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Appli
ations of Relaxed Submodularity

András Frank

Abstract. Combinatorial optimization problems often give rise to set-
functions which satisfy the sub- or supermodular inequality only for cer-
tain pairs of subsets. Here we discuss connectivity problems and show
how results on relaxed submodular functions help in solving them.
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1. Introduction

Let V be a finite set and b : 2S → R ∪ {∞} and p : 2S → R ∪ {−∞} two
set-functions. The submodular and the supermodular inequality, respectively, for
subsets X,Y ⊆ V are, as follows:

b(X) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y ), (1.1b)

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ). (1.1p)

Function b [respectively, p] is called fully submodular if (1.1b) [ fully supermodular if
(1.1p)] holds for every two subsetsX,Y ⊆ V . (When equality holds everywhere, we
speak of a modular function.) We call a function semimodular if it is submodular
or supermodular.

Semimodular functions proved to be extremely powerful in combinatorial op-
timization. One intuitive explanation for this is that submodular functions may
be considered as discrete counterparts of convex functions. For example, L. Lovász
[L83] observed that a (natural) linear extension of an arbitrary set-function h to
a real function on R

V
+ is convex if and only if h is submodular. Another occur-

rence of this relationship is the discrete separation theorem [F82] asserting that
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if an integer-valued supermodular function p is dominated by an integer-valued
submodular function b, then there is an integer-valued (!) modular function m
for which p ≤ m ≤ b. Recently, this kind of analogy has been developed system-
atically by K. Murota [M96] into a theory relating convex analysis and discrete
optimization.

In applications, however, often the submodular inequality is not fulfilled by
every pair of sets. Accordingly, several frameworks concerning semimodular func-
tions have been introduced, analyzed, and applied. One fundamental property of
these models is total dual integrality (TDI-ness) which ensured applicability to
weighted optimization problems, as well. (See [Schrijver, 1984], for an account.)
For example, C. Lucchesi and D. Younger [LY78] proved a min-max formula for
the minimum number of edges of a directed graph whose contraction results in
a strongly connected digraph. J. Edmonds and R. Giles [EG76], by introducing
submodular flows, found an extension to a minimum cost version. Based on this
ground, a polynomial time algorithm was developed in [F81] to actually find the
cheapest edge set.

There have been optimization problems, however, where the minimum car-
dinality case was nicely treatable while the min-cost version was NP-complete.
For example, making a digraph strongly connected by adding new edges is such
a problem [Eswaran and Tarjan, 1976]. This type of connectivity augmentation
problems gave rise recently to a new class of results concerning relaxed semimod-
ular functions.

In this paper we outline the new frameworks, exhibit recent developments
concerning submodular flows, and show applications to problems from the area of
graph connectivity.

The following forms of relaxed semimodularity will be used. Let S and T be
two subsets of a groundset V and b a set-function. b is intersecting submodular if
(1.1b) holds wheneverX∩Y 6= ∅. b is crossing submodular if (1.1b) holds whenever
X ∩Y 6= ∅ and V − (X ∪Y ) 6= ∅. Intersecting and crossing supermodular funtions
are defined analogously but for supermodularity we need further relaxations. Let
p be a non-negative set-function. p is ST -crossing supermodular if (1.1p) holds
whenever p(X) > 0, p(Y ) > 0, X ∩ Y ∩ T 6= ∅ and S − (X ∪ Y ) 6= ∅. p is
T -intersecting supermodular if (1.1p) holds whenever p(X) > 0, p(Y ) > 0, X ∩
Y ∩ T 6= ∅. p is skew supermodular if p(X) + p(Y ) ≤ max(p(X ∩ Y ) + p(X ∪
Y ), p(X − Y ) + p(Y −X)) whenever p(X) > 0, p(Y ) > 0. We call a set-function p
symmetric if p(X) = p(V −X) for every X ⊆ V . Throughout we will assume that
the occurring set-functions are integer-valued.

2. Connectivity problems

In a graph or digraph G, λ(u, v) (respectively, κ(u, v)) denotes the maximum
number of edge-disjoint (openly disjoint) paths from u to v. λ(u, v) is called the
local edge-connectivity from u to v while the minimum of these λ-values (κ-values)
is the edge-connectivity (node-connectivity) of G. A digraph is k-edge- (node-)
connected from root s if λ(s, v) ≥ k (κ(s, v) ≥ k) for every v ∈ V .
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The problems we consider can be cast in the following general form: Create
an (optimal) graph (or digraph, or hypergraph) satisfying some connectivity prop-
erties. Sometimes we are interested only in the existence of the requested object,
other times finding an optimal object is also important. A connectivity property
typically means that bounds are imposed on the number of edges (nodes) in cuts.
”Creating” means that certain specified operations are allowed. We will consider
the following operations: Given a graph or digraph, take a subgraph, take a su-
pergraph (that is, augment the graph), orient the undirected edges, reorient some
of the directed edges.

The travelling salesman problem, for example, is a special case, as it requires
finding a minimum cost 2-edge-connected subgraph of n edges. Another special
case is the Steiner-tree problem which seeks for cheapest subgraphs containing at
least one edge from each cut separating a specified set T of terminal nodes. These
well-known NP-complete problems are special cases of several other connectivity
problems. On the positive side, the problem of finding a minimum cost subdigraph
of a digraph that contains k edge-disjoint paths from s to t is a special min-cost
flow problem and hence it is solvable in polynomial time. Here we consider other
connectivity problems having a good characterization and/or a polynomial-time
solution algorithm. Some of them are, as follows.

Subgraph problems

S1. Given a graph and a stable set S, find a (minimum cost) spanning tree
satisfying upper and lower bound requirements for its degree of the nodes in S.

S2. Given a digraph with a root s, find a cheapest subgraph which is k-edge-
(node-) connected from s.

Supergraph (=augmentation) problems

A1. Given a digraph, add a cheapest subset of new edges to get a k rooted
edge-connected digraph.

A2. Given a digraph, add a minimum number of new edges to get a k-edge-
(node-) connected digraph.

A3. Given a digraph and two subsets S and T of nodes, add a minimum number
of new edges from S to T to get a digraph with λ(s, t) ≥ k (resp., κ(s, t) ≥ k)
whenever s ∈ S, t ∈ T .

A4. Given a hypergraph, add a minimum number of edges to obtain a k-edge-
connected hypergraph.

Orientation problems

O1. Given a graph, orient the edges to get a digraph which is k-edge-connected
from a root s and l-edge-connected to s. (When k = l, the digraph is just k-edge-
connected).

O2. Given a mixed graph, orient its undirected edges so as to obtain a k-edge-
connected digraph.

O3. Given a digraph with edge-costs, reorient a cheapest subset of edges to get a
k-edge-connected digraph.
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Problem S1 is a matroid intersection problem and therefore Edmonds’ [E79]
intersection theorem and algorithm apply. A solution to Problem S2 requires
submodular flows, the topic of Section 3. Problem A1 may be formulated as a
special case of S2, but the other augmentation problems need different techniques,
to be discussed in Sections 4 and 5. All the orientation problems will be handled
with the help of submodular flows.

3. Submodular flows

Let V be a ground-set and b an integer-valued set-function with b(∅) = 0. Associate
with b a polyhedron B(b) := {x ∈ RV : x(V ) = b(V ), x(A) ≤ b(A) for every
A ⊆ V }. When b is fully submodular, B(b) is called a base-polyhedron (0-base-
polyhedron in case b(V ) = 0). For convenience, the empty set is also considered
a base-polyhedron. It follows from the work of J. Edmonds [E70] that a non-
empty base-polyhedron uniquely determines its defining fully submodular function.
Moreover, the intersection of two base-polyhedra is integral (a version of Edmonds’
polymatroid intersection theorem). Therefore it is important that weaker functions
may also define base-polyhedra. For example, L. Lovász [L83] proved that if b is
intersecting submodular, then B := B(b) is a base-polyhedron which is non-empty
if and only if b(V ) ≥

∑
i b(Vi) holds for every partition {V1, . . . , Vt} of V . Moreover,

the unique fully submodular function defining B is b↓(Z) := min(
∑

i b(Zi) : {Zi}
a partition of Z). S. Fujishige [Fu84] extended this result to crossing submodular
functions. He showed that B(b) is a base-polyhedron if b is crossing submodular.
Moreover, B := B(b) is non-empty (assuming b(V ) = 0) if and only if

∑
i b(Zi) ≥ 0

and
∑

i b(V − Zi) ≥ 0 for every partition {Z1, . . . , Zt} of V .
What is the unique fully submodular function defining B, provided B is non-

empty? We need the following notion of tree-composition of sets. The tree-
composition of the ground-set V is either a partition of V or a co-partition of
V (the complements of a partition of V .) Let A be a proper non-empty subset
of V . Let {A1, . . . , Ak} (k ≥ 1) be a partition of A and {B1, . . . , Bl} (l ≥ 1) a
partition of B := V −A. Let U := {a1, . . . , ak, b1, . . . , bl} be a set of new elements
and define ϕ(v) := ai if v ∈ Ai and := bj if v ∈ Bj . Let F be a directed tree
defined on U so that every edge is of form biaj . For every edge e of the tree, F − e
has two components, among which Fe denotes the one entered by e. Now a tree-
composition of A is a family of subsets of V given in form {ϕ−1(Fe) : e ∈ E(F )}.
(A tree-composition has at most |V | − 1 members.)

Theorem 3.1 [F96] Let b be a crossing submodular function for which b(V ) = 0
and B := B(b) is non-empty. Then the unique fully submodular function b↓

defining B is given by b↓(Z) = min(b(F) : F a tree-composition of Z).

Submodular flows provide a general and powerful framework for combinatorial
optimization problems. Let ~G = (V, ~E) be a directed graph. Let f : ~E → Z∪{−∞}

and g : ~E → Z ∪ {+∞} be such that f ≤ g. For a function z : ~E → R let
̺z(A) :=

∑
(z(e) : e enters A) and δz(A) :=

∑
(z(e) : e leaves A). Let λz(A) :=

̺z(A) − δz(A). Note that λz is modular, that is, λz(A) =
∑

v∈A(λz(v)) and
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therefore we may consider λz as a function on V . Furthermore, let b : 2V →
Z ∪ {∞} be a crossing submodular function with b(V ) = 0. We call z : ~E → R a
submodular flow (with respect to b) if

λz(A) ≤ b(A) for every A ⊆ V. (3.1a)

Submodular flow z is feasible if

f ≤ z ≤ g. (3.1b)

Submodular flows were introduced and investigated by J. Edmonds and R. Giles
[EG77]. Their fundamental result asserts that the linear system (3.1) is totally
dual integral, that is, the dual linear programming problem to max(cz : z satisfies
(3.1)) has an integer-valued optimal solution for every integer-valued c for which
the optimum exists. It follows that the primal polyhedron is also integral (i.e.,
every face contains an integer point) if b, f, g are integer-valued.

This result implies for example (a min-cost extension of) a theorem of C.
Lucchesi and D. Younger asserting that a digraph (with no cut-edge) can be made
strongly connected by reorienting at most γ edges if and only if there are no
k + 1 disjoint directed cuts. Another direct consequence of the integrality of the
submodular flow polyhedron is the (weak form of an) orientation theorem of C.
Nash-Williams [N60] asserting that a 2k-edge-connected undirected graph always
has a k-edge-connected orientation.

In applications, we often need criteria for feasibility which are easy to handle.
An easy relationship between submodular flows and base-polyhedra enables us to
formulate such a result. Namely, z is a submodular flow if and only if λz belongs
to the base-polyhedron B(b). The following was proved in [F82]. Where b is fully
submodular, there exists an integer-valued feasible submodular flow if and only if
̺f (A) − δg(A) ≤ b(A) holds for every A ⊆ V . (Note that, in the special case of
b ≡ 0, we obtain Hoffman’s circulation feasibility theorem.) When this result is
combined with Theorem 3.1, one obtains the following:

Theorem 3.2 Let b be (A) an intersecting or (B) a crossing submodular function.
There exists an integer-valued feasible submodular flow if and only if

̺f (A)− δg(A) ≤ b(A) (3.2)

holds for every A ⊆ V and for every partition A of A in case (A) and for every
tree-composition A of A in case (B).

The partition-type condition for (A) is easier to handle than the one including
tree-compositions. Although there are important cases where tree-compositions
cannot be avoided, in the next two special cases partition-type conditions turn
out to be sufficient. As a generalization of Case (A) in Theorem 3.2, one has the
following.

Theorem 3.3 Suppose that b is crossing submodular (with b(V ) = 0) which, in
addition, satisfies (1.1b) when X ∪ Y = V,X ∩ Y 6= ∅, and dg−f (X,Y ) > 0 hold.
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There exists an integer-valued feasible submodular flow if and only if (3.2) holds
for every A ⊆ V and for every partition A of A.

The other special case requires both partitions and co-partitions, but not
tree-compositions.

Theorem 3.4 Suppose that b is crossing submodular (with b(V ) = 0) satisfying

̺g(B)− δf (B) ≥ b(B) for every B ⊂ V. (3.3)

There exists an integer-valued feasible submodular flow if and only if b(R) ≥ 0 for
every partition and co-partition R of V .

Orientations

Connectivity orientation problems are strongly related to submodular flows.
Let G = (V,E) be an undirected graph and h : 2V → Z ∪ {−∞} a crossing
G-supermodular set-function with h(V ) = h(∅) = 0, (that is, h(X) + h(Y ) ≤
h(X ∩ Y ) + h(X ∪ Y ) + dG(X,Y ) where dG(X,Y ) denotes the number of edges
between X − Y and Y − X). The connectivity orientation problem consists of
finding an orientation of G so that the in-degree function ̺~G

of the resulting

digraph ~G = (V, ~E) satisfies:

̺~G
(X) ≥ h(X) for every X ⊆ V. (3.4)

Let us choose an arbitrary orientation ~Gr = (V, ~Er) of G whose in-degree

function is denoted by ̺r := ̺~Gr

. ~Gr will serve as a reference orientation to

specify other orientations ~G of G. Define b(X) := ̺r(X) − h(X). Any other

orientation of G will be defined by a vector x : ~E → {0, 1} so that x(a) = 0 means
that we leave a alone while x(a) = 1 means that we reverse the orientation of a.
The revised orientation of G defined this way satisfies (3.4) if and only if ̺r(X)−
̺x(X) + δx(X) ≥ h(X) for every X ⊆ V . Equivalently, ̺x(X) − δx(X) ≤ b(X).
Clearly, the submodularity of b and the G-supermodularity of h are equivalent
and hence there is a one-to-one correspondence between the good orientations of
G and the 0 − 1-valued submodular flows. Since h ≥ 0 if and only if (3.3) holds
for f ≡ 0, g ≡ 1, Theorem 3.4 implies:

Theorem 3.5 [F80] Suppose that h is non-negative and crossing G-supermodular.
There exists an orientation of G satisfying (3.4) if and only if both eG(P) ≥∑

i h(Pi) and eG(P) ≥
∑

i h(V − Pi) hold for every partition P= {P1, . . . , Pp} of
V . If, in addition, h is symmetric, then it suffices to require dG(X) ≥ 2h(X) for
every X ⊆ V .

When h(X) ≡ k for ∅ ⊂ X ⊂ V , we obtain Nash-Williams’ weak orientation
theorem. The following generalization, answering Problem O1, is also a conse-
quence of Theorem 3.5: A graph G has an orientation which is k-edge-connected
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from s and l-edge-connected to s (where k ≥ l) if and only if eG(P) ≥ k|P|+ l− k
holds for every partition P of V .

Using the same bridge between orientations and submodular flows, one can
derive from Theorem 3.3 the following.

Theorem 3.6 Suppose that h is crossing G-supermodular and that h satisfies
h(A) + h(B) ≤ h(A ∩ B) + dG(A,B) whenever A ∪ B = V,A ∩ B 6= ∅ and
dG(A,B) > 0. Then G has an orientation satisfying (3.4) if and only if eG(P) ≥∑

i h(Pi) holds for every sub-partition P of V .

This result can be used to derive a (generalization) of a recent orientation
theorem of Nash-Williams [N95] on the existence of a strongly connected orienta-
tion of a mixed graph that satisfies lower bound requirements on the in-degrees of
nodes.

Problem O2 gives rise to crossing G-supermodular functions for which tree-
compositions are needed. Let A be a tree-composition of a subset A ⊆ V and
let j = uv be an edge of G. Let euv(A) denote the number of sets in A entered
by the directed edge with tail v and head u. Let ej(A) := max(euv(A), euv(A))
and eG(A) :=

∑
j∈E ej(A). The quantity ej(A) indicates the (maximally) possible

contribution of an edge j = uv to the sum
∑

(̺~G
(X) : X ∈ A) for any orientation ~G

of G. Hence eG(A) measures the total of these contributions and therefore, for any

orientation ~G of G satisfying (3.4), one has
∑

X∈A h(X) ≤
∑

X∈A ̺~G
(X) ≤ eG(A).

Theorem 3.7 Let h be a crossing G-supermodular function. G has an orientation
~G satisfying (3.4) if and only if

∑
X∈A h(X) ≤ eG(A) holds for every subset A ⊆ V

and for every tree-composition A of A.

Let M = (V,E + ~A) be a mixed graph and let h(X) := k − ̺ ~A
(X) for ∅ ⊂

X ⊂ V . By applying Theorem 3.7 to this G and h, one obtains a characterization
of mixed graphs having a k-edge-connected orientation, the problem O2.

Rooted connectivity

Let G = (V,E) be a digraph with a special root node s and non-empty
terminal set T ⊆ V − s so that no edge of G enters s. Let p be a non-negative,
T -intersecting supermodular function. Let g : E → Z+ ∪ {∞} be a non-negative
upper bound on the edges of G. We assume that ̺g(Z) ≥ p(Z) for every subset
Z ⊆ V where ̺g(Z) :=

∑
(g(e) : e ∈ E, e enters Z).

Theorem 3.8(a) The linear system {̺x(Z) ≥ p(Z) for every Z ⊂ V , 0 ≤ x ≤ g} is
totally dual integral. (b) The polyhedron defined by this system is a submodular
flow polyhedron.

For the special case T = V − s, part (a) was proved in [F79] while part (b) in
[Schrijver, 1984]. The edge-version of problem S2 could be solved via this special
case. It is not difficult to observe that the proofs extend easily to the more general
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case. The main advantage of this extension is that, beyond handling the edge-
version of problem S2, the node-version can also be settled by using the standard
node-splitting technique.

To conclude the section, we remark that there is a polynomial time algo-
rithm to solve minimum cost submodular flow problems hence all the connectivity
problems above admit polynomial time solution algorithms.

4. Covering ST -crossing supermodular functions by digraphs

We say that a digraph G = (V,E) covers a set-function p if there are at least p(X)
edges entering every subset X ⊆ V . How many edges are needed to cover p?

Theorem 4.1 [F94] Let p be a crossing supermodular function and γ a positive
integer. There exists a digraph G = (V,E) of at most γ edges covering p if and
only if

∑
(p(X) : X ∈ P) ≤ γ and

∑
(p(V − X) : X ∈ P) ≤ γ hold for every

subpartition P of V .

This result can be extended, as follows. Let S and T be two subsets of a
ground-set V . Two subsets X,Y are called ST -independent if X ∩ Y ∩ T = ∅ or
S ⊆ X ∪ Y .

Theorem 4.2 [FJ95] Let p : 2V → Z+ be an ST -crossing supermodular function
and γ a positive integer. There exists a digraph G = (V,E) that covers p, has
at most γ edges, and each edge has its tail in S and its head in T if and only
if

∑
(p(X) : X ∈ P) ≤ γ holds for every family P of pairwise ST -independent

subsets of V .

When S = T = V , an ST -independent family consists of pairwise disjoint
sets or of pairwise co-disjoint sets. (Two sets are co-disjoint if their complement is
disjoint). Hence Theorem 4.1 is indeed a special case of Theorem 4.2. Theorem 4.1
may be applied to solve an extension of the edge-connectivity version of problem
A2. Let D = (V,E) be a directed graph and T a subset of nodes. We say that D
is k-edge-connected in T if λ(u, v) ≥ k for every pair of nodes u, v ∈ T .

Theorem 4.3 It is possible to make digraph D k-edge-connected in T by adding
at most γ new edges connecting elements of T if and only if

∑
i(k − ̺D(Xi)) ≤ γ

and
∑

i(k − δD(Xi)) ≤ γ holds for every family F = {X1, . . . , Xt} of subsets V
for which ∅ ⊂ Xi ∩ T ⊂ T and F|T is a sub-partition of T .

We say that D is k-edge-connected from S to T if there are k edge-disjoint
paths from every node of S to every node of T . (When S = T we are back at
k-edge-connectivity in T .) Theorem 4.2 gives rise to the following solution to
problem A3:

Theorem 4.4 A digraph D = (V,E) can be made k-edge-connected from S to
T by adding at most γ new edges with tails in S and heads in T if and only
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if
∑

j(k − ̺(Xj)) ≤ γ holds for every choice of an (S, T )-independent family of
subsets Xj ⊆ V where T ∩Xj 6= ∅, S −Xj 6= ∅ for each Xj .

There is a constructive proof of Theorem 4.1 which gives rise to a strongly
polynomial algorithm to find an optimal augmentation in Theorem 4.3. The proof
of Theorem 4.2 is not constructive and no combinatorial polynomial algorithm is
known to construct the optimal augmentation of Theorem 4.4. It is a major open
problem of the field to find one.

Another consequence of Theorem 4.2 concerns the node-connectivity version
of problem A2. Given a digraph D = (V,E), we say that a pair of disjoint,
nonempty subsets X,Y of V is a one-way pair if there is no edges from X to Y .
The deficiency pdef (X,Y ) of a one-way pair is defined by k− |V − (X ∪ Y )|. Two
one-way pairs (X,Y ) and (A,B) are called independent if X ∩A = ∅ or Y ∩B = ∅.

Theorem 4.5 A digraph D = (V,E) can be made k-node-connected by adding at
most γ new edges if and only if

∑
(pdef (X,Y ) : (X,Y ) ∈ F) ≤ γ holds for every

family F of pairwise independent one-way pairs.

Are these results related to the ones mentioned in the previous section? One
fundamental difference is that, while submodular flows are appropriate to handle
min-cost problems, here the minimum-cost versions include NP-complete prob-
lems. For example, finding a minimum cost strongly connected augmentation of
a digraph is NP-complete. However, for node-induced cost functions the node-
connectivity augmentation problem turns out to be tractable. A node-induced
cost of a directed edge uv is defined by c(uv) := ct(u) + ch(v) where ct and ch
are two cost-functions on the node set V . The better behaviour of node-induced
cost-functions is based on the fact that the in-degree vectors of k-connected aug-
mentations with γ edges span a base-polyhedron.

We conclude this section by briefly remarking that Theorem 4.2 has a surpris-
ing consequence in combinatorial geometry; a theorem of E. Győri [Gy84] asserting
that every vertically convex rectilinear polygon R (bounded by horizontal and ver-
tical segments) in the plane can be covered by γ rectangles belonging to R if and
only if R does not contain more than γ pairwise independent points (where two
points are called independent if they cannot be covered by one rectangle (with
horizontal and vertical sides).

5. Covering crossing and skew supermodular functions by graphs

Let p be a non-negative, symmetric, crossing supermodular function. An undi-
rected graph is said to cover p if every cut [X,V −X] contains at least p(X) edges.
What is the minimum number of edges covering p?

For a partition P of V , the sum
∑

(p(X) : X ∈ P)/2 is clearly a lower bound.
However, even the best such bound can be strictly smaller than the true minimum:
when p(X) ≡ 1 for ∅ ⊂ X ⊂ V and p(∅) = p(V ) = 0, the minimum is |V | − 1
while the best partition bound is |V |/2. Hence we need a new parameter, called
the dimension of p. A partition F := {V1, . . . , Vh} of V with h ≥ 4 is said to be
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p-full if p(∪F ′) ≥ 1 for every sub-partition F ′, ∅ ⊂ F ′ ⊂ F , and F has a member
Vl with p(Vl) = 1. We call the maximum size of a p-full partition the dimension
of p and denote it by dim(p). It can easily be seen that any graph covering p must
have at least dim(p)−1 edges. The content of the next result is that the minimum
in question is equal to the larger of the two lower bounds.

Theorem 5.1 [BF96] Let p : 2V → Z+ be a symmetric, crossing supermodular
function and γ a positive integer. There exists an undirected graph G = (V,E)
with at most γ edges covering p if and only if

∑
(p(X) : X ∈ P) ≤ 2γ holds for

every partition P of V and dim(p)− 1 ≤ γ.

It is an important open problem to extend this theorem to skew-supermodular
functions. For even-valued functions p (that is, when p(X) is even for every subset
X) this was done by Z. Szigeti. The advantage of even supermodular functions
is that their dimension does not play any role. To capture the difference, observe
that if p1 is identically 1 on non-empty proper sutsets of V , then a tree will be
the smallest graph covering p1, that is, the minimum number of edges is n− 1. If
p2 := 2p1, then we do not need twice as many edges to cover p2. Just one more
edge will do as a circuit of n edges cover every cut at least twice.

Theorem 5.2 [Sz95] Let p : 2V → Z+ be a symmetric, even-valued, skew-
supermodular function and γ a positive integer. There exists a graph G = (V,E)
with at most γ edges covering p if and only if

∑
(p(X) : X ∈ P) ≤ 2γ holds for

every partition P of V .

As a consequence of Theorem 5.1 we exhibit a result concerning hypergraph
connectivity augmentation. Given a hypergraph H ′ = (V,A′), a subset ∅ ⊂ C ⊂ V
is called a component of H ′ if dH′(C) = 0 and dH′(X) > 0 for every ∅ ⊂ X ⊂ C.
(dH′(X) denotes the number of hyperedges of H ′ intersecting both X and V −X.)
For a subset T ⊂ V , we let cT (H

′) denote the number of components of H ′

having a non-empty intersection with T . H ′ is said to be k-edge-connected in T if
dH′(X) ≥ k for every subset ∅ ⊂ X ⊂ V separating T. When T = V we say that
H ′ is k-edge-connected.

Theorem 5.3 Let H = (V,A) a hypergraph, T a specified subset of V , and γ
a positive integer. H = (V,A) can be made k-edge-connected in T by adding at
most γ new graph-edges if and only if

∑
(k − dH(X) : X ∈ P) ≤ 2γ for every

sub-partition P of V separating T and cT (H
′) − 1 ≤ γ for every hypergraph

H ′ = (V,A′) arising from H by leaving out k − 1 hyperedges. If these conditions
hold, the new edges can be chosen so as to connect elements of T .

This result is a solution to problem A4. It extends an earlier theorem of J.
Bang-Jensen and B. Jackson [BJ95] where T = V , which, in turn, generalizes an
even earlier result of T. Watanabe and A. Nakamura [WN87] when the starting
hypergraph H is itself a graph. The latter result was generalized in another direc-
tion in [F92] where, instead of global k-edge-connectivity, specified demands r(u, v)
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were required for the augmented local edge-connectivities between every pair of
nodes u and v. Since such a problem gives rise to skew-supermodular functions,
Theorem 5.1 cannot be applied. However, if half-capacity edges are also allowed in
the augmentation, then Theorem 5.2 can be applied. That is, one can find a graph
G of minimum number of edges so that adding the edges of G with half-capacity to
the starting hypergraph, the local edge-connectivities of the increased hypergraph
attain a prescribed value r(u, v) for every pair {u, v} of nodes.
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