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Abstract. The current status of the theory of (t,m, s)-nets and (t, s)-
sequences is presented in a brief form, with some emphasis on the con-
nections with algebraic geometry. Closely related work on constructions
of algebraic curves over finite fields with many rational points and on
improving the Gilbert-Varshamov bound in algebraic coding theory is
discussed as well.
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1. Introduction and basic concepts
Nets and (t, s)-sequences are finite point sets, respectively infinite sequences, sat-
isfying strong uniformity properties with regard to their distribution in the s-
dimensional unit cube Is = [0, 1]s. The general theory of these combinatorial
objects was first developed in [12]. They have attracted a lot of interest in sci-
entific computing in recent years because of their role as quasirandom points in
quasi-Monte Carlo methods, e.g. for numerical integration over Is (see [14] for
the details). They also offer a great appeal for theoretical studies in view of the
many links with other areas such as classical combinatorial designs, coding theory,
algebra, number theory, and algebraic geometry. To set the stage, we first review
some basic definitions.

Definition 1. For a given dimension s ≥ 1 and integers b ≥ 2 and 0 ≤ t ≤ m,
a (t,m, s)-net in base b is a point set P consisting of bm points in Is such that
every subinterval J of Is of the form

J =

s
∏

i=1

[aib
−di , (ai + 1)b−di)

with integers di ≥ 0 and 0 ≤ ai < bdi for 1 ≤ i ≤ s and with Vol(J) = bt−m

contains exactly bt points of P .
For integers b ≥ 2 and m ≥ 1 and a point x ∈ Is, we obtain [x]b,m ∈ Is

by truncating a b-adic expansion of each coordinate of x after m terms. Here
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expansions with almost all digits equal to b− 1 are allowed – thus, the truncation
operates on the expansions of the coordinates of x and not on x itself. The
following definition of a (t, s)-sequence is the slightly generalized version described
in [20], [21] (see [14, Chapter 4] for the original narrower definition). We assume
prescribed b-adic expansions on which the truncations operate.

Definition 2. For a given dimension s ≥ 1 and integers b ≥ 2 and t ≥ 0, a
sequence x0,x1, . . . of points in Is is a (t, s)-sequence in base b if for all integers
k ≥ 0 and m > t the points [xn]b,m with kbm ≤ n < (k+1)bm form a (t,m, s)-net
in base b.

The following useful principle shows that if we can construct a (t, s)-sequence,
then we can construct infinitely many nets in dimension s+1 (see [12, Section 5],
[20, Section 6]).

Lemma 1. If there exists a (t, s)-sequence in base b, then for every integer

m ≥ t there exists a (t,m, s+ 1)-net in base b.
The aim in the construction of (t,m, s)-nets and (t, s)-sequences in base b is

to make the quality parameter t as small as possible if the other parameters are
fixed. Most of the known constructions of nets and (t, s)-sequences are based on
the digital method which was introduced in [12, Section 6]. For the sake of brevity,
we just sketch the digital method for constructing (t,m, s)-nets in base b. Select a
commutative ring R with identity and of finite order b ≥ 2. For given m ≥ 1 and
s ≥ 1 choose a system

C =
{

c
(i)
j ∈ Rm : 1 ≤ i ≤ s, 1 ≤ j ≤ m

}

.

Now we get the jth b-adic digits of the ith coordinates of the points of the (t,m, s)-

net by forming the inner product of c
(i)
j with all elements of Rm and then iden-

tifying elements of R with b-adic digits. The value of the quality parameter t
depends on the choice of C. The resulting net is called a digital (t,m, s)-net in

base b (or constructed over R if we want to emphasize R). Similarly, we speak of
a digital (t, s)-sequence in base b (or constructed over R if we want to emphasize
R). There is a “digital” analog of Lemma 1, i.e., a digital (t, s)-sequence yields
infinitely many digital nets in dimension s+ 1 (see [20, Section 2]). For practical
purposes it suffices to consider the digital method in the special case where the
ring R is a finite field Fq of prime-power order q. Digital nets and (t, s)-sequences
in an arbitrary base b can be obtained by using rings R that are direct products
of finite fields (see [14, Chapter 4], [20, Section 5]).

In this paper we give a brief review of the state-of-the-art in the area of
(t,m, s)-nets and (t, s)-sequences, with some emphasis on the connections with
algebraic geometry. Section 2 discusses links with classical combinatorial objects
such as MOLS and orthogonal arrays. Constructions of nets and (t, s)-sequences,
e.g. by methods using algebraic curves over finite fields, are presented in Section 3.
This leads to the discussion of algebraic curves over finite fields with many rational
points in Section 4. As a by-product we obtain the applications to algebraic coding
theory in Section 5, such as improvements on the Gilbert-Varshamov bound. For
various aspects, more detailed expository accounts can be found in [14, Chapter
4], [21], [25], [32].
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2. Connections with combinatorial designs
The fact that there are close links between nets and combinatorial designs was
noticed already in [12, Section 5]. For instance, it was shown there that for s ≥ 2
the existence of a (0, 2, s)-net in base b is equivalent to the existence of s−2 MOLS
of order b. Later it was proved by Mullen and Whittle [11] that for s ≥ 2 and any
t ≥ 0, the existence of a (t, t + 2, s)-net in base b is equivalent to the existence
of a certain set of mutually orthogonal hypercubes of order b. In the language of
orthogonal arrays, there is the result in [15] that there exists a (t, t + 2, s)-net in
base b if and only if there exists an orthogonal array OA(bt+2, s, b, 2) of index bt.

Lawrence [6] and Mullen and Schmid [10] independently established a com-
binatorial equivalence between arbitrary (t,m, s)-nets in base b and suitable com-
binatorial designs. Depending on the language that is used, these designs can be
generalized orthogonal arrays, ordered orthogonal arrays, or strongly orthogonal
hypercubes. The proofs of all these combinatorial results are constructive.

These connections with combinatorial designs imply obstructions to the exis-
tence of (t,m, s)-nets for m ≥ t+2 (nets exist trivially for m− t = 0, 1). Consider
e.g. the following simple argument: if there exists a (0,m, s)-net in base b for some
m ≥ 2, then there exists a (0, 2, s)-net in base b, hence there are s − 2 MOLS of
order b, and so we must have s ≤ b + 1. A more general argument of this type,
combined with bounds for the appropriate combinatorial designs, leads to upper
bounds on s in terms of b, m, and t, under the assumption that there exists a
(t,m, s)-net in base b with m ≥ t + 2. A description of this method, together
with tables of bounds, can be found in [2]. More recently, this approach was fur-
ther refined by Martin and Stinson [7], [8] and improved bounds were obtained.
In view of Lemma 1, combinatorial obstructions to the existence of (t,m, s)-nets
yield combinatorial obstructions to the existence of (t, s)-sequences, such as the
following bound from [21].

Theorem 1. Given b ≥ 2 and s ≥ 1, a (t, s)-sequence in base b can exist only

if

t ≥
s

b
− logb

(b− 1)s+ b+ 1

2
.

3. Constructions of nets and (t, s)-sequences
The number of known construction methods for nets and (t, s)-sequences is already
quite large and ideas from various areas are employed. The combinatorial approach
to the construction of nets uses the equivalences between (t,m, s)-nets and suitable
combinatorial designs mentioned in Section 2 and techniques of constructing such
combinatorial designs. Surveys of combinatorial methods for the construction of
nets are given in [2], [9]. Other important methods for the construction of nets
are based on coding theory. This approach goes back to an observation in [12,
Section 7] that there is a connection between the digital method over a finite field
Fq and the construction of parity-check matrices for good linear codes over Fq.
This connection is conveniently formalized through the notion of a (d,m, s)-system

over Fq introduced in [32], which is a system
{

a
(i)
j ∈ F

m
q : 1 ≤ i ≤ s, 1 ≤ j ≤ m

}

of vectors such that for any integers d1, . . . , ds ≥ 0 with
∑s

i=1 di = d the a
(i)
j , 1 ≤

j ≤ di, 1 ≤ i ≤ s, are linearly independent over Fq. Finding a digital (t,m, s)-
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net constructed over Fq is then equivalent to finding a (d,m, s)-system over Fq

with d = m − t. The surveys [2], [9] report on coding-theory methods for the
construction of nets and new methods of this type can be found in [32].

Standard constructions of digital (t, s)-sequences in base b are due to Sobol’
[38] for b = 2 and any s, to Faure [3] for prime bases b ≥ s, and to Niederreiter [13]
for any b and any s. Generalizations of these sequences are described in Tezuka
[39, Chapter 6]. As a by-product, these constructions yield digital (t,m, s+1)-nets
in base b.

An important recent development is the use of algebraic curves over finite
fields (or, equivalently, of global function fields) for the construction of (t, s)-
sequences. The basic idea goes back to Niederreiter [16], [17]. At present, four
different construction principles using algebraic curves are available and they all
rely on the digital method over Fq. We refer to [18], [20], [21], [44] for the detailed
description of these constructions and to [25], [32] for further discussions. Three
of the methods, and indeed the most effective ones, are based on algebraic curves
over Fq with many Fq-rational points (or, equivalently, on global function fields
with many rational places). Given q and a dimension s ≥ 1, the typical procedure
is to choose a smooth, projective, absolutely irreducible algebraic curve C over
Fq containing at least s + 1 Fq-rational points, say P∞, P1, . . . , Ps. The point
Pi, 1 ≤ i ≤ s, is used to produce the data that are needed in the digital method
(i.e., certain elements of Fq) for generating the ith coordinates of the points of
the (t, s)-sequence. These elements of Fq are obtained by expansions on the curve
C in local coordinates at P∞. The methods in [20] and [44] yield digital (t, s)-
sequences constructed over Fq with t being the genus of C. If we optimize these
constructions, we arrive in a natural way at the following important quantity from
algebraic geometry over Fq and at the subsequent theorem in [20].

Definition 3. For given g ≥ 0 and q, let Nq(g) be the maximum number
of Fq-rational points that a smooth, projective, absolutely irreducible algebraic
curve over Fq of genus g can have.

Theorem 2. For every q and s there exists a digital (Vq(s), s)-sequence con-

structed over Fq, where Vq(s) is the least value of g such that Nq(g) ≥ s+ 1.
The behavior of Vq(s) as s → ∞ can be obtained from class field towers and

the asymptotic theory of Nq(g) (see Section 5). As stated in Section 1, we can also
pass from prime-power bases q to arbitrary bases b in the digital method. Finally,
this leads to the following bound (see [20, Section 5]), which in view of Theorem
1 is best possible as far as the order of magnitude in s is concerned.

Theorem 3. For every b ≥ 2 and s ≥ 1 there exists a digital (t, s)-sequence
in base b with

t ≤
c

log q1
s+ 1,

where c > 0 is an absolute constant and q1 is the least prime power in the factor-

ization of b into pairwise coprime prime powers.
4. Algebraic curves with many rational points
The constructions of (t, s)-sequences in Section 3 based on algebraic curves over
Fq lead to the requirement of finding good lower bounds for the number Nq(g)
in Definition 3, or in other words to the problem of constructing algebraic curves
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over Fq of given genus g with many Fq-rational points. This problem is also of
great importance in the theory of algebraic-geometry codes (see Section 5). Recent
surveys of this problem, also in the equivalent language of global function fields,
are given in Garcia and Stichtenoth [4], Niederreiter and Xing [26], [30], and van
der Geer and van der Vlugt [42].

A well-known technique for establishing the existence of various algebraic
curves over Fq with many Fq-rational points is due to Serre [37] and uses methods
of class field theory. This approach was continued by Auer [1] and Lauter [5].
Usually, the curves obtained by this technique are not in an explicit form. On
the other hand, constructions in the function field setting that work with Artin-
Schreier and Kummer extensions and with subfields of cyclotomic function fields
yield explicit generators and defining equations. Such constructions can be found
e.g. in [19], [21], [26], [46] for q = 2, in [22], [27] for q = 3, in [22], [23] for q = 4,
in [22], [24], [35] for q = 5, in [29] for q = 8, 16, and in [32] for q = 9, 27. Explicit
constructions inspired by techniques from coding theory were introduced by van
der Geer and van der Vlugt [41] (see also the survey [42]).

In the function field setting, a powerful technique of obtaining global func-
tion fields with many rational places is based on Hilbert class fields. The aim is
to construct unramified abelian extensions of a given global function field F in
which certain selected rational places of F split completely. This method works
particularly well if the divisor class number of F is large relative to the genus of
F . Applications of this method can be found in [22], [24], [26], [27], [29], [30], [35],
[46]. A more general approach, which contains both cyclotomic function fields and
Hilbert class fields as special cases, uses the theory of narrow ray class extensions
obtained from Drinfeld modules of rank 1 and was introduced in [45]. This method
allows great flexibility and produces a large number of families of global function
fields with many rational places. We refer to [23], [24], [26], [27], [29], [30], [31],
[35], [46] for further results and examples with this method.

Table 1 contains all bounds for Nq(g) available to the author for q =
2, 3, 4, 5, 8, 9, 16, 27 and 1 ≤ g ≤ 50 (for g = 0 we trivially have Nq(0) = q + 1). In
each entry of the table, the first number is a lower bound for Nq(g) and the second
an upper bound for Nq(g). If only one number is given, then this is the exact value
of Nq(g). A program for calculating upper bounds for Nq(g), which is based on
Weil’s explicit formula for the number of Fq-rational points in terms of the zeta
function and on the trigonometric polynomials of Oesterlé, was kindly supplied by
Jean-Pierre Serre. The lower bounds in Table 1 are obtained by combining [32,
Table 3] with new data in [1], [35]. We refer also to the tables of van der Geer and
van der Vlugt [43] which represent the most recent result of an ongoing project to
update bounds for Nq(g) periodically.
5. Applications to coding theory
There is an asymptotic theory of Nq(g) which has significant applications to alge-
braic coding theory. The basic quantity here is

A(q) = lim supg→∞

Nq(g)

g
.

For values of q for which A(q) is larger than a known comparison function, Goppa’s
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construction of algebraic-geometry codes leads to improvements on the classical
Gilbert-Varshamov bound for the existence of good linear codes over Fq.

Let Uq be the set of ordered pairs (δ,R) ∈ [0, 1]2 for which there exists a
sequence of linear codes over Fq of increasing lengths such that δ is the limit of
the relative minimum distances and R the limit of the information rates. It is
known that for some continuous function αq on [0, 1] we have

Uq = {(δ,R) : 0 ≤ R ≤ αq(δ), 0 ≤ δ ≤ 1} ,

where αq(0) = 1 and αq(δ) = 0 for δ ∈ [(q− 1)/q, 1]. The function αq is unknown,
and it is an important issue in algebraic coding theory to obtain good lower bounds
for αq on the interval (0, (q − 1)/q). The Gilbert-Varshamov bound says that

αq(δ) ≥ RGV (q, δ) := 1−Hq(δ) for 0 < δ < (q − 1)/q,

where Hq is the q-ary entropy function. Algebraic-geometry codes lead to the
bound

αq(δ) ≥ RAG(q, δ) := 1−
1

A(q)
− δ for 0 ≤ δ ≤ 1.

By showing that A(q) ≥ q1/2 − 1 if q is a square, Tsfasman, Vlǎdut, and Zink [40]
proved that RAG(q, δ) > RGV (q, δ) if q is a sufficiently large square and δ belongs
to a suitable subinterval of [0, 1].

For nonsquares q only weaker lower bounds for A(q) are known. Serre [37]
showed that A(q) is at least of the order of magnitude log q, and an alternative
proof and an effective version of this result were recently given in [33]. In many
cases the following result in [28] yields a considerable improvement: if q = pe with
a prime p and an odd integer e ≥ 3, then A(q) is at least of the order of magnitude
q1/(2k), where k is the least prime factor of e. Further discussions and refinements
of this result can be found in [30], [33]. As a consequence we get the following
theorem in [28] which improves on the Gilbert-Varshamov bound for sufficiently
large composite nonsquares q.

Theorem 4. Let m ≥ 3 be an odd integer and let r be a prime power with

r ≥ 100m3 for odd r and r ≥ 576m3 for even r. Then there exists an open interval

(δ1, δ2) ⊆ (0, 1) containing (rm − 1)/(2rm − 1) such that

RAG(r
m, δ) > RGV (r

m, δ) for all δ ∈ (δ1, δ2).

In connection with lower bounds for A(q) we mention that there is a method of
Perret [36] for obtaining such lower bounds which depends, however, on a conjec-
ture that would provide a sufficient condition for the infinitude of certain ramified
class field towers. It was recently shown in [34] by a counterexample that this
conjecture is wrong. Therefore, the lower bounds for A(q) in Perret [36, Section
III] remain unproved.
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Table 1: Bounds for Nq(g)

g\q 2 3 4 5 8 9 16 27
1 5 7 9 10 14 16 25 38
2 6 8 10 12 18 20 33 48
3 7 10 14 16 24 28 38 58
4 8 12 15 18 25-29 30 45-47 64-68
5 9 12-14 17-18 20-22 29-32 32-36 49-55 55-78
6 10 14-15 20 21-25 33-36 35-40 65 76-88
7 10 16-17 21-22 22-27 33-39 39-43 63-70 64-98
8 11 15-18 21-24 22-29 34-43 38-47 61-76 92-108
9 12 19 26 26-32 45-47 40-51 72-81 82-118
10 13 19-21 27-28 27-34 38-50 54-55 81-87 91-128
11 14 20-22 26-30 32-36 48-54 55-59 80-92 96-138
12 14-15 22-24 29-31 30-38 49-57 55-63 68-97 109-148
13 15 24-25 33 36-40 50-61 60-66 97-103 136-156
14 15-16 24-26 32-35 39-43 65 56-70 97-108 84-164
15 17 28 33-37 35-45 54-68 64-74 98-113 136-171
16 17-18 27-29 36-38 40-47 56-71 74-78 93-118 136-178
17 17-18 24-30 40 42-49 61-74 56-82 96-124 128-185
18 18-19 26-31 41-42 32-51 65-77 46-85 113-129 94-192
19 20 27-32 37-43 45-54 58-80 84-88 121-134 126-199
20 19-21 30-34 37-45 30-56 68-83 48-91 121-140 133-207
21 21 32-35 41-47 50-58 72-86 82-95 129-145 163-214
22 21-22 28-36 40-48 51-60 66-89 78-98 129-150 112-221
23 22-23 26-37 41-50 55-62 68-92 92-101 126-155 114-228
24 20-23 28-38 42-52 46-64 66-95 91-104 129-161 166-235
25 24 36-40 51-53 52-66 66-97 64-108 144-166 196-242
26 24-25 36-41 55 45-68 72-100 110-111 150-171 108-249
27 22-25 39-42 49-56 52-70 96-103 60-114 145-176 114-256
28 25-26 37-43 51-58 54-71 97-106 105-117 136-181 108-263
29 25-27 42-44 49-60 56-73 97-109 104-120 161-187 114-270
30 25-27 34-46 53-61 58-75 80-112 60-123 161-192 117-277
31 27-28 40-47 60-63 72-77 72-115 84-127 150-197 114-284
32 26-29 38-48 57-65 62-79 72-118 81-130 132-202 126-291
33 28-29 37-49 65-66 64-81 92-121 78-133 193-207 220-298
34 27-30 44-50 57-68 76-83 80-124 111-136 156-213 135-305
35 29-31 47-51 58-69 68-85 106-127 84-139 144-218 126-312
36 30-31 46-52 64-71 64-87 105-130 110-142 185-223 244-319
37 29-32 48-54 66-72 72-89 121-132 120-145 208-228 162-326
38 28-33 36-55 56-74 78-91 129-135 105-149 193-233 144-333
39 33 46-56 65-75 76-93 117-138 84-152 160-239 271-340
40 32-34 54-57 75-77 65-94 100-141 90-155 162-244 244-346
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g\q 2 3 4 5 8 9 16 27
41 33-35 50-58 65-78 80-96 112-144 84-158 216-249 153-353
42 33-35 39-59 66-80 60-98 129-147 90-161 209-254 280-360
43 33-36 55-60 72-81 84-100 100-150 120-164 226-259 196-367
44 33-37 42-61 68-83 60-102 129-153 90-167 162-264 153-374
45 32-37 48-62 80-84 88-104 144-156 112-170 242-268 171-381
46 34-38 55-63 81-86 75-106 129-158 138-173 243-273 162-388
47 36-38 47-65 73-87 92-108 120-161 154-177 176-277 174-395
48 34-39 55-66 77-89 82-110 126-164 163-180 184-282 325-402
49 36-40 63-67 81-90 96-111 130-167 168-183 192-286 268-409
50 40 56-68 91-92 70-113 130-170 182-186 225-291 180-416
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un corps fini, C.R. Acad. Sci. Paris Sér. I Math. 296, 397–402 (1983).

[38] I.M. Sobol’, The distribution of points in a cube and the approximate evalu-
ation of integrals (Russian), Zh. Vychisl. Mat. i Mat. Fiz. 7, 784–802 (1967).

[39] S. Tezuka, Uniform Random Numbers: Theory and Practice, Kluwer, Boston,
1995.
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