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We survey some mathematically interesting notions, techniques, and results that
emerged in the field of computational geometry in recent years.

Computational geometry is a branch of theoretical computer science which
constituted sometimes around the year 1980. It considers the design of efficient
algorithms for computing with geometric objects in the Euclidean space R

d. The
objects are simple, like points, lines, spheres, etc., but there are many of them.
The space dimension d is usually considered constant—many problems are studied
mainly in the plane or in R

3. As for general references, there is one fresh handbook
[20] and another one pending [31]. A recent introductory textbook is [16]. Some
mathematical spinoffs are nicely treated in [29].

Although this field mainly emphasizes algorithms, it has many fine purely
mathematical results. I have selected a few of them for this overview quite subjec-
tively (with many other, perhaps even nicer things omitted). Since they include
the ideas of many researchers (my results being a tiny part only), it is not possible
to give explicit credits to all of the contributors and to always refer to original
sources (rather than surveys) in the limited space.

Combinatorial complexity of arrangements

The arrangement of a finite set of lines in the plane is a partition of the plane
into cells of dimension 0, 1, and 2. The 0-cells (vertices) are the intersections of
the lines, the 1-cells (edges) are the portions of the lines between vertices, and
the 2-cells are the open convex polygons left after removing the lines from the
plane. More generally, for a collection H = {h1, h2, . . . , hn} of sets in R

d, the
arrangement of H is a decomposition of Rd into connected cells, where each cell
is a connected component of the set of points lying in all of the sets hi with i ∈ I
and in no hj with j 6∈ I, for some index set I ⊆ {1, 2, . . . , n}. In computational
geometry, the most general sets considered in the role of the hi’s are usually the
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so-called surface patches , which means (d − 1)-dimensional closed semialgebraic
sets defined by Boolean combinations of polynomial inequalities; moreover, both
the number of inequalities and the degree of the polynomials are bounded by some
constant.

Arrangements, especially arrangements of hyperplanes, have been investigated
for a long time from various points of view. In the direction of research reflected,
e.g., by the recent book [28], one is mainly interested in topological and alge-
braic properties of the whole arrangement. Computational geometers have mostly
studied different aspects, primarily asymptotic bounds on the combinatorial com-
plexity of various parts of arrangements,1 and while the number n of sets in H
is considered large, d is fixed (and small). Some important problems also lead
to considering arrangements of less “regular” objects than hyperplanes, such as
segments in the plane, triangles in space, or even pieces of complicated algebraic
surfaces in R

d. Two thorough and up-to-date surveys by Agarwal and Sharir in
[31] complement our sketchy exposition here and in the next section.

The total complexity, i.e. the total number of cells, of an arrangement is quite
well understood. Exact formulas are known for hyperplane arrangements, and
fairly precise estimates exist for arrangements of surface patches (rough bounds
for surface patches come from old papers in real-algebraic geometry by Petrov and
Oleinik, Milnor, and Thom, and there are some recent refinements, such as [7]).
The complexity is always at most O(nd).2 More challenging problems concern the
complexity of certain portions of the arrangements; some of them are schematically
illustrated in Fig. 1.

The zone of a set X ⊆ R
d in an arrangement consists of the cells intersecting

X. For hyperplane arrangements, the complexity of the zone of any hyperplane is
O(nd−1) [17]. The zone of a low-degree algebraic surface, or of an arbitrary convex
surface, in a hyperplane arrangement has at most O(nd−1 log n) complexity [5].

The level k in a hyperplane arrangement consists of the (d − 1)-dimensional
cells, i.e. edges in the case of lines in R

2, with exactly k of the hyperplanes below
them (where the xd-axis is considered vertical, say). The maximum complexity of
the k-level is a tantalizing open problem even for lines in the plane; we refer to
the paper by Welzl in this volume for more information.

Next, we discuss the lower envelope of an arrangement. Informally, this is the
part of the arrangement that can be seen by an observer sitting at (0, 0, . . . , 0,−∞).
The lower envelope in an arrangement of hyperplanes is the surface of a convex
polyhedron with at most n facets, whose maximum complexity, of the order n⌊d/2⌋,
is known precisely (since McMullen’s paper in 1970). This bound is trivial in
the plane, but already for planar arrangements of segments, the lower envelope
question is hard.

If we number the segments 1 through n and write down the numbers of the seg-
ments as they are encountered along the lower envelope from left to right, we get a

1If X is a set of cells in an arrangement, the (combinatorial) complexity of X is the number
of cells of the arrangement that are contained in the closure of X. Typically, this complexity is
asymptotically dominated by the number of vertices of the arrangement in the closure of X.

2Here and in the sequel, the constants hidden in the O(.) and Ω(.) notations generally depend
on d, and, in some cases, on other parameters declared fixed. For instance, here the constant
also depends on the degree and formula size of the surface patches forming the arrangement.
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Figure 1: A bestiary of planar arrangement problems

sequence a1a2a3 . . . am, for which the following conditions hold: ai ∈ {1, 2, . . . , n},
ai 6= ai+1, and there is no (not necessarily contiguous) subsequence of the form
ababa, where a 6= b. Any finite sequence satisfying these conditions is called a
Davenport-Schinzel sequence (or DS-sequence for short) of order 3 over the sym-
bols 1, 2, . . . , n. For DS-sequences of order s, the forbidden pattern is abab . . . with
s+2 letters. Such sequences are obtained, e.g., from lower envelopes of x-monotone
curves (i.e. graphs of univariate functions), such that any two of the curves inter-
sect in at most s points (a typical example are graphs of degree-s polynomials).
Davenport and Schinzel started investigating λs(n), the maximum possible length
of a DS-sequence of order s over n symbols, in 1965. Fairly precise estimates
(asymptotically tight for many s’s) were proved by Sharir, Hart, Agarwal, and
Shor in the late 1980s (see [33] for an account). The results are remarkable: while
λ1(n) and λ2(n) are easily seen to be linear, for any fixed s ≥ 3, λs(n)/n grows to
infinity with n → ∞, but incredibly slowly. For example, λ3(n) is asymptotically
bounded by constant multiples of nα(n) from both above and below, where α(n) is
the inverse of the Ackermann function.3 For all practical purposes, for each fixed

3If we define a hierarchy of functions by f1(n) = 2n and fk+1(n) = fk ◦ fk ◦ · · · ◦ fk(2)
((n − 1)-fold composition), then the Ackermann function of n is A(n) = fn(n), and α(n) =
min{k ≥ 1:A(k) ≥ n}. For example, A(4) is an exponential tower of 2s of height 216.
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s ≥ 3, λs(n) behaves like a linear function, but it is nonlinear in a very subtle
manner, and hence any proofs of the correct bounds must be quite complicated.

The maximum complexity of the lower envelope for segments is at most
λ3(n) = O(nα(n)), and a construction by Wiernik and Sharir, later simplified
by Shor, provides an arrangement of segments with lower envelope of complex-
ity Ω(nα(n)). Thus, similar to DS-sequences, lower envelopes of segments are no
laughing matter.

Before proceeding with the discussion of lower envelopes, we mention recent
developments in generalized DS-sequences. In the original definition, the forbidden
pattern ababa . . . is made of two letters. Klazar, Valtr, and Adamec studied forbid-
den patterns consisting of more letters, such as abccbaabc (for a forbidden pattern
with k distinct letters, an analogue of the condition ai 6= ai+1 for DS-sequences is
that any k consecutive symbols in the sequences be all distinct). They proved that
for any fixed forbidden pattern, the maximum length of a sequence in n symbols
is near-linear in n, and they characterized numerous cases where a linear bound
holds (see e.g. [22, 23]). One forbidden pattern of the latter type is abcdedcbabcde
(or analogous with more letters); this result was used by Valtr [35] for solving in-
teresting problems concerning geometric graphs. A geometric graph is a drawing
of a graph in the plane with edges drawn as straight segments (possibly crossing);
they have recently been studied by Pach, Katchalski, Last, Károlyi, Tóth, and
others.

The main result for lower envelopes in higher dimensions is quite recent, due
to Sharir and Halperin [21, 32]. For an arrangement of surface patches in R

d,
with some mild additional technical assumptions, they prove lower envelope com-
plexity bound of O(nd−1+ε) for any fixed ε > 0, which is nearly tight (there is
an Ω(nd−1α(n)) lower bound). As a sample of techniques in the area, we demon-
strate this proof in the planar case. This is a ridiculous setting, since here much
better results are obtained via DS-sequences, but the higher-dimensional case is
too complicated to fit here.

So let us consider a set H of n x-monotone curves (such as in Fig. 1 bottom
left), any two intersecting in at most s points (s fixed). Moreover, assume for
convenience that no 3 curves have a common intersection. Let L = L(H) be the
set of vertices on the lower envelope and let f(n) denote the maximum possible
cardinality of L in this situation. We aim at proving f(n) = O(n1+ε).

First, let k be an auxiliary parameter, 2 ≤ k ≤ n
2
, let L<k be the set of

vertices in the arrangement of H at level smaller than k (i.e. with fewer than k
curves below them), and let f<k(n) be the maximum possible cardinality of L<k.
Lemma. f<k(n) = O

(

k2f(⌊n/k⌋)
)

.
Here is a beautiful probabilistic argument of Clarkson and Shor [15]. Suppose

that f<k(n) is attained for H, set r = ⌊n/k⌋, and let R ⊂ H be an r-element
subset of H picked uniformly at random. First, we lower-bound the expected size
of L(R). Consider a vertex v ∈ L<k(H) at a level j < k. Such a v appears in
L(R) iff both the curves defining v fall in R and none of the j curves below v does,
and so Prob [v ∈ L(R)] =

(

n−2−j
r−2

)

/
(

n
r

)

. Calculation shows that this probability

is Ω(k−2), and so the expected size of L(R) is Ω(k−2f<k(n)). At the same time,
|L(R)| ≤ f(r) for all R, and the lemma follows by comparing these two bounds.
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Next, we partition the set L = L(H) into subsets L1, . . . , Ls, with Li consist-
ing of the vertices of L that are the ith leftmost intersections of their two curves.
Divide L<k similarly, and let fi(n) and f<k

i (n) be the corresponding maximum
possible cardinalities.

The strategy of the proof is “there shouldn’t better be any vertices on the
lower envelope, and if there are, someone is going to pay for it”. To find out who
pays for a vertex v ∈ Li, we start walking from v to the left along the curve h
passing through v and not being on the lower envelope on the left of v. We charge
every vertex encountered 1

ki

units, where ki is an integer parameter (to be fixed
later). If ki vertices are encountered without returning to the lower envelope or
escaping to −∞ then the charging is complete. Otherwise, if we end up at −∞,
we charge 1 to the curve h itself. Finally, if we are back at the lower envelope
without having passed at least ki vertices then, crucially, we must have crossed
the second curve h′ defining the vertex v again, at a vertex v′ ∈ L<ki

i−1
, and this v′

pays 1 for v. A picture illustrates these three cases of charging:

ki

v h v h v h
h′v′

−∞

If we do this charging for all vertices v ∈ Li then, altogether, each curve was
charged at most 1 and each vertex of L<ki was charged at most 2

ki

, except possibly

for vertices of L<k
i−1

, which could each be charged 1 extra. Since at least 1 unit

was paid for each vertex of Li, we obtain fi(n) ≤ n+ 2

ki

f<ki(n) + f<ki

i−1
(n).

By substituting for f<ki and f<ki

i−1
the bound from the lemma, we arrive at the

system of inequalities fi(n) ≤ n+O
(

kif(⌊n/ki⌋)+ k2i fi−1(⌊n/ki⌋)
)

, i = 1, 2, . . . , s
(where we put f0 = 0), and we also have f ≤ f1 + · · · + fs. If one sets ki = nεi

with 0 < ε1 ≪ ε2 ≪ · · · ≪ εs ≪ ε, a not too difficult calculation shows that
f(n) = O(n1+ε) as claimed. ✷

Bounding the maximum complexity of a single cell is usually considerably
more demanding than the lower envelope question, mainly because a cell can have
a complicated topology (cells in hyperplane arrangements, no more complicated
than the lower envelope, are a honorable exception). In the plane, these obstacles
are not too formidable, and by a reduction to DS-sequences, it can be shown that
the single-cell complexity for segments is O(nα(n)), and for pieces of algebraic
curves it can be bounded by some λs(n), with s depending on the maximum
degree of the curves. In R

3, a general near-tight bound of O(n2+ε) was proved
in [21]. Some more special results are known for all d, such as an O(nd−1 log n)
bound for a single cell in an arrangement of (d−1)-dimensional simplices in R

d [6].
Very recently, Basu proved, in an unpublished manuscript, that the sum of the
Betti numbers (i.e. “topological complexity”) of a single cell in an arrangement of
surface patches in R

d is O(nd−1). This might be helpful in getting good bounds
on the combinatorial complexity too.

Concerning the union of “fat” objects (Fig. 1 bottom right), let us consider
n convex sets in the plane, and let us ask what is the combinatorial complexity
of the complement of their union. To get a meaningful problem, we assume that
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the boundaries of any two sets intersect in at most s points for some fixed s ≥ 4
(s = 2 is easy). Long and skinny sets can form a grid pattern and have union
complexity about n2, but if we also require that the sets be “fat” (the ratio of
the circumradius and inradius is bounded by some constant K), then a recent
result of Efrat and Sharir [18] shows that the union complexity is near-linear,
at most O(n1+ε), with the constant of proportionality depending on s,K, ε ([26]
gives a simpler and more precise bound for fat triangles). Various extensions to
non-convex cases or to higher dimensions seem easy to conjecture but quite hard
to prove.

There are still many open problems in the above-discussed areas, but what
seems to be needed most at the moment is a simplification and streamlining, since
building up on the existing proofs is getting more and more cumbersome.

Here is an annoying open problem concerning arrangements of n algebraic
surfaces in R

d. If the degrees of the surfaces are bounded, the complexity of
the arrangement is O(nd). But the cells can be combinatorially very complicated,
while for many applications, one needs to work with cells definable by constant-size
formulas, the so-called Tarski cells (curved analogues of simplices, so to speak).
Can each of the cells of the arrangement be subdivided into Tarski cells, in such a
way that altogether O(nd) Tarski cells result? The best known upper bound for
d ≥ 3 is a bit larger than O(n2d−3) [11].

Multiple cells, incidences, cuttings

Besides a single cell, also the total complexity of several cells in an arrangement
has been studied, and this has interesting connections to some old combinatorial-
geometric problems. Let us consider some m 2-cells in a planar arrangement of
n lines (call them marked cells), and let us denote the maximum possible total
number of vertices of these cells by K(n,m). While K(n, 1) = n, K(n,m) is
considerably smaller than mn for large m.

To get a nontrivial upper bound on K(n,m), we define a bipartite graph with
the lines and the marked cells as vertices and with edges connecting each cell to
the lines forming its sides. There cannot be 5 lines simultaneously connected to
the same two cells, and the Kővári-Sós-Turán theorem in extremal graph theory
implies that there are O(m

√
n + n) edges; thus K(n,m) = O(m

√
n + n). In

particular, K(n,
√
n) = O(n), (this is a result of Canham from 1969), which is

obviously tight. But the bound is not tight for n = m, say, and the right bound is
K(n,m) = O(n2/3m2/3 + n+m). This was proved by Clarkson et al. [14], using
a general technique that emerged in previous work on geometric algorithms. We
give the proof for m = n. The basic idea is this: since the bound we already have
is good if there are many more lines than points, we subdivide the problem with n
lines and n points into smaller subproblems, most of them with many more lines
than points. The device for this subdivision is the so-called 1

r -cutting.
For a parameter r ≥ 1 and a set L of n lines in the plane, a 1

r -cutting for
L is a finite set of triangles4 with disjoint interiors covering the plane, such that

4Where unbounded triangles are admitted too, i.e. a triangle means an intersection of 3
halfplanes here.
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the interior of each triangle is intersected by no more than n
r lines of L. A basic

existence result says that for any L and r, a 1

r -cutting exists consisting of O(r2)
triangles (note that the bound is independent of n). Three proofs are known: a
very elementary one [24], and two probabilistic ones which generalize to higher
dimensions [12, 10].

For bounding K(n, n), let L be the n considered lines, set r = n1/3, and
consider a 1

r -cutting {∆1, . . . ,∆q} for L, q = O(r2). Let Li ⊂ L be the set of
lines intersecting the interior of ∆i and suppose that there are mi marked cells
completely contained in ∆i. The total complexity of these marked cells, over all
∆i, is at most

∑q
i=1

K(|Li|,mi) ≤ ∑q
i=1

O(mi

√

n/r + n
r ) = O(n3/2r−1/2 + nr),

using the above-derived bound for K(n,m) and
∑

mi ≤ n. It remains to account
for the marked cells intersecting boundaries of some of the ∆i’s. But each vertex
of such a marked cell lies in the zone of a side of some ∆i in the arrangement of
Li, and the total complexity of these zones is at most 3

∑q
i=1

O(|Li|) = O(nr).
Altogether we get K(n, n) = O(n4/3). ✷

An easy consequence of the bound K(n,m) = O(n2/3m2/3 + m + n) is the
same (and also tight) bound for the maximum number of incidences between n
lines and m points in the plane. This bound for incidences was proved earlier by
Szemerédi and Trotter, and the new proof via 1

r -cuttings [14] was a considerable
simplification. A still much simpler proof was found later by Székely [34] via
geometric graphs, but so far his technique seems mainly applicable for problems
in the plane, while with 1

r -cuttings, various higher-dimensional problems can be
handled too (see, e.g., [14, 29] or a survey by Agarwal and Sharir in [31] for more
results and references).

The perhaps most challenging related problem is Erdős’ question on unit
distances: given n points in the plane, what is the maximum possible number of
pairs of points at distance 1? By drawing a unit circle around each point, the
question can be reduced to the maximum number of incidences between n points
and n unit circles. Both Székely’s technique and the one with 1

r -cuttings yield the

same O(n4/3) bound as for line-point incidences, but while for lines this is tight,
the best known lower bound for unit circles is only slightly superlinear. To decrease
the upper bound for the unit-distance problem, a radically new approach seems
to be needed, because the n4/3 bound is tight for pseudocircles , i.e. collections
of Jordan curves that combinatorially behave “like unit circles”, and none of the
known methods can take advantage of “true circularity” of the unit circles.

In this connection, a recent result of Elekés and Rónyai [19] should be men-
tioned. They characterized bivariate polynomials and rational functions that at-
tain only O(n) distinct values on X × Y for some n-element sets X,Y ⊂ R. As
a special case, they settled a conjecture of Purdy: if u and v are lines and P ⊂ u
and Q ⊂ v are n-point sets such that the distance |p − q| attains only O(n) dis-
tinct values for p ∈ P and q ∈ Q, then u and v must be parallel or perpendicular
(provided n is large enough). The proof is in part algebraic and it strongly uses
the “straightness” of the lines u and v.
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Range searching, partitions, Heilbronn’s problem

Let us consider the following algorithmic problem. Given an n-point set P ⊂ R
2,

we want to build some data structure for storing information about P , in such
a way that if we get a stripe σ (bounded by two parallel lines) as a query, the
number of points of P lying in σ can be determined quickly, hopefully much faster
than by examining all points of P . Moreover, we insist that the space occupied by
the data structure is at most proportional to n.

Questions of this type, the so-called range searching problems , have been
studied quite intensively and in a much more general form—in higher dimensions,
with different query shapes, with more space allowed, etc. (there is a survey by
Agarwal in [20], and another survey is [25]). But many interesting aspects can
be demonstrated on the particular problem formulated above. In this case, it is
possible to answer the query in O(

√
n) time, and with some restriction on the type

of algorithm used, this is asymptotically optimal. Ironically, while the known data
structures for this problem are not very useful in practice, the underlying theory
involves some of the nicest mathematics in computational geometry.

At first sight (and probably at many subsequent sights too), it is not clear how
to achieve any sublinear query time. Willard discovered in 1981 that the following
type of geometric construction can be used: given the point set P , partition the
plane into some number r of regions, each containing roughly n

r points of P , in
such a way that no line intersects more than κ of these regions, where κ should
be considerably smaller than r. How can this help with a query? We store the
number of points in each of the regions. Given a query stripe σ, the boundary of
σ intersects at most 2κ regions. These must be further examined, but each of the
other regions can be processed in unit time using the stored point counts. The
actual algorithms are more complicated but this is the basic idea.

Finding an optimal construction of such a partition took a long time. (Look-
ing for good partitions stimulated, for instance, research in equipartitioning masses
by hyperplanes—see e.g. [30]—although other approaches were used in the sub-
sequent development.) One of the most important steps was the following result,
essentially invented by Welzl, with a slight improvement in [13]: any 2n-point
set in the plane can be divided into pairs of points in such a way that any line
crosses only O(

√
n) of the segments connecting the pairs. One almost wouldn’t

believe that after thousands of years of geometry, it is still possible to discover
such pretty theorems about points in the plane. This was later generalized to
a partition of an n-point set into r parts of size roughly n

r , with any line cross-
ing O(

√
r) parts only (see [25]). Both these results are asymptotically optimal.

The research in range searching also initiated a fruitful theory related to the so-
called Vapnik-Chervonenkis dimension of set systems, with applications, e.g., in
discrepancy theory; this is surveyed in [27].

Lower bounds for range searching were proved mainly by Chazelle; a key paper
is [9]. In the proof, some integral-geometric considerations appear, and, interest-
ingly, the lower bounds are related to a generalization of Heilbronn’s problem from
discrete geometry. For an n-point set P ⊂ [0, 1]2 and 3 ≤ k ≤ n, let ak(P ) denote
the minimum area of the convex hull of a k-point subset of P . Heilbronn’s problem
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asks for determining a3(P ), and although the answer is unknown, it is known that
a3(P ) is of much smaller order than 1

n (which is what one might perhaps expect at

first). In Chazelle’s proof, one needs a set P with ak(P ) = Ω( kn ) for all k ∈ [k0, n],
with k0 as small as possible. He achieves this with k0 ≈ log n, and this causes
the presence of an log n factor in the range-searching lower bound in R

3 which
probably shouldn’t be there. From Heilbronn’s problem, we know that k0 = 3
is impossible to reach, but perhaps it might be possible to decrease k0 to some-
thing smaller than log n, which would improve the range-searching bound. For a
more recent progress in range-searching lower bounds, and some nice geometric
problems, see [8].

Many other areas and results would deserve to be mentioned, such as the
developments related to linear programming algorithms (see the survey [1]) which
also led to a nice purely mathematical application by Amenta [3] (a short proof of a
Helly-type result), or the story of weak ε-nets , born in computational geometry and
later used by Alon and Kleitman [2] in their solution of the long-open Hadwiger-
Debrunner problem in convex geometry, or an interesting question of algebraic-
topological nature arising in motion planning of multiple robots [4]. But it’s really
time to finish.
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