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The Sphere Paking Problem

N. J. A. Sloane

Abstract. A brief report on recent work on the sphere-packing problem.
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1 Introduction

The sphere packing problem has its roots in geometry and number theory (it is
part of Hilbert’s 18th problem), but is also a fundamental question in information
theory. The connection is via the sampling theorem. As Shannon observes in his
classic 1948 paper [37] (which ushered in the age of digital communication), if f is a
signal of bandwidth W hertz, with almost all its energy concentrated in an interval
of T secs, then f is accurately represented by a vector of 2WT samples, which
may be regarded as the coordinates of a single point in Rn, n = 2WT . Nearly
equal signals are represented by neighboring points, so to keep the signals distinct,
Shannon represents them by n-dimensional ‘billiard balls’, and is therefore led to
ask: what is the best way to pack ‘billiard balls’ in n dimensions?

This talk will report on a few selected developments that have taken place
since the appearance of Rogers’ 1964 book on the subject, proceeding upwards in
dimension from 2 to 128. The reader is referred to [16] (especially the third edition,
which has 800 references covering 1988-1998) for further information, definitions
and references. See also the lattice data-base [31].

2 Dimension 2

The best packing in dimension 2 is the familiar ‘hexagonal lattice’ packing of
circles, each touching six others. The centers are the points of the root lattice A2.
The density ∆ of this packing is the fraction of the plane occupied by the spheres:
π/

√
12 = 0.9069 . . ..
In general we wish to find ∆n, the highest possible density of a packing of equal

nonoverlapping spheres in Rn, or ∆
(L)
n , the highest density of any packing in which

the centers form a lattice. It is known (Fejes Tóth, 1940) that ∆2 = ∆
(L)
2 = π/

√
12.

An n-dimensional lattice Λ of determinant d and minimal nonzero squared length
(or norm) µ has packing radius ρ =

√
µ/2 and density ∆ = Vnρ

n/
√
detΛ, where
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Vn = πn/2/(n/2)! is the volume of a unit sphere. The center density of a packing
is δ = ∆/Vn.

We are also interested in packing points on a sphere, and especially in the

‘kissing number problem’: find τn (resp. τ
(L)
n ), the maximal number of spheres

that can touch an equal sphere in Rn (resp. in any lattice in Rn). It is trivial that

τ2 = τ
(L)
2 = 6.

3 Dimension 3

In spite of much recent work ([20], [21]) ∆3 is still unknown; nor is ∆n known in any
dimension above 2. It is conjectured that ∆3 = π/

√
18 = 0.74048 . . ., as in the face-

centered cubic (f.c.c.) lattice A3. Muder [28] has shown that ∆3 ≤ 0.773055 . . ..
It is worth mentioning, however, that there are packings of congruent ellipsoids
with density considerably greater than π/

√
18 [3].

In two dimensions the hexagonal lattice is (a) the densest lattice packing,
(b) the least dense lattice covering, and (c) is geometrically similar to its dual
lattice. There is a little-known three-dimensional lattice that is similar to its dual,
and, among all lattices with this property, is both the densest packing and the
least dense covering. This is the m.c.c. (or mean-centered cuboidal) lattice [11]
with Gram matrix

1

2





1 +
√
2 1 1

1 1 +
√
2 1−

√
2

1 1−
√
2 1 +

√
2



 .

In a sense this lattice is the geometric mean of the f.c.c. lattice and its dual
the body-centered cubic (b.c.c.) lattice. Consider the lattice generated by the
vectors (±u,±v, 0) and (0,±u,±v) for real numbers u and v. If the ratio u/v is
respectively 1, 21/2 or 21/4 we obtain the f.c.c., b.c.c. and m.c.c. lattices. The
m.c.c. lattice also recently arose in a different context, as the lattice corresponding
to the period matrix of the hyperelliptic Riemann surface w2 = z8 − 1

4 Dimensions 4–8

Table 1 summarizes what is presently known about the sphere packing and kissing
number problems in dimensions ≤ 24. Entries enclosed inside a solid line are
known to be optimal, those inside a dashed line optimal among lattices.

The large box in the ‘density’ column refers to Blichfeldt’s 1935 result that

the root lattices Z ≃ A1, A2, A3 ≃ D3, D4, D5, E6, E7, E8 achieve ∆
(L)
n for n ≤ 8.

It is remarkable that more than 60 years later ∆
(L)
9 is still unknown.

The large box in the right-hand column refers to Watson’s 1963 result that
the kissing numbers of the above lattices, together with that of the laminated

lattice Λ9, achieve τ
(L)
n for n ≤ 9. Odlyzko and I [16, Ch. 13] and independently

Levenshtein determined τ8 and τ24. The packings achieving these two bounds are
unique [16, Ch. 14].
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K12

(306 from P9a)

(500 from P10b)

(840 from P12a)

BW16 ≃ Λ16

Leech ≃ Λ24

Λ9

432016

Λ10 (P10c)

D4 ≃ Λ4

D5 ≃ Λ5

E6 ≃ Λ6

E7 ≃ Λ7

E8 ≃ Λ8

A3 ≃ D3 ≃ Λ3

Z ≃ Λ1

A2 ≃ Λ2

Table 1: Densest packings and highest kissing numbers known in low dimensions.
(Parenthesized entries are nonlattice arrangements that are better than any known
lattice.)

The ‘Low Dimensional Lattices’ project Some years ago Conway and I
noticed that there were several places in the literature where the results could
be simplified if they were described in terms of lattices rather than quadratic
forms. (It seems clearer to say ‘the lattice E8’ rather than ‘the quadratic form
2x2

1+2x2
2+4x2

3+4x2
4+20x2

5+12x2
6+4x2

7+2x2
8+2x1x2+2x2x3+6x3x4+10x4x5+

6x5x6 + 2x6x7 + 2x7x8’.) This led to a series of papers [7], [10], [13].

Integral lattices of determinant d = 1 (‘unimodular’ lattices) have been classi-
fied in dimensions ≤ 25, dimensions 24, 25 being due to Borcherds. In [16, Ch. 15]
and [7, (I)] we extended this to d ≤ 25 for various ranges of dimension.

[7, (II)] is based on the work of Dade, Plesken, Pohst and others, and describes
the lattices associated with the maximal irreducible subgroups of GL(n,Z) for
n = 1, . . . , 9, 11, 13, 17, 19, 23. Nebe, and Nebe and Plesken (see [29], [32]) have
recently completed the enumeration of the maximal finite irreducible subgroups of
GL(n,Q) for n ≤ 31, together with the associated lattices.

[7, (IV)] gives an improved version of the mass formula for lattices, and [7, (V)]
studies when an n-dimensional integral lattice can be represented as a sublattice
of Zm for some m ≥ n, or failing that, by a sublattice of s−1/2Zm for some integer
s. [10] describes the Voronoi and Delaunay cells of all the root lattices and their
duals, and [7, (VI), (VIII)] discusses how the Voronoi cell of a 3- or 4-dimensional
lattice changes as the lattice is continuously varied.

[7, (VII)] determines the ‘coordination sequences’ of various lattices. Consider
E8, for example, and let S(k) denote the number of lattice points that are k steps
from the origin, where a step is a move to an adjacent sphere (S(1) is the kissing
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number). Then
∑

∞

k=0 S(k)x
k = f(x)/(1− x)8, where f(x) = 1+ 232x+7228x2 +

. . .+x8. Thus the coordination sequence for E8 begins 1, 240, 9120, . . .. For other
examples see [39]

Perfect lattices One possible approach to the determination of the densest
lattices in dimensions 7 to 9 is via Voronoi’s theorem that the density of Λ is a
local maximum if and only if Λ is perfect and eutactic [27].

In 1975 Stacey, extending the work of several earlier authors, published a list
of 33 perfect lattices in dimension 7. Unfortunately one of the 33 was omitted
from her papers and her dissertation. In [7, (III)] we reconstructed the missing
lattice and ‘beautified’ all 33, computing their automorphism groups, etc. In 1991
Jaquet-Chiffelle [22] completed this work by showing that this is indeed the full
list of perfect lattices in R7. This provides another proof that E7 is the densest
lattice in dimension 7.

Martinet, Bergé and their students are presently attempting to classify the
eight-dimensional perfect lattices, and it appears that there will be roughly 10000

of them. Whether this approach can be used to determine ∆
(L)
9 remains to be

seen!

5 Dimension 9. Laminated lattices

There is a simple construction, the ‘laminating’ or ‘greedy’ construction, that
produces many of the densest lattices in dimensions up to 26. Let Λ1 denote the
even integers in R1, and define the n-dimensional laminated lattices Λn recursively
by: consider all lattices of minimal norm 4 that contain some Λn−1 as a sublattice,
and select those of greatest density. It had been known since the 1940’s that
this produces the densest lattices known for n ≤ 10. In [6] we determined all

inequivalent laminated lattices for n ≤ 25, and found the density of Λn for n ≤ 48
(Fig. 1). A key result needed for this was the determination of the covering radius
of the Leech lattice and the enumeration of the deep holes in that lattice [16,
Ch. 23].

What are all the best sphere packings in low dimensions? In [13] we
describe what may be all the best packings in dimensions n ≤ 10, where ‘best’
means both having the highest density and not permitting any local improvement.

In particular, we conjecture that ∆
(L)
n = ∆n for n ≤ 9. For example, it appears

that the best five-dimensional sphere packings are parameterized by the 4-colorings
of Z. We also find what we believe to be the exact numbers of ‘uniform’ packings
among these, those in which the automorphism group acts transitively. These
assertions depend on certain plausible but as yet unproved postulates.

A remarkable property of 9-dimensional packings. We also show in [13]
that the laminated lattice Λ9 has the following astonishing property. Half the
spheres can be moved bodily through arbitrarily large distances without overlap-
ping the other half, only touching them at isolated instants, the density remaining
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Figure 1: Inclusions among laminated lattices Λn.

the same at every instant. A typical packing in this family consists of the points
of Dθ+

9 = D9 ∪ D9 + ((1/2)8, θ/2), for θ real. D0+
9 is Λ9 and D1+

9 is D+
9 , the 9-

dimensional diamond structure. All these packings have the same density, which

we conjecture is the value of ∆9 = ∆
(L)
9 . Another result in [13] is that there

are extraordinarily many 16-dimensional packings that are just as dense as the
Barnes-Wall lattice BW16 ≃ Λ16.

6 Dimension 10. Construction A.

In dimension 10 we encounter for the first time a nonlattice packing that is denser
than all known lattices. This packing, and the nonlattice packing with the highest
known kissing number in dimension 9, are easily obtained from ‘Construction
A’ (cf. [24]). If C is a binary code of length n, the corresponding packing is
P (C) = {x ∈ Zn : x (mod 2) ∈ C}.

Consider the vectors abcde ∈ (Z/4Z)5 where b, c, d ∈ {+1,−1}, a = c − d,
e = b + c, together with all their cyclic shifts, and apply the ‘Gray map’ 0 →
00, 1 → 01, 2 → 11, 3 → 10 to obtain a binary code C10 containing 40 vectors
of length 10 and minimal distance 4. This is our description [12] of a code first
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ROGER’S BOUND

Q32

Ks36 Λn

LEECH LATTICE Λ24

2

-2

-3

DIMENSION

Λ48

D4 BW16

Λn

P48q

D3 Λn

K12

Λ8 = E8

Kn

1

12 16 444 24 40 48

-1

0

36328 20 28

(SCALED)
DENSITY

Figure 2: Densest sphere packings known in dimensions n ≤ 48.

discovered by Best. The code is unique [25]. Then P (C10) = P10c is the record
10-dimensional packing.

Figure 2 shows the density of the best packings known up to dimension 48,
rescaled to make them easier to read. The vertical axis gives log2 δ+n(24−n)/96.
The figure also shows the upper bounds of Muder (for n = 3) and Rogers (n ≥ 4).
Lattice packings are indicated by small circles, nonlattices by crosses (however,
the locations of the lattices are only approximate). The figure is dominated by the
two arcs of the graph of the laminated lattices Λn, which touch the zero ordinate
at n = 0, 24 (the Leech lattice) and 48. K12 is the Coxeter-Todd lattice.

7 Dimensions 18–22

Record nonlattice packings in dimensions 18, 20 and 22 have recently been given in
[4], [14], [40]. Vardy’s construction [40], ‘Construction B∗’, also uses binary codes.
Let B and C be codes of length n such that c·(1+b) = 0 for all b ∈ B, c ∈ C, and set
P ∗(B, C) = {0+2b+4x,1+2c+4y : b ∈ B, c ∈ C, x, y ∈ Zn,

∑

xi even,
∑

yi odd}.
For example, by taking B to be the quadratic residue code of length 18 and C to
be its dual, Bierbrauer and Edel [4] obtain a new record packing in R18.

8 Dimension 24. The Leech lattice

The Leech lattice Λ24 is a remarkably dense packing in R24 (as can be seen from
Fig. 2). Here are four constructions. (i) As a laminated lattice: start in dimension
1 with the lattice Λ1 = Z and apply the greedy algorithm (see Fig. 1). (ii) Apply
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Construction A to the Golay code of length 24 to obtain a lattice L24. Then Λ24 is
spanned by (−3/2, 1/2, . . . , 1/2) and {x ∈ L24 :

∑

xi ≡ 0 (mod 4)}. (iii) Hensel
lift the Golay code to an extended cyclic (and self-dual) code over Z/4Z and apply
‘Construction A mod 4’ [5]. (iv) There is a unique unimodular even lattice II25,1 in
Lorentzian space R25,1, consisting of the points (x0x1 · · ·x24|x25) with all xi ∈ Z

or all xi ∈ Z+1/2 and satisfying x0+ · · ·+x24−x25 ∈ 2Z. Let w = (0 1 · · · 24|70),
a vector of zero length. Then (w⊥ in II25,1)/w is Λ24 [16, Ch. 26].

9 Dimensions 26–31

New packings in these dimensions have been discovered by Bacher, Borcherds,
Conway, Vardy, Venkov — see [16] for details.

10 Dimension 32. Modular lattices

An N -modular lattice [34] is an integral lattice that is similar to its dual, under
a similarity that multiplies norms by N . A unimodular lattice is 1-modular. The
interest in this family arises because many of the densest known lattices are N -
modular: Z, A2, D4, E8, K12, BW16, Λ24, Q32, P48q, . . ..

Quebbemann’s lattice Q32, for example, is 2-modular, and can be constructed
from a Reed-Solomon code of length 8 over F9 [33], [16, Ch. 8].

Shadow theory. The concept of the shadow of a lattice or code was introduced
in [8], [9] (see also [15]) and has proved to be very useful ([9] has stimulated over
50 sequels in the coding literature).

Let Λ be an n-dimensional unimodular lattice. If Λ is even then the shadow

S(Λ) = Λ, otherwise S(Λ) = (Λ0)
∗ \ Λ, where the subscript 0 denotes even sub-

lattice. The set 2S(Λ) = {2s : s ∈ S(Λ)} is precisely the set of parity vectors

for Λ, i.e. the vectors u ∈ Λ such that u · x ≡ x · x (mod2) for all x ∈ Λ. Such
vectors have been studied by many authors from Braun (1940) onwards, but their
application to obtaining bounds on lattices seems to have been overlooked.

If the theta series of Λ is ΘΛ(z) then [8] the shadow has theta series

(

eπi/4√
z

)n

ΘΛ

(

1− 1

z

)

. (1)

One of the most satisfying properties of integral lattices is the classical theorem
that (a) if Λ is a unimodular lattice then ΘΛ belongs to the graded ring C[ΘZ,ΘE8

],
and (b) if Λ is even then Θ belongs to C[ΘE8

,ΘΛ24
].

To illustrate the use of the shadow, let us prove there is no 9-dimensional
unimodular lattice of minimal norm 2. If so then from (a) ΘΛ = −ΘZ/8+9ΘE8

/8 =
1 + 252q2 + 456q3 + · · ·, where q = eπiz. But then (1) implies ΘS(Λ) = 9

4q
1/4 +

1913
4 q9/4 + · · ·, a contradiction since ΘS(Λ) must have integer coefficients.

In [26] we used (a), (b) to show that the minimal norm µ of an n-dimensional
odd unimodular lattice satisfies

µ ≤
[n

8

]

+ 1 , (2)
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and for an even unimodular lattice

µ ≤ 2
[ n

24

]

+ 2 . (3)

In [36] we used shadow theory to strengthen (2) by showing that odd lattices
satisfy

µ ≤ 2
[ n

24

]

+ 2 , (4)

except that µ ≤ 3 when n = 23. In view of the similarity between (3) and (4) we
propose that a lattice satisfying either bound with equality be called extremal (the
old definition of this term was based on (2) and (3)).

Quebbemann [35] has generalized (3) to certain families of even N -modular
lattices, and analogous bounds for odd N -modular lattices (using an appropriate
generalization of the shadow) were given in [36]. One can then define extremal
N -modular lattices.

11 Higher dimensions

Space does not permit more than a mention of the following: Kschischang and
Pasupathy’s lattice Ks36 in R36 [23]; the three extremal unimodular lattices P48q,
P48p, P48n in R48, the latter being a recent discovery of Nebe [30]; Bachoc’s ex-
tremal 2-modular lattice in R48 [1]; Nebe’s extremal 3-modular lattice in R64 [30];
and Bachoc and Nebe’s extremal unimodular lattice in R80 [2].

The existence of the following extremal lattices is an open question: 3-modular
in R36 (determinant d = 318, minimal norm µ = 8); 2-modular in R64 (d = 232, µ =
10); unimodular in R72 (d = 1, µ = 8).

From dimensions 80 to about 4096 the densest lattices known are the Mordell-
Weil lattices discovered by Elkies [19], and Shioda [38]. But we know very little
about this range, as evidenced by the recent construction of record kissing numbers
in dimensions 32 to 128 [17] from binary codes. In dimension 128, for example,
the Mordell-Weil lattice has kissing number 218044170240 [18], whereas in our
construction (which admittedly is not a lattice) some spheres touch 8812505372416
others.

It would also be desirable to have better upper bounds, especially in low
dimensions (see Fig. 2). The Kabatiansky-Levenshtein bound is asymptotically
better than the Rogers’ bound, but not until the dimension is above about 40. We
know very little about these problems!

In short, many beautiful packings have been discovered, but there are few
proofs that any of them are optimal.
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