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Refleting Diffusions and Queueing Networks

R. J. Williams1

1 Introduction

Queueing models are of interest for analyzing congestion and delay in complex
processing networks such as those occurring in computer systems, telecommuni-
cations and manufacturing (see e.g., [BG92, Ya94]). Many of these networks can
process more than one class of job at a given station (so-called multiclass net-
works) and/or have complex feedback structures. Generally such models cannot
be analyzed exactly and it is natural to seek more tractable approximations. In
connection with this, certain diffusion processes known as semimartingale reflect-
ing Brownian motions (SRBMs) [RW88] have been proposed as approximations
for heavily loaded queueing networks (see e.g., [Ha88, HN93]), and there is now a
substantial theory for these diffusions (see the survey in [Wi95]). However, limit
theorems justifying their role as approximations have only been proved for some
networks (see the overview in [Wi96]). Indeed, since a surprising example of Dai
and Wang [DWa93] it has been known that these approximations are not always
valid for multiclass networks with feedback. A challenging open problem has been
that of establishing general conditions under which SRBM approximations for
open multiclass queueing networks are valid. Recent progress on this problem and
related work is summarized here.

The paper is organized as follows. In §2, the existence and uniqueness theory
for SRBMs is described, including an oscillation inequality [Wi97a] which is critical
to establishing tightness of normalized queueing network processes. In §3, the
model used here for an open multiclass queueing network is defined. In §4, the
main theorem is stated which gives general sufficient conditions for a heavy traffic
limit theorem, which justifies approximating an open multiclass queueing network
by a SRBM [Wi97b]. One of the key conditions involves something called “state
space collapse”. Bramson has recently given sufficient conditions for this to hold
(see [Br97b] and his article [Br98] in this volume). New heavy traffic limit theorems
for two interesting collections of networks are obtained by combining the above
results. The paper concludes with some open problems in §5.

2 Semimartingale Reflecting Brownian Motions

Definition of a SRBM Let J be a positive integer, IRJ
+ ≡ {x ∈ IRJ : xj ≥

0 for j = 1, . . . , J}, B denote the σ-algebra of Borel subsets of IRJ
+, ν be a probabil-

ity measure on (IRJ
+,B), θ be a constant vector in IRJ , Γ be a J×J non-degenerate

covariance matrix, and R be a J × J matrix.
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Definition 2.1 A semimartingale reflecting Brownian motion (SRBM) associ-
ated with the data (θ,Γ, R, ν) is a J-dimensional process W defined on some filtered
probability space (Ω, F , {Ft}, P ) such that

W = X +RY (1)

where W, X, Y are {Ft}-adapted processes such that W has continuous paths in
IRJ

+, X is a J-dimensional Brownian motion with drift vector θ, covariance matrix
Γ, initial distribution ν, and {X(t) − X(0) − θt,Ft, t ≥ 0} is a martingale, and
Y is a J-dimensional process such that for each j ∈ {1, . . . , J}, Yj(0) = 0, Yj

is continuous and non-decreasing, and
∫∞

0
1(0,∞)(Wj(s))dYj(s) = 0, i.e., Yj can

increase only when Wj is zero.

Intuitively, such a SRBM behaves in the interior of the orthant IRJ
+ like a

Brownian motion with initial distribution ν, constant drift θ and covariance
matrix Γ, and it is confined to IRJ

+ by “pushing” at the boundary, where for
j = 1, . . . , J , the allowed direction of push on the relative interior of the boundary
face Fj = {x ∈ IRJ

+ : xj = 0} is given by the jth column of the matrix R. At
an intersection of faces, the allowed directions of “push” are given by the con-
vex combinations of the push directions associated with the faces meeting there.
For historical reasons, stemming from an alternative construction of the driftless
process in one-dimension, the “pushing” at the boundary is called instantaneous
reflection. However, it is more accurate to think of this action as deflection or
regulation rather than some type of mirror reflection. The process Y is called the
“pushing process” associated with W and it is related to the local time of W on
the boundary. Since the state space for a SRBM is not smooth and the directions
of reflection may be discontinuous at the non-smooth parts of the boundary, the
general theory for diffusions with smooth boundary conditions [SV71] does not
apply to SRBMs and one must develop a theory from first principles.

The above definition of a SRBM is in the spirit of weak solutions of stochastic
equations. In particular, one is free to choose the filtered probability space and
processes W,X, Y such that the above properties hold. Here the focus is on such
weak solutions, since necessary and sufficient conditions for their existence and
uniqueness are known, whereas only sufficient conditions are known for strong so-
lutions. Furthermore, there are multiclass queueing networks (see the example due
to Dai, Wang and Wang in Appendix A of [Wi97b]) whose SRBM approximants
are not covered by the extant strong solution theory.

Existence and Uniqueness for SRBMs It is straightforward to see that a
necessary condition for the existence of a SRBM associated with (θ,Γ, R, ν) for
each probability measure ν on (IRJ

+,B) is the following: at each point on the

boundary of IRJ
+ there is a positive linear combination of the “push” directions

that can be used there which points into the interior of IRJ
+. This geometric

description can be expressed succinctly as the following algebraic condition: the
matrix R is completely-S if for each principal submatrix R̃ of R there is a vector
x̃ ≥ 0 such that R̃x̃ > 0. (Here inequalities are to be interpreted componentwise
and a principal submatrix of R is obtained by deleting all rows and columns of R
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with indices in some strict (possibly empty) subset of {1, . . . , J}.) In fact, R being
completely-S is also sufficient for the existence and uniqueness in law of a SRBM.
The following result is proved for ν = δx (the unit mass at x ∈ IRJ

+) in [TW93]
and is easily extended to all ν [Wi97a].

Theorem 2.1 Suppose that R is completely-S. There exists a SRBM associated
with (θ,Γ, R, ν) and it is unique in law. Furthermore, the laws induced on the space
of continuous paths in IRJ

+ by the SRBMs associated with (θ,Γ, R, δx), x ∈ S, define
a Feller continuous strong Markov process.

Oscillation Inequality Solutions of a deterministic Skorokhod problem
have been used to obtain strong constructions of SRBMs in some cases [DuI91,
HR81]. While this Skorokhod problem will not have unique solutions for general
completely-S matrices R [BEK91, Ma92], an oscillation inequality for a perturbed
form of this problem can be used to establish tightness for suitable approxima-
tions to a SRBM. Indeed, this inequality can be used to show existence of a SRBM
(using deflected random walk approximations having small inward jumps at the
boundary) and the form obtained by restricting to continuous paths x(·) and set-
ting ǫ = 0 is used in the proof of uniqueness in law of a SRBM [TW93]. (This
“continuous” case of the oscillation inequality first appeared in [BEK91].)

In the following statement of the oscillation inequality, for any 0 ≤ t1 < t2 <
∞, D([t1, t2], IR

J) denotes the set of functions x : [t1, t2] → IRJ that are right
continuous on [t1, t2) and have finite left limits on (t1, t2] and Osc(x, [t1, t2]) =
sup{|x(t) − x(s)| : t1 ≤ s < t ≤ t2} for any x ∈ D([t1, t2], IR

J), where |a| =
maxJj=1 |aj | for any a ∈ IRJ .

Theorem 2.2 [Wi97a] Assume that R is completely-S. Suppose that ǫ ≥ 0, 0 ≤
t1 < t2 < ∞ and w, x, y ∈ D([t1, t2], IR

J) are such that

(i) w(t) = x(t) +Ry(t) ∈ IRJ
+ for all t ∈ [t1, t2],

(ii) for each j ∈ {1, . . . , J}, yj(t1) ≥ 0, yj is non-decreasing, and∫
[t1,t2]

1(ǫ,∞)(wj(s))dyj(s) = 0.

Then there is a constant C > 0, depending only on R, such that

Osc(y, [t1, t2]) + Osc(w, [t1, t2]) ≤ C(Osc(x, [t1, t2]) + ǫ). (2)

This oscillation inequality plays a key role in establishing tightness of normalized
queueing network processes approximating SRBMs (cf. §4).

Other Results and Extensions For further discussion of SRBMs, includ-
ing weak versus strong solutions, conditions for recurrence, and characterization
of stationary distributions, see the survey article [Wi95] and references therein.
Semimartingale reflecting Brownian motions in convex polyhedrons (in contrast
to the orthant) can arise as approximations to closed and capacitated queueing
networks. The reader is referred to [DWi95] for sufficient conditions for the ex-
istence and uniqueness of such processes and to [DD97] for a related oscillation
inequality and heavy traffic limit theorem. Semimartingale reflecting Brownian
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motions in polyhedrons also arise in other applications, e.g., in economic models
of monetary exchange [FL98]. Reflecting Brownian motions (RBMs) that are not
semimartingales have also been proposed as approximations to some particular
queueing network models (see e.g., [DuR98b, KL93]). However, the theory of exis-
tence and uniqueness for these non-semimartingale RBMs is not as complete as for
SRBMs, being restricted to the two-dimensional case [VW85] or to RBMs whose
geometric data is a limit of that for SRBMs [DuR98a].

3 Open Multiclass Queueing Network Model

In an open queueing network, jobs arrive from outside the system, visit a finite
number of stations where they receive service, and then exit the network. The
model for an open multiclass queueing network used here is a generalization of one
with a first-in-first-out (FIFO) service discipline considered in [HN93]. To simplify
the exposition, attention is restricted to networks that are initially empty. For a
more complete specification of the model, including a treatment of networks that
are initially non-empty, see [Wi97b]. The model description is broken down into
assumptions concerning the network structure, primitive stochastic processes (for
exogenous arrivals, service times and routing), and the service discipline.

Network Structure The model has a fixed set {1, . . . , J} of stations with a
single reliable server at each. At any given time, each job in the network belongs
to one of a finite set K = {1, . . . ,K} of job classes. Each class is associated with
exactly one station (where the class is to receive service). The deterministic many-
to-one function mapping classes to stations is specified by a J ×K constituency
matrix C where Cjk = 1 if class k is served at station j and Cjk = 0 otherwise. At
a given station, jobs of different classes may be distinguished by features such as
the distributions of their service times, their routing characteristics, or their order
of service. Upon completing service in a class, a job changes class in Markovian
fashion. Each station serves at least one class and has an infinite buffer for storing
jobs awaiting service there.

Stochastic Primitives The primitive stochastic processes for the model
are (E, V,Φ) where E is a K-dimensional external arrival process, V is a K-
dimensional cumulative service time process, Φ = (Φ1,Φ2, . . . ,ΦK) and Φk is a
K-dimensional routing process for class k ∈ K. More precisely, for each k and
t ≥ 0, Ek(t) represents the number of exogenous arrivals to class k up to time
t. It is assumed that Ek 6≡ 0 for at least one k and for each such k, Ek is a
renewal process derived from a sequence of positive i.i.d. interarrival times having
finite mean and variance. For each class k and integer n ≥ 0, Vk(n) =

∑n

i=1 vk(i)
where {vk(i)}

∞
i=1 is a sequence of i.i.d. positive random variables with finite mean

and variance, and vk(i) is interpreted as the service time for the ith job that ar-
rives to class k. To describe the Markovian routing, let e1, . . . , eK denote the
non-negative unit basis vectors parallel to the K coordinate axes in IRK and
let e0 be the K-dimensional zero vector. For each class k and integer n ≥ 0,
Φk(n) =

∑n

i=1 φ
k(i) where {φk(i)}∞i=1 is a sequence of i.i.d. random vectors tak-

ing values in {e0, e1, . . . , eK} with P (φk(i) = el) = Pkl, k, l ∈ K, and P is a strictly
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substochastic K×K matrix. The interpretation of the routing vector φk(i) is that
the ith job to depart from class k is routed next to class l if φk(i) = el and it
leaves the network if φk(i) = e0. The strict substochasticity of P ensures that jobs
eventually leave the network. The processes E1, . . . , EK , V1, . . . , VK ,Φ1, . . . ,ΦK

are assumed to be mutually independent.

Service Discipline It remains to specify the order in which jobs are served
at each station, i.e., the service discipline. Attention is confined to HL (head-
of-the-line) service disciplines (cf. [Br97a, Wi97b]). (Other disciplines such as
last-in-first-out or general processor sharing are also of interest, but the heavy
traffic theory for networks with these disciplines is much less developed.) Firstly,
an HL discipline is non-idling in the sense that a server is never idle when there are
jobs waiting to be served at its station. In addition, jobs in each class are served
on a first-in-first-out basis, i.e., service for each class is concentrated on the job
at the head-of-the-line for that class. Each class receives a proportion (possibly
zero) of the associated server’s time, where this proportion may be random but
is kept constant between changes in the arrival or departure processes, and these
proportions depend in a measurable way on the “state” of the queueing network at
the time of the last such change. (The “state” description includes such quantities
as queue lengths, remaining service times of jobs at a station, amounts of time
that jobs have been waiting in their current class, and the amount of time until
the next exogenous arrival to each class cf. [Wi97b].) Common service disciplines
included in the HL framework are FIFO (regardless of their class designation, jobs
at a station are served in the order in which they arrived there), static priorities
(classes at a station are ranked and jobs of a higher ranking class are always served
before those of a lower ranking class), and HLPPS (head-of-the-line proportional
processor sharing: each class at a station receives service in proportion to the
number of jobs that are present in that class).

Descriptive Processes and Model Equations Let A,D be the K-
dimensional processes such that Ak(t) denotes the number of arrivals to, and
Dk(t) denotes the number of departures from, class k up to time t. The processes
that are used to measure performance are a K-dimensional queue length process
Z, a J-dimensional workload process W and a J-dimensional cumulative idletime
process Y . For each class k, station j and time t, Zk(t) denotes the number of
class k jobs that are in queue or being served at time t (the letter Z is mnemonic
for the German Zahl or number), Wj(t) denotes the amount of work for server j
(measured in units of remaining service time) that is embodied in those jobs that
are at station j at time t, Yj(t) denotes the total amount of time that server j has
been idle up to time t.

The descriptive processes (A,D,W, Y, Z) satisfy the following equations:

A(t) = E(t)+Φ(D(t)), Z(t) = A(t)−D(t), W (t) = CV (A(t))−et+Y (t). (3)

Here e is the J-dimensional vector of all ones and the kth component of Φ(D(t))

is to be read as
∑K

l=1 Φ
l
k(Dl(t)) and the kth component of V (A(t)) is to be read

as Vk(Ak(t)). The equation for A indicates that the Ak(t) arrivals to class k up to

time t consist of Ek(t) exogenous arrivals plus
∑K

l=1 Φ
l
k(Dl(t)) arrivals obtained by
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feedback of some of the departures that have occurred up to time t. The equation
for the workload process W expresses the fact that

∑
k∈K CjkVk(Ak(t)) units of

work have arrived for server j in [0, t] and that this has been depleted by the
amount of time t − Yj(t) that server j has been active in [0, t]. The fact that an
HL discipline is non-idling implies that

∫∞

0
1(0,∞)(Wj(s))dYj(s) = 0 for all j.

✲ ✲ ✲✖✕
✗✔
❧
❧✱
✱ ✲

✛

✻

E A D
Φ

V

❥
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1
·······
J

Figure 1: Schematic for an open multiclass queueing network

Note that the equations (3) do not give a complete description of the behavior
of the queueing network. In particular one must add additional equations to pro-
vide information about the service discipline. For example, for the FIFO discipline
one can add the relations: Dk(t+Wj(t)) = Ak(t), for each class k and associated
server j. Equations for other HL service disciplines will not be given here, since
for the statement of the main theorem (Theorem 4.1), only a distillation of the
service discipline is needed in the form of a K × J matrix ∆. Since this matrix is
related to the heavy traffic behavior of networks, discussion of it is deferred to the
next section.

Heavy Traffic The following notation is used in describing the notion of heavy
traffic. Let α denote the K-dimensional long run average arrival rate vector for the
exogenous arrival process E and let M denote the K ×K diagonal matrix whose
diagonal entries are the mean service times mk for the classes k ∈ K. Let λ be the
unique solution of the “traffic flow” equation λ = α + P ′λ, i.e., λ = (I − P ′)−1α.
Here ′ denotes transpose. (To avoid degeneracies, it is assumed that λk > 0
for each k.) Define ρ = CMλ. The quantity λk is called the arrival rate for
class k and ρj is called the traffic intensity parameter for station j. These are
nominally the long run average rate at which jobs arrive to class k and the long
run fraction of time that server j is busy, respectively. For single class networks,
these nominal quantities represent actual long run quantities (provided ρj ≤ 1 for
all j). However, since the appearance of counterexamples in the early 1990s (see
e.g., [LK91, RS91]), it has been known that this interpretation is not always valid
for multiclass networks. Indeed, the question of whether these nominal quantities
actually correspond to long run quantities is related to the stability properties of
the queueing network. Rather than digressing to discuss this further here, the
reader is referred to the articles on stability in [KW95], the references therein,
and the article [Br98]. Here λ and ρ are simply regarded as useful parameters.
Networks that are (nominally) heavily loaded or in heavy traffic are those in which
ρj is close to one for each j. Such networks are the focus of attention in the next
section.
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4 Sufficient Conditions for a Heavy Traffic Limit Theorem

A Sequence of Networks Mathematically, to justify the approximation of a
given heavily loaded open multiclass queueing network by a SRBM, we regard the
network as being a member of a sequence of networks in which the traffic intensity
vector ρ converges to e. Here, to simplify the exposition, the sequence is chosen so
that only the distributions of the service times vary along the sequence where this
variation is parametrized by the mean service times. (A more complex setup can
be considered, allowing for more general variation of the distributions of all of the
stochastic primitives along the sequence [Wi97b]. Although this implies a certain
robustness of the approximation to small perturbations in the distributions of the
stochastic primitives, for the purpose of stating a limit theorem that justifies the
approximation of a fixed heavily loaded network, only the simpler setup described
here is needed.)

Thus, we consider a sequence of networks indexed by r, which tends to in-
finity through a strictly increasing sequence of positive numbers. Each network
in the sequence has the same basic structure as described in the previous sec-
tion. Furthermore, J,K,C,E,Φ and the service discipline do not vary with r, and
vk(i) = mr

kuk(i) where mr
k is the mean service time for class k in the rth network

and uk(i) is a random variable independent of r that has mean one and finite
variance. (To avoid degeneracies, it is assumed that uk(i) has positive variance
for each class k. This assumption implies that the covariance matrix for the pro-
posed SRBM approximant is non-degenerate. For other ways in which this can
be achieved, see §5 of [Wi97b].) In the sequel, the superscript r is attached to all
quantities that may depend on r.

Now assume the following heavy traffic conditions: as r → ∞, mr
k → mk ∈

(0,∞) for each k ∈ K, such that γr ≡ r(ρr − e) → γ ∈ IRJ . Define the diffusion
scaled workload, cumulative idletime and queue length processes:

Ŵ r(t) = W r(r2t)/r, Ŷ r(t) = Y r(r2t)/r, Ẑr(t) = Zr(r2t)/r. (4)

The purpose of a heavy traffic limit theorem is to justify approximating
(Ŵ r, Ŷ r, Ẑr) in distribution using a SRBM.

State Space Collapse A key feature of prior limit theorems in the multiclass
setting [Wh71, Pe91, Re88] has been a phenomenon called state space collapse,
which states that the diffusion scaled queue length process for each class k can be
approximately recovered as a multiple of the associated station’s diffusion scaled
workload process. Here a slightly weaker notion called multiplicative state space
collapse is used. This form suffices for our purposes and seems more amenable to
verification (cf. [Br97b]). Here ‖f(·)‖T = sup0≤t≤T |f(t)| for any vector valued
function f defined on [0, T ]. (The notion of state space collapse is defined by
omitting the denominator in (5) below.)

Definition 4.1 Multiplicative state space collapse holds if there is a K×J matrix
∆ such that for each T ≥ 0,

‖Ẑr(·)−∆Ŵ r(·)‖T

‖Ŵ r(·)‖T ∨ 1
→ 0 in probability as r → ∞, (5)
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where a ∨ b ≡ max(a, b) for any two real numbers a, b.

Based on extant limit theorems, some conjectured forms of ∆ for various service
disciplines are described in [Wi97b]. In fact, one can show (see Appendix B in
[Wi97b]) that a necessary condition for {(Ŵ r, Ẑr)} to be C-tight under the FIFO
service discipline is that (multiplicative) state space collapse holds with ∆ = ΛC ′

where Λ is the K ×K diagonal matrix with the entries of λ on its diagonal.

Sufficient Conditions for a Heavy Traffic Limit Theorem The main
content of the following theorem is that for a sequence of open multiclass queueing
networks as described above (with a general HL service discipline), multiplicative
state space collapse plus the natural condition that the reflection matrix R for the
purported SRBM approximant is well defined and completely-S, is sufficient for a
heavy traffic limit theorem to hold. Here ⇒ denotes convergence in distribution of
processes taking values in the space of paths that are right continuous with finite
left limits, where this space is endowed with the usual Skorokhod topology.

Theorem 4.1 [Wi97b] Suppose that multiplicative state space collapse holds and
that the inverse matrix R = (CM(I−P ′)−1∆)−1 exists and is completely-S. Then

(Ŵ r, Ŷ r, Ẑr) ⇒ (W ∗, Y ∗, Z∗) as r → ∞, (6)

where W ∗ is a SRBM with data (Rγ,Γ, R, δ0) and associated pushing process Y ∗,
and Z∗ = ∆W ∗. The covariance matrix Γ is a known quantity determined from C
and the means and covariances of the stochastic primitives [Wi97b], and δ0 denotes
the unit mass at the origin in IRJ

+.

The proof of this theorem proceeds by showing tightness of the sequence
{(Ŵ r, Ŷ r, Ẑr)} and uniqueness in law of any weak limit point. For the tight-
ness, multiplicative state space collapse is combined with the oscillation inequality
of Theorem 2.2. For the uniqueness of any weak limit point (W †, Y †, Z†), one
needs to show that W † is a SRBM with associated pushing process Y †. In par-
ticular, the martingale property in the definition of a SRBM needs to be verified
for X† = W † − RY †. This involves establishing a multiparameter stopping time
property which is where the precise definition of a HL service discipline (including
its measurable dependence on the “state”) comes into play.

New Heavy Traffic Limit Theorems In a companion work to [Wi97b],
Bramson [Br97b] (see also [Br98]) has given sufficient conditions for multiplicative
state space collapse to hold. These conditions are in terms of the behavior of a
balanced fluid model (a law of large numbers approximation for the sequence of
heavily loaded queueing networks). In particular, using these conditions and his
prior work on the fluid model behavior for FIFO Kelly type and HLPPS networks,
Bramson [Br97b] has shown that multiplicative state space collapse holds for these
two collections of networks. The qualifier “Kelly type” means that mk depends
only on the station j at which class k is served, i.e., the limiting mean service
times are station-dependent, not class-dependent, quantities. In addition, it is
known [DH93, Wi97b] that R is well defined and completely-S for these networks.
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Combining the above results yields new heavy traffic limit theorems for these two
collections of networks. In particular, the FIFO Kelly type network introduced
by Dai, Wang and Wang (see Appendix A in [Wi97b]) can be approximated by
a SRBM. This is particularly interesting since the continuous mapping (strong
solution) approach used in most prior limit theorems cannot be applied to that
example.

In independent work, Chen and Zhang [CZ97] have established a heavy traffic
limit theorem for FIFO networks in which G = CM(I −P ′)−1P ′ΛC ′ has spectral
radius less than one. Although they do not use Theorem 4.1, they implicitly verify
the conditions of that theorem for their case and avoid a continuous mapping
argument in a similar manner to that in [Wi97b].

5 Open Problems

The results in [Br97b, Wi97b] reduce the problem of establishing heavy traffic
limit theorems for open multiclass queueing networks with a HL service discipline
to that of establishing multiplicative state space collapse through the study of
balanced fluid models over long intervals of time and to verifying that the reflec-
tion matrix R is well defined and completely-S. A compelling open problem is to
identify new collections of networks that satisfy these conditions. In particular, it
is natural to consider networks with static priority service disciplines (see the ar-
ticle [Br98] by Bramson for recent work in this direction). Another area for future
investigation is heavy traffic behavior of networks with non-HL disciplines such as
last-in-first-out and general processor sharing. Finally, the focus here has been on
performance analysis for heavily loaded networks with a fixed structure. In some
applications one may be able to vary such quantities as the service discipline or
routing in a dynamic manner with the objective of optimizing some measure of
performance. Again such problems frequently cannot be analyzed exactly and one
may seek approximate models. An approach using approximate diffusion models
has been advocated by some authors (see e.g., [HW89, KL93, Ku95]), but many
open problems remain concerning justification and interpretation of such approx-
imations in general.
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