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1. Introduction. In this paper we shall discuss recent developments concerning
hereditary graph properties. In particular, we shall study the growth of the number
of graphs with a given hereditary property; the structure of a ‘typical’ graph with
the property; and the P-chromatic number of a random graph Gn,p for a fixed
hereditary property P.

A graph property P is a union of isomorphism classes of finite graphs. To avoid
trivialities, we shall always assume that our properties contain infinitely many non-
isomorphic graphs, but that for some n do not contain all graphs of order n. Here
are some simple examples of graph properties: (i) all triangle-free graphs without
8-cycles, (ii) all graphs of chromatic number at most k, (iii) all graphs containing
no induced quadrilaterals, (iv) all regular bipartite graphs, (v) all Hamiltonian
graphs.

Rather than considering general properties, we frequently study hereditary
properties. A property P is hereditary if it is closed under taking induced sub-
graphs. In other words, P is hereditary if G ∈ P implies that G− x ∈ P for every
vertex x of G.

An important subclass of hereditary properties is the class of monotone prop-
erties , those that are closed under taking subgraphs. Thus P is monotone if G ∈ P
implies that G − x ∈ P for every vertex x of G and G − e ∈ P for every edge e
of G. Note that properties (i) and (ii) are monotone, (iii) is hereditary but not
monotone, and properties (iv) and (v) are not hereditary.

The most natural way of measuring the size of a property is to take the
number of elements in its finite sections. Given a property P, write Pn for the set
of graphs in P with vertex set [n] = {1, . . . , n}. Then (|Pn|)∞n=1 is, in an obvious
sense, a measure of P.

For a monotone property P there is another natural measure: the sequence
(e(Pn))∞n=1, where e(Pn) is the maximal size (number of edges) of a graph in Pn.
For a general property P, the sequence (e(Pn))∞n=1 may have little significance, so
we have to turn to a natural extension of it. A pregraph is a triple G̃ = (V, Ẽ, Ñ),
where V is a finite set, the set of vertices , and Ẽ and Ñ are disjoint subsets of
V (2), the set of unordered pairs of vertices; Ẽ is the set of edges and Ñ is the
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set of non-edges of G̃. A graph G = (V,E) extends G̃ if Ẽ ⊂ E ⊂ V (2) \ Ñ .

The size e ˜(G) of a pregraph is |V (2) \ (Ẽ ∪ Ñ)|: the number of choices we have
when extending G̃ to a graph. We say that a pregraph G̃ belongs to Pn if every
graph extending G̃ belongs to Pn. Then another natural measure of the size of
a property P is the sequence (en(P))∞n=1, where en(P) is the maximal size of a
pregraph in Pn.

It is natural to identify a graph G = (V,E) with the pregraph G̃ = (V, ∅, V (2)\
E); with this identification we find that e(G) = e(G̃). Hence, for a monotone
property P, the two definitions give the same value: in other words, e(Pn) =
en(P).

Scheinerman and Zito [28] were the first to study the rate of growth of |Pn| for
a hereditary property. They discovered that, crudely, |Pn| behaves in one of the
following five ways: (i) for n large enough, |Pn| = 1 or 2, (ii) it grows polynomially:
for some positive integer k, a1n

k ≤ |Pn| ≤ a2n
k for some a1, a2 > 0, (iii) it grows

exponentially: aan1 ≤ |Pn| ≤ an2 for some a > 0 and 1 < a1 ≤ a2, (iv) it grows
factorially: ana1n ≤ |Pn| ≤ na2n for some a > 0 and 0 < a1 ≤ a2, (v) it grows
superfactorially: |Pn| > nan for every a > 0 and n large enough.

Here we are interested in properties whose rate of growth is not far from
maximal. To measure the rate of growth of such a property P, we replace the

sequence (|Pn|)∞n=1 by the sequence (cn)∞n=1, where |Pn| = 2cn(n

2). Since 1 ≤

|Pn| ≤ 2(n

2), we have 0 ≤ cn ≤ 1.
We call cn the logarithmic density of Pn, and c = limn→∞ cn the asymptotic

logarithmic density of P provided the limit exists.
Similarly, the (normalized) size of Pn is dn, 0 ≤ dn ≤ 1, defined by en(P) =

dn
(

n
2

)

.
The asymptotic size of P is d = limn→∞ dn, provided this limit exists. Since

every pregraph G̃ extends to 2e(G̃) graphs, we have cn ≥ dn for every property.
Hence if P is a property with asymptotic logarithmic density c and asymptotic size
d, then c ≥ d. We shall see later that every hereditary property has an asymptotic
logarithmic density c and an asymptotic size d and, in fact, they are equal.

2. Monotone properties. One of the main aims of classical extremal graph the-
ory is the study of the sequence (en(P))∞n=1 for various monotone graph properties.
Frequently, a monotone property is given by a family F of forbidden subgraphs.
For a family F = {F1, F2, . . .} of finite graphs, let Mon(F) be the collection of
all graphs containing no Fi as a subgraph. Clearly every monotone property is of
the form Mon(F) for some family F of forbidden subgraphs , but one is especially
interested in monotone families defined by small families of forbidden subgraphs.
If there is only one forbidden subgraph F then we have a principal monotone
property and we write Mon(F ) instead of Mon({F}).

It has been known for over fifty years that every monotone graph property
has an asymptotic size. In particular, a weak form of Turán’s theorem [31] states
that d(Mon(Kr+1)) = 1 − 1

r for every r ≥ 1. The fundamental theorem of Erdős
and Stone [15] extends this result to d(Mon(Kr+1(t))) = 1 − 1

r for all r, t ≥ 1.
Here, as usual, Kn denotes a complete graph of order n and Kr(t) denotes the
complete r-partite graph in which each part has t vertices. An equivalent form of
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the Erdős-Stone theorem is that if F is any family of forbidden subgraphs then
d(Mon(F)) = 1− 1

r , where r = min{χ(F )− 1 : F ∈ F} and χ(F ) is the chromatic
number of F .

Rather more effort is needed to prove that every monotone property has an
asymptotic density. Using the method of Kleitman and Rothschild [18], Erdős,
Kleitman and Rothschild [12] proved that c(Mon(Kr+1)) = 1− 1

r . This result was
extended by Erdős, Frankl and Rödl [11], who proved that c(Mon(F )) = 1 − 1

r
for every graph F , where r = χ(F ) − 1. The proof of this result implies that
c(Mon(F)) = 1− 1

r for every family F , where r is, as before, one smaller than the
minimal chromatic number of a graph in F . In particular, c(P) = d(P) for every
monotone family.

The structure of Kr+1-free graphs was investigated in great detail by Kolaitis,
Prőmel and Rothschild [19]. Among other results, they proved that Mon(Kr+1)
is well approximated by the smaller property Nr of graphs of chromatic number
at most r: not only do we have the crude result that c(Mon(Kr+1)) = c(Nr), but
also

|Mon(Kr+1)n|/|Nn
r | = 1 + O(n−k)

for all k > 0. Furthermore, a first-order labelled 0 − 1 law holds for the class of
Kr+1-free graphs.

Before leaving monotone properties, let us note that the following somewhat
surprising fact is an immediate consequence of the description of c(P) = d(P) for
a monotone property. If P1 and P2 are monotone properties, and P = P1 ∩ P2,
then

c(P) = min{c(P1), c(P2)}. (1)

Thus the intersection of two monotone properties is about as large as the smaller
of the two properties!

3. Volumes of projections and asymptotic enumeration. The existence
of the asymptotic logarithmic density of a hereditary property is closely related to
a family of inequalities involving volumes of projections of bodies. Our next aim
is to describe this relationship.

A body in R
n is a compact convex subset of R

n that is the closure of its
interior. Let v1, . . . , vn be the standard basis of Rn = lin{v1, . . . , vn}. For a subset
A of [n], write KA for the orthogonal projection of a body K onto lin{vj : j ∈ A},
and |KA| for the |A|-dimensional volume of KA. In particular, |K| = |K[n]| is the

volume of K. With β(K) = (|KA| : A ⊂ [n]) = (|KA|)A⊂[n] ∈ R
P(n) = R

2n , the
map K → β(K) can be considered to be a measure of the size of the boundary of
K.

We are interested in the best possible isoperimetric inequalities involving the
boundary vector β(K) and the volume |K|. In other words, we would like to know
for which vectors (xA) ∈ R

2n with x[n] = 1 is there a body K ⊂ R
n of volume 1

such that |KA| ≤ xA for all A ⊂ [n]. The following box theorem we proved with
Thomason [6] gives a surprisingly simple answer to this question. A box B in R

n

is a body of the form B =
∏n

j=1 Ij , where each Ij is an interval.

Theorem 1. For every body K ⊂ R
n, there is a box B ⊂ R

n such that
|B| = |K| and |BA| ≤ |KA| for every A ⊂ [n].
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An immediate consequence of the box theorem is the uniform cover inequal-
ity below, extending the Loomis-Whitney inequality [20]. A sequence (Ai)

m
i=1 of

subsets of [n] is a k-uniform cover of [n] if every element of [n] belongs to precisely
k of the sets A1, . . . , Am. Now, if (Ai)

m
i=1 is a k-uniform cover of [n], and K is a

body in R
n then Theorem 1 implies that

|K|k ≤
m
∏

i=1

|KAi
|. (2)

In fact, in [6] the box theorem is deduced from the uniform cover inequality
(1) by a simple compactness argument. Since the original proof, several other
deductions have been suggested: Ball noted that separation theorems, and Kahn
and Meshulam pointed out that properties of submodular functions, can be used
to deduce the box theorem from inequality (2).

The box theorem easily implies that, as first proved by Alekseev [1], every
hereditary property of graphs has an asymptotic logarithmic density.

Theorem 2.Let P be a hereditary property of graphs. Then 1 = c1(P) ≥
c2(P) ≥ · · · ; in particular, the asymptotic logarithmic density c(P) =
limn→∞ cn(P) exists.

It is easily seen that the arguments above apply to hereditary properties of
r-uniform hypergraphs as well, mutatis mutandis .

4. Asymptotic enumeration and global structure. Given a family F =
{F1, F2, . . .}, of finite graphs, let Her(F) be the collection of all graphs that contain
no Fi as an induced subgraph. Clearly, every hereditary property is of the form
Her(F) for some family F of forbidden subgraphs . Theorem 2 tells us that every
hereditary property P = Her(F) has an asymptotic logarithmic density c(P), but
gives no indication as to how one could determine c(P) from F . In fact, Prömel
and Steger [22], [23], [24], [25] gave such a description for a principal hereditary
property, i.e., for one with a single forbidden induced subgraph. They also gave
approximations of principal hereditary properties by rather simple (non-principal)
hereditary properties. With Thomason [7] we extended these results to general
hereditary properties.

Before we can describe these results, we have to introduce some definitions.
An (r, s)-colouring of a graph G = (V,E) is a partition of the vertex set into
r classes such that the first s classes induce complete graphs, and the remaining
r−s classes induce empty subgraphs. (Needless to say, empty classes are allowed.)
Thus an (r, 0)-colouring of a graph is precisely a standard r-colouring. We write
Pr,s for the collection of all (r, s)-colourable graphs; clearly, Pr,s is a hereditary
property for all 0 ≤ s ≤ r, r ≥ 1. For example, P1,1 is the collection of all complete
graphs, and P1,0 is the collection of all empty graphs. The colouring number r(P)
of a property P is

r(P) = max{r : Pr,s ⊂ P for some s}.

Note that if P = Her(F) then

r(P) = max{r : for some s ≤ r, no F ∈ F is (r, s)-colourable}.
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If P = Mon(F) then r(P) is exactly as before:

r(P) = min{χ(F ) − 1 : F ∈ F} = max{r : no F ∈ F is (r, 0)-colourable}.

The colouring number gives us a lower bound for cn and dn. Indeed, let
0 ≤ s ≤ r be such that r = r(P) and Pr,s ⊂ P, and let G̃ = ([n], Ẽ, Ñ) be the
pregraph obtained as follows. Partition [n] into r classes as equal as possible in
size, [n] = V1 ∪ . . . ∪ Vr, say, and let Ẽ consist of all edges within a class Vi for
0 ≤ i ≤ s. Since Pr,s ⊂ P, every extension of G̃ belongs to P. Consequently,

cn(P) ≥ dn(P) ≥ e(G̃)/

(

n

2

)

≥ 1 −
1

r
.

As shown in [7], c(P) and d(P) exist for every hereditary property, and these
inequalities are essentially best possible.

Theorem 3. If P is any hereditary property then

c(P) = d(P) = 1 −
1

r(P)
,

where r(P) is the colouring number of P.

The proof of this theorem is based on the three pillars of extremal graph
theory: the theorems of Ramsey [26], Erdős and Stone [15], and Szemerédi [30].
One needs only the very simple case of Ramsey’s theorem that the diagonal graph
Ramsey function is finite: R(k) < ∞ for every k. On the other hand, one needs
a slight extension of the Erdős-Stone theorem: for all r, t ≥ 1 and ǫ > 0 there are
δ > 0 and n0 ∈ N such that if F and G are graphs with V (F ) = V (G) = [n],
n ≥ n0, e(F ) ≤ δn2 and

e(G) ≥ (1 −
1

r
+ ǫ)

(

n

2

)

,

then G contains an F -avoiding Kr+1(t). Here we say that a graph H avoids F if
no edge of F joins two vertices of H.

The most important ingredient of the proof of Theorem 3 is Szemerédi’s
uniformity lemma [30]. Given a graph G = (V,E), and subsets A,B,⊂ V , the
density d(A,B) is defined as

d(A,B) =
e(A,B)

|A||B|
,

where e(A,B) is the number of A-B edges. A pair (A,B) is (ǫ, δ)-uniform if

|d(A′, B′) − d(A,B)| ≤ ǫ

whenever A′ ⊂ A, B′ ⊂ B, |A′| ≥ δ|A| and |B′| ≥ δ|B|.
Szemerédi’s uniformity lemma states that for all ǫ, δ, η > 0 there is an M =

M(ǫ, δ, η) such that the vertex set of every graph G can be partitioned into at most
M sets U1, . . . , Um of sizes differing by at most 1, such that at least (1 − η)m2 of
the (ordered) pairs (Ui, Uj) are (ǫ, δ)-uniform.
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The fewer sets U1, U2, . . . we can take the more powerful the result is; unfor-
tunately when ǫ = δ = η, all we know about M(ǫ, ǫ, ǫ) is that it is at most a tower
of 2s of height proportional to ǫ−5. As the proof of this bound seemed rather
‘wasteful’, for many years there had been some hope that this enormous bound
could be reduced greatly. It was a great surprise when recently Gowers [17] proved
the difficult result that K(ǫ, δ, η) can not be less than of tower type in 1/δ, even
when ǫ and η are kept large.

Szemerédi’s uniformity lemma implies that every graph satisfying certain
global conditions contains appropriate induced subgraphs; this is precisely how
the lemma was used in the proof of Theorem 3.

The descriptions of the asymptotic logarithmic density and asymptotic size of
a hereditary property provided by Theorem 3 imply that hereditary properties are
much more complex than monotone ones. In particular, the simple relationship (1)
fails for hereditary properties. For example, if P1 = Her(K4), P2 = Her(C7)
and P = P1 ∩ P2 = Her{K4, C7}, then r(P1) = r(P2) = 3 but r(P) = 2: the
intersection of two hereditary properties can be much smaller than either of them.

In fact, the intersection of two large hereditary properties need not even be a
property in our sense: it may contain only finitely many non-isomorphic graphs.
For example, if r ≥ 1 then each of Pr,0 and Pr,r has colouring number r, so that
c(Pr,0) = c(Pr,r) = 1 − 1

r , but Pr,0 ∩ Pr,r consists of graphs G with χ(G) ≤ r and
χ(Ḡ) ≤ r. In particular, |G| ≤ r2 for every G ∈ Pr,0 ∩ Pr,r, so Pr,0 ∩ Pr,r indeed
consists only of finitely many non-isomorphic graphs.

5. Colouring random graphs Gn,1/2 with hereditary properties . The random
graph Gn,p is a graph with vertex set [n], whose edges are selected independently,
with probability p. The probability space of these graphs is G(n, p). In particular,

G(n, 1/2) is the space of all 2(n

2) graphs on [n] with the uniform distribution.
One of the main questions left open by Erdős and Rényi when, almost forty

years ago, they founded the theory of random graphs ([13], [14]; see also [5]) was
the behaviour of the chromatic number of a random graph. Over 25 years later,
first Shamir and Spencer [29] proved that the chromatic number of Gn,p is highly
concentrated, and then it was shown [3] that if 0 < p < 1 is fixed and q = 1 − p
then

χ(Gn,p) = (1 + o(1))
n

2 log1/q n
(3)

for almost every Gn,p. Substantial extensions of this result were proved by
 Luczak [21], Frieze and  Luczak [16], and Alon and Krivelevich [2]. All these
results use various martingale inequalities (see [4]).

For a property P, a P-colouring of a graph G = (V,E) is a partition V = V1∪
. . .∪Vk of the vertex set such that every class Vi induces a P-graph: G[Vi] ∈ P, i =
1, . . . , k. The P-chromatic number χP(G) of a graph G is the minimal number
of classes in a P-colouring of G. Thus χP1,0

(G) = χ(G) and χP1,1
(G) = χ(G).

Scheinerman [27] was the first to study the P-chromatic number of random graphs.
He noted that if P is a hereditary property then either P1,0 ⊂ P or P1,1 ⊂ P so
χP(G) ≤ max{χ(G), χ(G)}. From this it follows that χP(Gn,p) = O(n log n) for
every fixed 0 < p < 1 and hereditary property P, and it is easily seen that, in fact,
χP(Gn,p) = Θ(n log n).
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With Thomason [8] we proved an analogue of (3) for a general hereditary
property, but only in the case p = 1

2 .

Theorem 4. Let P be a non-trivial hereditary property of graphs, with colour-
ing number r = r(P). Then

χP(Gn,1/2) = (
1

2r
+ o(1))

n

log2 n

for almost every Gn,1/2.

In fact, this result follows rather easily from (3) and from the facts that
c(P) = 1− 1

r and that Pr,s ⊂ P for some s, 0 ≤ s ≤ r. More precisely, c(P) = 1− 1
r

implies that χP(Gn,1/2) is unlikely to be much smaller than n/(2r log2 n), and
Pr,s ⊂ P implies that χP(Gn,1/2) is unlikely to be much larger than n/(2r log2 n).

6. Colouring random graphs Gn,p with hereditary properties. The ac-
cepted wisdom in the theory of random graphs is that whatever can be proved
for the space G(n, p) with p = 1/2 can be proved for G(n, p) with any fixed p,
0 < p < 1. This conventional wisdom is contradicted by the problem of determin-
ing χP(Gn,p)! As we saw in Theorem 4, it is easy to determine χP(Gn,p) in the
uniform case p = 1/2. However, for p 6= 1/2 not only does the proof collapse, but
we are faced with a genuinely more complicated phenomenon, so that much more
effort is needed to overcome the difficulties.

A lower bound for χP(Gn,p) is easily obtained from the following result, which
is a consequence of the box theorem.

Theorem 5. Let P be a hereditary graph property, let 0 < p < 1 and let

the constants ek,p(P) be defined by P(Gk,p ∈ P) = 2−ek,p(P)(k

2). Then ek,p(P)
increases with k. In particular, ek,p(P) tends to a limit ep(P) as k → ∞. Fur-
thermore, ep(P) > 0 if P is non-trivial, i.e., if not every graph has P.

Theorem 5 implies that, for ǫ > 0, the expected number of induced subgraphs
of order k in a random graph Gn,p having property P is o(1) for k ≥ (2/ep +
ǫ) log2 n, and tends to infinity for k ≤ (2/ep − ǫ) log2 n. Consequently,

χP(Gn,p) ≥ (ep + o(1))n/(2 log2 n) (4)

almost surely.
It was conjectured in [8] that (4) is in fact an equality, as claimed by Theorem 4

for p = 1/2. Now, the proof of Theorem 4 is based on the fact that for p = 1/2
the constant ep(P) has a simple interpretation in terms of the values (r, s) for
which Pr,s ⊂ P. However, for p 6= 1/2 this is no longer true: ep(P) cannot be
characterized solely in terms of these values (r, s). For example, let P ′ = P2,0 be
the property of being bipartite, and let P ′′ be the property of being 3-colourable,
with two of the colour classes spanning complete bipartite graphs. Then P ′ and
P ′′ contain P1,0 and P2,0, and no other Pr,s. Nevertheless, ep(P ′) 6= ep(P ′′) for
p > 1/2.

In spite of these difficulties, with Thomason [9] we proved the conjecture
above.
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Theorem 6. Let P be a hereditary graph property and let 0 < p < 1. Let
ep = ep(P) be the constant defined in Theorem 5. Then

χP(Gn,p) = (ep + o(1))n/(2 log2 n)

almost surely.

The proof of Theorem 6 makes use of Szemerédi’s uniformity lemma, mar-
tingale inequalities and, above all, a careful study of the structure of a general
hereditary property. The product

∏

γ∈Γ Pγ of hereditary properties Pγ , γ ∈ Γ, is
the class of graphs G with vertex sets

⋃

γ∈Γ Vγ such that G[Vγ ] ∈ Pγ for every
γ ∈ Γ. A hereditary property is irreducible if it is not the product of two other
hereditary properties. It is easily shown that every hereditary property is the prod-
uct of a finite collection of irreducible hereditary properties. Also, if P =

∏

γ∈Γ Pγ

then

ep(P)−1 =
∑

γ∈Γ

ep(Pγ)−1.

Next, one can show that if Theorem 6 holds for each of the properties
P1, . . . ,Pk, then it holds for

∏k
i=1 Pi as well. Consequently, it suffices to prove

Theorem 6 for irreducible properties.

In fact, the heart of the proof is the assertion that Theorem 6 holds for every
‘typed’ property P = P(τ). A type is a labelled graph, each of whose vertices
and edges is coloured black or white. Given a type τ , the property P(τ) consists
of those graphs G for which V (G) has a partition

⋃

t∈V (τ) Vt such that G[Vt] is
complete or empty according as t is black or white, and moreover, if the edge tu is
in τ then G[Vt, Vu] is a complete or empty bipartite graph according as the edge tu
is black or white. The proof of the fact that Theorem 6 holds for typed properties
P(τ) is based on a careful analysis of the maximal number of induced edge-disjoint
subgraphs of a given order having property P – after much work enough can be
deduced so that martingale inequalities can be applied.

7. Open problems. Numerous open problems remain. Concerning graphs,
all the discussion above is about rather ‘rich’ properties P, namely those with
c(P) > 0. The case c(P) = 0 is not understood nearly as well.

Although we know that c(P) = d(P) for every hereditary property, this is far
from being the entire story. We always have

|Pn| = 2cn(n

2) ≥ 2en(P) = 2dn(n

2),

but it would be good to decide whether cn = (1 + o(1))dn holds as well.

More importantly, we know very little about hypergraphs. The quantities
cn(P) and dn(P) are easily defined for r-graphs, and cn(P) ≥ dn(P) for every
n. Also, the box theorem implies that cn(P) → c(P), and one can show that
dn(P) → d(P), but we do not know whether we always have c(P) = d(P). Nothing
of importance is know about the P-chromatic number of r-graphs: we do not even

know the asymptotic P-chromatic number of random r-graphs G
(r)
n,p for p = 1/2.
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Algorithms and Combinatorics, Vol. 14, Springer-Verlag (1997), 70–78.

[8] B. Bollobás and A. Thomason, Generalized chromatic numbers of random
graphs, Random Structures and Algorithms 6 (1995), 353–356.

[9] B. Bollobás and A. Thomason, Colouring random graphs by hereditary prop-
erties, to appear.
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