaces).
For continuous time, the classical white noise is a special case of a noise as defined
in [34, Def. 1.1]; see also “factored probability spaces” [13], “measure factoriza-
tions” [36, Def. 1.2], and “product measures” (on a factorized Borel space) [36,
Def. 2.4].

Innovation processes are well-known in filtering theory (see [5, Sect. 8]). A far-
reaching generalization is the “innovation” introduced here. In the discrete-time
framework, innovation appeared as “standard extension” (of a reverse filtration)
[8, p. 885], “generating parametrization” [28, Sect. 2], [26, Def. 2.1], “substandard
representation” [15, Sect. 2]. My favorite “innovation” appeared in [26].

2. Trivial cases

Let µ be a probability measure on a space X . (Usually X = R or R
n, but it

may be a finite set, a complete separable metric space, a standard Borel space.)
Every such µ can be represented as the image of the Lebesgue measure U(0, 1)
under a measurable map f : (0, 1) → X . Let U be a random variable distributed
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uniformly on (0, 1) (in symbols U ∼ U(0, 1)), then f(U) ∼ µ. Of course, µ does not
determine f uniquely; f(g(U)) ∼ µ for all measure preserving g : (0, 1) → (0, 1).
So, every X -valued random variable Y is distributed like some X = f(U).

Consider a discrete time random process Y = (Yt)t∈T , assuming for now that
T is finite, T = {1, . . . , n}; thus Y is just n random variables Y1, . . . , Yn, and its
distribution is a measure µ on Xn. Let U1, . . . , Un be independent U(0, 1) random
variables. Choose f1 : (0, 1) → X such that f1(U1) is distributed like Y1. For
each y1 ∈ X consider the conditional distribution of Y2 given that Y1 = y1 (I
omit trivial reservations) and choose f2(·, y1) accordingly. Introduce X1 = f1(U1),
X2 = f2(U2, X1), then the pair (X1, X2) is distributed like (Y1, Y2). Continuing
the process, we get functions f1, . . . , fn and random variables X1, . . . , Xn such
that

(2.1)
X1 = f1(U1), X2 = f2(U2, X1), . . . , Xn = fn(Un, Xn−1, . . . , X1) ,

(X1, . . . , Xn) is distributed like (Y1, . . . , Yn) .

That is the innovation: at a time t ∈ T the process X takes on a value Xt produced
by a deterministic mechanism ft out of two sources: the past (X1, . . . , Xt−1)
of the process, and the current value Ut of a noise. Note that each Ut is used
only once (formulas like X2 = f2(U2, U1, X1) are disallowed), and U1, . . . , Un are
independent. The uniform distribution of Ut is only conventional; in Sect. 4 we
prefer the normal distribution. Note also the large choice available on each stage
when constructing f1, . . . , fn.

Example. Let (Yt)t∈T be a process with independent increments, having as-
sumed that X = R or another group. We may choose an innovation of the form

(2.2) Xt = gt(Ut) +Xt−1 .

The simple form (2.2) seems to be decidedly preferable to (2.1) for such processes,
which is a delusion, to be refuted in Sect. 3.

The distribution of X = (X1, . . . , Xn) is the given µ. Consider, however, the
joint distribution of X and U . We have

(2.3) E
(

ϕ(X1, . . . , Xn)
∣

∣U1, . . . , Ut

)

= E
(

ϕ(X1, . . . Xn)
∣

∣X1, . . . Xt

)

for all t = 1, . . . , n and all bounded Borel functions ϕ : Xn → R. Forecasting the
future of the process X, we want to know the past of X only, and not the past of
U . In other words, (Xt+1, . . . , Xn) and (U1, . . . , Ut) are conditionally independent,
given (X1, . . . , Xt). *

Consider the σ-field FX(t) generated by X1, . . . , Xt; clearly, FX(t) ⊂ FU (t)
for all t, that is, FX ≤ FU , where FX =

(

FX(t)
)

t∈T is the filtration generated by

X. Writing (2.3) in the form E
(

ξ
∣

∣FU (t)
)

= E
(

ξ
∣

∣FX(t)
)

for FX(n)-measurable

ξ, note that E
(

ξ
∣

∣FX(t)
)

is the general form of an FX -martingale; so,

(2.4) M(FX) ⊂ M(FU ) ,

* Though, (2.1) stipulates more: (Xt+1, Ut+1, . . . , Xn, Un) and (U1, . . . , Ut) are
conditionally independent, given (X1, . . . , Xt).
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where M(F) is the set of all F-martingales. Relation (2.4) implies FX ≤ FU , and
is much stronger; try X2 = f2(U2, U1, X1) instead of f2(U2, X1) and you’ll find
(2.4) violated but FX ≤ FU is still valid.

The following definition is formulated in terms of processes, but only their
distributions are relevant. Still, T = {1, . . . , n}.

2.6 Definition. A real-time transformation of a random process V = (V1, . . . , Vn)
into another process W = (W1, . . . ,Wn) is a two-component process (V ′,W ′) =
(

(V ′

1 ,W
′

1), . . . , (V
′

n,W
′

n)
)

such that V ′ is distributed like V , W ′ is like W ,
and for each t = 1, . . . , n, W ′

t is equal to a function of V ′

1 , . . . , V
′

t , and two
vectors (V ′

1 , . . . , V
′

t ) and (W ′

t+1, . . . ,W
′

n) are conditionally independent given
(W ′

1, . . . ,W
′

t ).

Reformulations via (2.3), (2.4) and generalizations for infinite T are left to the
reader. Nothing new emerges for an infinite increasing sequence of time moments,
t ∈ T = N = {1, 2, 3, . . .}. Still, an innovation is constructed step-by-step: f1, then
f2, and so on ad infinitum. The same holds for every countable ordinal number,
that is, every countable linearly ordered set T that contains no infinite strictly
decreasing sequences.

3. Decreasing sequences are highly non-trivial

The following two examples show an astonishing phenomenon: some information
appears magically, from thin air; see [25, p. 156], [43, p. 136], [10] and references
therein.

The first example: Xt = ±1 for t ∈ Z are i.i.d. equiprobable random signs,
Ut = Xt/Xt−1; then Ut are i.i.d. equiprobable random signs, also. Thus, X is both
a process with independent values, and a process with independent increments
in the multiplicative group {−1,+1}. The equality Xt = UtXt−1 should be an
innovation of the process X by the noise U . However, it is not; X contains more
information than U , since U determines X only up to an overall sign. The missing
information should be a kind of initial value, X−∞; however, any function of the
germ (tail) of X at −∞ is either constant almost sure, or nonmeasurable, which
is the well-known tail triviality.

The second example is the “eternal” (stationary) Brownian motion in a circle
(or any other compact Lie group). Let

(

B(t)
)

t∈[0,∞) be the standard Brownian
motion in R, and α a random variable, uniform on (0, 1) and independent of
(

B(t)
)

t∈[0,∞). Consider the complex-valued process X(t) = exp
(

2πiα + iB(t)
)

.

The process
(

X(t)
)

t∈[0,∞) is stationary. Therefore, it has a unique (in distribution)

extension
(

X(t)
)

t∈R, the eternal motion. Multiplicative increments Ut = Xt/Xt−1

for t ∈ Z should innovate the process
(

X(t)
)

t∈Z. However, they do not, for the
same reason as in the first example: they stay invariant under transformations of
the form

(

X(t)
)

t∈R 7→
(

eiϕX(t)
)

t∈R.
About notation: ergodic people, being more light-hearted toward the time

arrow than probabilists, prefer (X ′

1, X
′

2, . . .), where X
′

1 = X−1, X
′

2 = X−2, . . ., to
(. . . , X−2, X−1). Accordingly, dependence on the past turns into dependence on
larger indices t [8], [16], [28], [26], [15]. I adhere to the probabilistic school, [44],
[4], [9], [10], choosing T = (−N) = {. . . ,−2,−1}.

Documenta Mathematica · Extra Volume ICM 1998 · III · 311–320



314 B. Tsirelson

Every process Y = (Yt)t∈T is distributed like some process X satisfy-
ing Xt = ft(Ut;Xt−1, Xt−2, . . .) for some Borel functions ft and independent
Ut. It follows that M(FX) ⊂ M(FX,U ), but we need M(FX) ⊂ M(FU ).
The two-component process (U,X) is a real-time transformation of U into X
if and only if FX ≤ FU . Chaining ft, ft−1, . . . , fs+1 we get fs,t such that
Xt = fs,t(Ut, . . . , Us+1;Xs, Xs−1, . . .). However, we need f−∞,t such that Xt =
f−∞,t(Ut, Ut−1, . . .). That is possible if and only if the influence of Xs, Xs−1, . . .
on fs,t(Ut, . . . , Us+1;Xs, Xs−1, . . .) disappears in the limit s → −∞. Tail trivi-
ality is necessary but not sufficient. Both examples shown above are tail trivial,
and satisfy Xt = Ut . . . Us+1Xs. Given U , the influence of Xs on Xt is strong,
irrespective of s. Thus, the equality Xt = UtXt−1 fails to give an innovation.

Despite the strong influence of Xs on Xt, these Xs, Xt are (statistically)
independent in the first example, and asymptotically independent (for s→ −∞) in
the second example. The strong dependence characterizes the specific way of using
Ut (namely, Xt = UtXt−1), that is, the parametrization (ft)t∈T rather than the
process X itself. Is there a better parametrization for the same process? For the
first example, the answer is evidently positive. Here, the conditional distribution
of Xt, given the past, does not depend on the past. The parametrization Xt =
UtXt−1 is bad because it introduces an unnecessary dependence on the past. A
good parametrization is simply Xt = Ut, which surely is an innovation. For the
second example, restricted to t ∈ Z, the conditional distribution of Xt, given the
past, depends on Xt−1. However, such distributions (corresponding to different
values of Xt−1) overlap. A good parametrization uses the overlap for reducing
dependence on the past. In continuous time, an innovation for the eternal motion
is constructed [10] by inventing a coupling for processes differing in remote past.
They are forced to coalesce, which never happens under the bad parametrization
Xt = UtXt−1 of the form (2.2). That is the refutation of the delusion mentioned
after (2.2).

Is there an innovation for an arbitrary tail-trivial process (Xt)t∈(−N) ? The
answer is negative, which fact is “highly non-trivial and remarkable” [26], “deep
and surprising” [15]. The first example, admitting no innovation, was discovered
in the context of ergodic theory [37]. There are more examples of ergodic flavor
[38], [29], [39], [28], [21], and of probabilistic flavor [8], [17], [14], [26], [4], [9]. The
example of [8], furthered in [17], [14], [26], [4], is strikingly close to the sequence
of i.i.d. equiprobable random signs; namely, the product measure is replaced with
an equivalent (that is, mutually absolutely continuous) measure.

Some criteria for existence of an innovation, outlined in [37], [39], are elab-
orated in [15]. There, “substandardness” is our “existence of innovation”, while
“product type” is stronger, stipulating that Ut is a function of Xt, Xt−1, . . . In such
a case one says that Ut is exactly the new information furnished by X at t (though
it depends on the chosen innovation). “Substandardness” implies “product type”
provided that the conditional distribution of Xt given the past, is nonatomic [15].

4. Cosiness

Cosiness is a useful necessary condition for existence of an innovation. (Is it also

sufficient? I do not know.) Cosiness emerged in [33, Def. 2.4] for continuous time
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and in [4, Sect. 4] for discrete time, the latter with a reservation that “there is a
whole range of possible variations” of the definition; one of the variations follows.
Still, T = (−N) = {. . . ,−2,−1}, and processes are X -valued.

4.1 Definition. A random process (Xt)t∈T is cosy, if for each ε > 0 and each
bounded Borel function ϕ : X T → R there exists a two-component random process
(Y,Z) =

(

(Yt, Zt)
)

t∈T such that

(a)
(

(Y,Z), Y
)

and
(

(Y,Z), Z
)

are real-time transformations of (Y,Z) into X;
(b) E|ϕ(Y )− ϕ(Z)| < ε;
(c) there exists δ ∈ (0, 1) such that for all bounded Borel functions ψ, χ : X T → R,

(

E|ψ(Y )χ(Z)|
)

2−δ ≤
(

E|ψ(Y )|2−δ
)(

E|χ(Z)|2−δ
)

.

Some comments. Condition (a) implies that each of the two processes Y,Z is
distributed like X; thus, (Y,Z) is a joining of two copies of X, possessing the “real
time” property M(Y ) ⊂ M(Y,Z), M(Z) ⊂ M(Y,Z) (recall (2.4)). Condition (b)
means that Y,Z are close, since ϕ may be one-one. Condition (c) means that Y,Z
are “independent a little”, since it is always satisfied for δ = 0 and equivalent to
independence of Y,Z for δ = 1.

4.2 Theorem. [4, Lemma 6 and Corollary 3] A non-cosy process admits no

innovation.

The idea of a proof. Assume that X has an innovation; X is distributed
like Y , Yt = f−∞,t(Ut, Ut−1, . . .), U = (Ut)t∈T being a sequence of independent
N (0, 1) random variables. (This time we prefer the normal distribution N (0, 1)
to U(0, 1).) Take another sequence V = (Vt)t∈T of independent N (0, 1) random
variables such that U, V are independent. Introduce Wt = Ut cos ε + Vt sin ε,
and let Zt = f−∞,t(Wt,Wt−1, . . .).* Condition (c) follows from the celebrated
hypercontractivity theorem (pioneered by Nelson, see [24, Sect. 3])!

The first example of a non-cosy process in discrete time is given in [4, Th. 1];
it appears that the method of [8] produces non-cosy processes. It is interesting
to know, whether “ergodic” examples [37], [38], [29], [39], [28], [21] are also non-
cosy, or not. Another non-cosy discrete-time filtration [9] is the restriction of a
continuous-time filtration to a discrete set on the time axis.

5. Applications to continuous time

An X -valued process (Xt)t∈T , T = (−N) = {. . . ,−2,−1}, generates its filtration
FX =

(

FX(t)
)

t∈T . The family
(

FX(2t)
)

t∈T is also a filtration; it is generated by
the X 2-valued process (Yt)t∈T , Yt = (X2t−1, X2t). If X admits an innovation, then
the amalgamated process Y also does. The same applies for any infinite subset
T1 ⊂ T . If X is tail-trivial and T1 is sparse enough, then Y admits an innovation,
see [15, Th. 1.18] and references therein.

A continuous process (Xt)t∈[0,∞) generates its filtration FX =
(

FX(t)
)

t∈[0,∞).
Choosing a sequence (tk)k∈(−N), tk ∈ [0,∞), tk−1 < tk, inf tk = 0, we get a

* Which is anticipated in [23].
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discrete-time filtration
(

FX(tk)
)

k∈(−N), generated by the amalgamated process
(Yk)k∈(−N), Yk = (Xt)t∈[tk−1,tk]. If Y admits no innovation, then X also admits
no innovation, for any reasonable definition of continuous-time innovations. Some
continuous-time problems are solved in that way.

The effect of “information from thin air” (see Sect. 3) can be reproduced by
the stochastic differential equation

(5.1) dXt = dBt + v
(

t,
(

Xs

)

s∈[0,t]

)

dt

with a bounded drift v, if v is chosen properly. Then (5.1) fails to innovate X,
which means that the equation has no strong solution. That is the “celebrated
and mysterious” [25, V.3.18, p. 155] example, constructed in [32] and investigated
in [5], [30], [43], [23], [10]. The eternal Brownian motion in a circle, mentioned in
Sect. 3, can be obtained from X by a real-time transformation and a deterministic
time change that maps [0,∞) onto R [10]. The same process X is a strong solution
of the stochastic differential equation

(5.2) dXt = σ
(

t,
(

Xs

)

s∈[0,t]

)

dBt + v
(

t,
(

Xs

)

s∈[0,t]

)

dt

for some σ(. . .) = ±1 [10] (see also [16]). Once again, a clever parametrization is
better than the straightforward parametrization.

One of the processes admitting no innovation, mentioned in Sect. 3, leads to
a more ingenious drift v in (5.1); the corresponding (continuous) process X has
no innovation, which means that it cannot be the strong solution of any equation
of the form (5.2) [8]; see also [17], [14], [26], [4]. The drift is not bounded, but I
believe that it can be made bounded. “Dreadfully complicated, their construction
is almost as incredible as the existence result itself” [4]. Is it really a compli-
cated construction? In fact, the drift is not constructed “by hands”, it is chosen
at random. It is a random drift; here “random” is interpreted like the second
“random” in the phrase “random walk in a random environment”. Thus, it is a
typical drift in the same sense as a nowhere differentiable Brownian sample path
is a typical function. Few parameters are adjusted by authors, such as order of
magnitude, and depth of dependence on the past, both depending on time in a
simple prescribed way.

There exists a pure martingale admitting no innovation [9].

6. From stochastic analysis to stochastic topology

Some continuous-time phenomena have no (evident) discrete-time counterpart.
For example, Brownian motion cannot be transformed in real time into a Pois-
son process. A non-Gaussian stable process cannot be transformed into Brownian
motion. The m-dimensional Brownian motion can be transformed into the n-
dimensional Brownian motion if and only if m ≥ n, which may be treated as the
starting point of stochastic topology, the theory of filtration invariants of random
processes.* A diffusion process with smooth nondegenerate coefficients in an n-
dimensional smooth manifold is equivalent to the n-dimensional Brownian motion

* A useful classification claimed in [27, Th. 7] appeared to be not exhaustive
[8, Sect. 6].
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in the sense that their filtrations are isomorphic; in other words, the two processes
can be connected by an invertible real-time transformation. What happens in pres-
ence of singularities of the topology or the coefficients? Few results are available;
they are based on stochastic analysis (Itô formula, local times, . . . ). All negative
results are based on continuous-time cosiness [33, Def. 2.4]. Brownian motion of
finite or countable dimension is cosy [33, Lemma 2.5]. A cosy process cannot be
transformed in real time to a non-cosy process [33, Lemma 2.6]. Therefore, all
non-cosy processes are beyond the reach of Brownian innovation.

Two well-known diffusion processes in R are singular at the origin (x = 0, not
t = 0 as in Sect. 5). The skew Brownian motion (see [20]) has a singular drift at 0,
and is equivalent to the usual Brownian motion [20]. The sticky Brownian motion
(see [41]) is slowed down at 0; its filtration is non-cosy [42].

Consider n rays (say, on the plane) with a single common point, the origin.
There is a natural diffusion process Zn on the union of the rays; Z2 is the usual
Brownian motion, Z1 is the reflecting Brownian motion; Z3, Z4, . . . are so-called
Walsh’s Brownian motions [40], [3]. Such processes arise when considering small
random perturbations of Hamiltonian dynamical systems [18] and some other top-
ics [40], [3]. Processes Z1 and Z2 are equivalent (Lévy, Skorokhod). Nevertheless,
Walsh’s Brownian motions are non-cosy [33, Th. 4.13] (see also [11], [2]), which
solves Problem 2 of [3].

Interestingly, stochastic topology can be of help to the classical (non-
stochastic) analysis. Consider three non-intersecting domains in R

n. If they
are smoothly bounded, then points of trilateral contact are evidently rare among
boundary points. It was conjectured for irregular domains, that the infimum of
the three corresponding harmonic measures must vanish [6, Sect. 6], [12, Problem
a]. In terms of the Martin boundary: its natural projection to the topological
boundary is at most 2 to 1 almost everywhere. However, the best result of clas-
sical analysis is “at most 10 to 1” [6]. The final result “2 to 1” is achieved via
stochastic topology [33, Th. 7.4]. A challenge for classical analysis!

So, some characteristic of Rn (or any smooth manifold) as a harmonic space,
is equal to 2 irrespective of dimension, but exceeds 2 in presence of branching
points. The nameless characteristic has its counterpart in stochastic topology,
named splitting multiplicity. Introduced in [3, Def. 4.2], it was hibernating till
the birth of cosiness. Every cosy process is of splitting multiplicity 2 (or 1, if
it is degenerate) [2], while Walsh’s Brownian motion Zn, n > 2, is of splitting
multiplicity n [2]. Splitting multiplicity is invariant under measure changes and
time changes [2], while cosiness is not [4], [9].

7. White noise versus black noises

In discrete time we have no choice of noises for innovation; a noise is a sequence
of independent random variables, each having a non-atomic distribution. In con-
tinuous time, the classical theory of processes with independent increments tells
us that in general, a noise consists of a Gaussian component (a finite or count-
able collection of independent white noises) and a Poissonian component. The
latter is useless for innovating diffusion processes. The former can innovate only
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cosy processes. Thus, Walsh’s Brownian motion is beyond the reach of classical
innovation.

We may turn to Brownian motions (defined as continuous processes with sta-
tionary independent increments) on more general groups. In that aspect, finite-
dimensional Lie groups are equivalent to R

n. The Polish group of all unitary
operators on the (separable) Hilbert space, equipped with the strong operator
topology, is equivalent to (the additive group of) the Hilbert space [34, Th. 1.6].
(Interestingly, the proof involves continuous tensor products and continuous quan-
tum measurements.) A commutative Polish group cannot give more [34, Th. 1.8].

The system of coalescing independent one-dimensional Brownian motions [1],
[31, Sect. 2], is a limiting case of a coalescing stochastic flow. The system generates
a two-parametric family of σ-fields (Fs,t)s<t that shares with the white noise the
following property:

(7.1) Fr,s ⊗Fs,t = Fr,t whenever r < s < t ;

that is, Fr,s and Fs,t are independent and, taken together, generate Fr,t. Never-
theless, (Fs,t)s<t supports no white noise (nor a Poisson process); it means that
there is no Brownian motion (Bt)t∈[0,∞) such that Bt −Bs is Fs,t-measurable for
all intervals (s, t) ⊂ [0,∞) [35]. Thus, (Fs,t)s<t is a black noise as defined in [34,
Sect. 1]. It is predictable [34, Def. 1.12] in the sense that its filtration (F0,t)t∈[0,∞)

supports only continuous martingales. In fact, the filtration is Brownian! There-
fore, that black noise still cannot innovate Walsh’s Brownian motion.

One more example of a black noise is available [36, Sect. 5]. Does it generate
a cosy filtration? I do not know.

7.2 Problem. Can a predictable noise (see [34, Defs. 1.1, 1.12]) generate a non-
cosy filtration?

If the answer is positive, another problem follows.

7.3 Problem. Can Walsh’s Brownian motion be innovated by some predictable
noise?

7.4 Problem. Can a noise generate a cosy but non-Brownian filtration?*
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[10] M. Émery, W. Schachermayer, private communication, April 1998.
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[31] B. Tóth, W. Werner, The true self-repelling motion, Probab. Theory Related Fields

(to appear).
[32] B.S. Tsirel’son, An example of a stochastic differential equation having no strong

solution, Theory Probab. Appl. 20:2 (1975), 416–418 (transl. from Russian). (MR
51#11654)

[33] B. Tsirelson, Triple points: from non-Brownian filtrations to harmonic measures,

Geom. Funct. Anal. (GAFA) 7 (1997), 1096–1142.
[34] B. Tsirelson, Unitary Brownian motions are linearizable, MSRI Preprint No. 1998-

027, math.PR/9806112.
[35] B. Tsirelson, Brownian coalescence as a black noise, manuscript in preparation.
[36] B.S. Tsirelson, A.M. Vershik, Examples of nonlinear continuous tensor products of

measure spaces and non-Fock factorizations, Reviews in Mathematical Physics 10:1
(1998), 81–145.
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tion, Lect. Notes Math. (Séminaire de Probabilités XXXI), Springer, Berlin, 1655
(1997), 1–15.

[42] J. Warren, On the joining of sticky Brownian motion, technical report of the dept.
of statistics, university of Warwick, 1998.

[43] M. Yor, Tsirel’son’s equation in discrete time, Probab. Theory Related Fields 91:2
(1992), 135–152. (MR 93d:60104)

[44] M. Yor, Some Aspects of Brownian Motion, part II: Some Recent Martingale Prob-
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