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Finite Geometries, Varieties and Codes

Joseph A. Thas

Abstract. In recent years there has been an increasing interest in finite
projective spaces, and important applications to practical topics such as
coding theory and design of experiments have made the field even more
attractive. It is my intention to mention some important and elegant the-
orems, to say something about the used techniques and the relation with
other fields, and to mention some open problems. First some character-
izations of particular pointsets in the projective space PG(n, q), n ≥ 2,
over GF(q) will be given, where, from the beginning, it is assumed that
the pointset is contained in PG(n, q). A second approach is that where
the object is described as an incidence structure satisfying certain prop-
erties; here the geometry is not a priori embedded in a projective space.
This approach will be illustrated with some theorems on inversive planes,
polar spaces and Shult spaces. Finally, there is a section on k-arcs in
PG(n, q) and on linear Maximum Distance Separable codes, where the
interplay between finite projective geometry, coding theory and algebraic
geometry is particularly present. In an appendix an example of brand
new research in the field is given.
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1 Introduction and history

In recent years there has been an increasing interest in finite projective spaces
(or Galois spaces), and important applications to practical topics such as coding
theory and design of experiments have made the field even more attractive. Ba-
sic works on the subject are “Projective Geometries over Finite Fields”, “Finite
Projective Spaces of Three Dimensions” and “General Galois Geometries”, the
first two volumes being written by Hirschfeld [1979,1985] and the third volume
by Hirschfeld and Thas [1991]; the set of three volumes was conceived as a single
entity. We also mention the “Handbook of Incidence Geometry: Buildings and
Foundations”, edited in 1995 by Buekenhout, which covers an enormous amount
of material. In 1998 the second edition of the first volume by Hirschfeld appeared;
here the author writes the following on the history of finite geometry (for biblio-
graphical details, see Hirschfeld).
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“The first actual reference or near-reference on finite geometry is von Staudt’s
Beiträge (1856). It contains countings of real and complex points of a projective
space, as if they were points over GF(q) and GF(q2); only dimensions two and three
are considered. Then Fano (1892) defined PG(n, p) synthetically, while more than
a decade later Hessenberg (1903) did it analytically. Next, Veblen and Bussey
(1906) gave the first systematic account of PG(n, q) for any n and q; really, it
may be noted that the group PGL(n + 1, q) of projectivities, which is implicit in
the geometry, goes back to Jordan (1870). At the same time and later, Dickson
was investigating modular invariants, curves and other parts of algebraic geometry
over a finite field. The link with statistics was developed by Bose (1947); earlier,
Fisher (1942) had produced an experimental design from a finite plane, with Yates
(1935) already having made the connection with block designs”.

In his investigations on graph theory, design theory and finite projective
spaces, the statistician Bose mainly used pure combinatorial arguments in combi-
nation with some linear algebra. Another great pioneer in finite projective geome-
try was the Italian geometer Beniamino Segre. His celebrated result of 1954 stating
that in the projective plane PG(2, q) over the Galois field GF(q) with q odd, every
set of q + 1 points, no three of which are collinear, is a conic, stimulated the en-
thusiasm of many young geometers. The work of Segre and his followers has many
links with error-correcting codes and with maximum distance separable codes, in
particular. Finally, the fundamental and deep work in the last four decades on
polar spaces, generalized polygons, and, more generally, incidence geometry, in the
first place by Tits, but also by Shult, Buekenhout, Kantor and others, gave a new
dimension to finite geometry.

Here I will state some important and elegant theorems, say something about
the used techniques and the relation with other fields, and mention some open
problems.

2 The geometry of PG(2, q)

First I will consider the geometry of PG(2, q), that is, the projective plane over the
finite field GF(q). To begin with, it is the purpose to show how classical algebraic
curves can be characterized in pure combinatorial terms. I will illustrate this with
a theorem on conics and one on Hermitian curves.

A k-arc of PG(2, q) is a set of k points of PG(2, q) no three of which are
collinear. Then clearly k ≤ q + 2. By Bose [1947], for q odd, k ≤ q + 1. Further,
any nonsingular conic of PG(2, q) is a (q + 1)-arc. It can be shown that each
(q + 1)-arc K of PG(2, q), q even, extends to a (q + 2)-arc K ∪ {x} (see, e.g.,
Hirschfeld [1998], p.177); the point x, which is uniquely defined by K, is called the
kernel or nucleus of K. The (q+1)-arcs of PG(2, q) are called ovals. The following
celebrated theorem is due to Segre [1954].

Theorem 1. In PG(2, q), q odd, every oval is a nonsingular conic.

For q even, Theorem 1 is valid if and only if q ∈ {2, 4}; see e.g., Thas [1995a].
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A Hermitian arc or unital H of PG(2, q), with q a square, is a set of q
√
q + 1

points of PG(2, q) such that any line of PG(2, q) intersects H in either 1 or
√
q+1

points. The lines intersecting H in one point are called the tangent lines of H.
At each of its points H has a unique tangent line. Let ζ be a unitary polarity
of PG(2, q), q a square. Then the absolute points of ζ, that is, the points x of
PG(2, q) which lie on their image xζ , form a Hermitian arc. Such a Hermitian
arc is called a nonsingular Hermitian curve. For any nonsingular Hermitian curve
coordinates in PG(2, q) can always be chosen in such a way that it is represented
by the polynomial equation

X
√
q+1

0 +X
√
q+1

1 +X
√
q+1

2 = 0.

In 1992 the following theorem was obtained, solving a longstanding conjecture
on Hermitian curves; see Thas [1992a].

Theorem 2. In PG(2, q), q a square, a Hermitian arc H is a nonsingular Her-
mitian curve if and only if tangent lines of H at collinear points are concurrent.

Theorems 1 and 2 are pure combinatorial characterizations of algebraic curves.
Now we give a characterization, due to Hirschfeld, Storme, Thas and Voloch [1991],
in terms of algebraic curves, that is, we will assume from the beginning that our
pointset is an algebraic curve.

Theorem 3. In PG(2, q), q a square and q 6= 4, any algebraic curve of degree√
q + 1, without linear components, and with at least q

√
q + 1 points in PG(2, q),

must be a nonsingular Hermitian curve.

To prove the previous theorems, classical projective geometry, finite algebraic
geometry, finite field theory and counting arguments were used. A proof of a com-
pletely different nature was used to solve a conjecture from 1975 on the following
easily defined pointsets in PG(2, q).

In PG(2, q) any nonempty set of k points may be described as a (k;m)-arc,
where m (m 6= 0) is the greatest number of collinear points in the set. For given
q and m (m 6= 0), k can never exceed mq − q +m, and a (mq − q +m;m)-arc is
called a maximal arc. Equivalently, a maximal arc may be defined as a nonempty
set of points meeting every line in just m points or in none at all. Trivial maximal
arcs are the plane PG(2, q) itself (m = q + 1), the affine plane AG(2, q) obtained
by deleting a line L from PG(2, q) (m = q), and a single point (m = 1). If K is a
(mq− q+m;m)-arc of PG(2, q), where m ≤ q, then it is easy to show that the set

K ′ = {lines L of PG(2, q) : L ∩K = ∅}

is a (q(q −m + 1)/m; q/m)-arc (i.e., a maximal arc) of the dual plane. Hence, if
the plane PG(2, q) contains a (mq − q +m;m)-arc, m ≤ q, then it also contains a
(q(q −m+ 1)/m; q/m)-arc. It follows that a necessary condition for the existence
of a maximal arc, with m ≤ q, is that m should be a factor of q.
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In 1969 Denniston proves that the condition m|q does suffice in the case of
any plane PG(2, 2h), and in 1975 Thas proves that in PG(2, q), with q = 3h and
h > 1, there are no (2q+3; 3)-arcs and no (q(q−2)/3; q/3)-arcs. The longstanding
conjecture that in PG(2, q), q odd, the only maximal arcs are the trivial ones,
was proved just recently by Ball, Blokhuis and Mazzocca; see Ball, Blokhuis and
Mazzocca [1997] and Ball and Blokhuis [1998].

Theorem 4. In PG(2, q), q odd, there is no maximal (qm − q +m;m)-arc with
1 < m < q.

In the proof the point (x, y) of the affine plane AG(2, q) is identified with
the element x + αy of GF(q2) = GF(q)(α). Then, assuming the existence of a
nontrivial maximal arc in AG(2, q), q odd, polynomials over GF(q2) are defined
the clever manipulation of which leads to a contradiction.

3 The geometry of PG(n, q), n ≥ 3

If V is a “classical” algebraic variety in PG(n, q) (or one of its projections), n ≥ 3,
e.g., a quadric, a Hermitian variety, a Veronese variety, then a first approach is to
characterize V either as a subset of PG(n, q) which intersects certain subspaces of
PG(n, q) in sets with cardinalities in some range or as a subset of PG(n, q) whose
points satisfy certain linear independence conditions. One characterization of the
first type will be given here, while in Section 4 we will show how (subsets of)
normal rational curves can be characterized by one simple independence condition
on the points.

A nonsingular Hermitian variety H of PG(n, q), q a square and n ≥ 2, is any
subset of PG(n, q) which is equivalent under the group PGL(n+1, q) to the subset
of PG(n, q) represented by the equation

X
√
q+1

0 +X
√
q+1

1 + · · ·+X
√
q+1

n = 0.

A subset K of PG(n, q), n ≥ 2, is of type (1,m, q+1) if every line of PG(n, q)
meets it in 1,m, or q + 1 points. A point of K is singular if every line through it
intersects K either in 1 or q + 1 points. Then K is called singular or nonsingular
as it has singular points or not.

Theorem 5. If K is a nonsingular set of type (1,m, q + 1) of PG(n, q), with
3 ≤ m ≤ q − 1, n ≥ 3 and q > 4, then K is either a nonsingular Hermitian
variety of PG(n, q) (and then m =

√
q + 1) or the projection onto PG(n, q) of a

nonsingular quadric Q of PG(n+1, q) ⊃ PG(n, q) from a point x ∈ PG(n+1, q)\
PG(n, q) other than the nucleus (or kernel) of Q in the case that n is even (and
here m = q

2
+ 1, so q is even).

Form 6= q

2
+1 the result is due to Tallini Scafati [1967] and form = q

2
+1, n > 3

and part of n = 3, to Hirschfeld and Thas [1980a, 1980b]. The missing part in
the case m = q

2
+ 1 and n = 3 was done by Glynn [1983]. Finally the case

Documenta Mathematica · Extra Volume ICM 1998 · III · 397–408



Finite Geometries, Varieties and Codes 401

(q,m) = (4, 3) was handled by Sherman [1983], see also Hirschfeld and Hubaut
[1980] and Hirschfeld [1985]; it appears that here the sets K can be identified with
the codewords of a projective geometry code.

A second approach is that where the object is described as an incidence struc-
ture satisfying certain properties; here the geometry is not a priori embedded in a
projective space, even the finite field is in many cases a priori absent. Hence the
finite projective space must be constructed.

A first example concerns circle geometries and designs. A t− (v, k, λ) design,
with v > k > 1, k ≥ t ≥ 1, λ > 0, is a set P with v elements called points,
provided with subsets of size k called blocks, such that any t distinct points are
contained in exactly λ blocks. A 3 − (n2 + 1, n + 1, 1) design is usually called
an inversive plane or Möbius plane of order n; here the blocks are mostly called
circles. An ovoid O of PG(3, q), q > 2, is a set of q2+1 points no three of which are
collinear; an ovoid of PG(3, 2) is the same as a nonsingular elliptic quadric, that is,
a nonsingular quadric of PG(3, 2) containing no lines. For properties on ovoids we
refer to Hirschfeld [1985]. If O is an ovoid, then O provided with all intersections
π ∩ O, where π is any plane containing at least 2 (and then automatically q + 1)
points of O, is an inversive plane J (O) of order n. An inversive plane arising from
an ovoid is called egglike. The following famous theorem is due to Dembowski
[1964].

Theorem 6. Each (finite) inversive plane of even order is egglike.

If the ovoid O is an elliptic quadric, then the inversive plane J (O) is called classical
or Miquelian. Barlotti [1955] and, independently, Panella [1955] proved that for q
odd any ovoid is an elliptic quadric. Hence for q odd any egglike inversive plane is
Miquelian. For odd order no other inversive planes are known. To the contrary, in
the even case Tits [1962] showed that for any q = 22e+1, with e ≥ 1, there exists an
ovoid which is not an elliptic quadric; these ovoids are called Tits ovoids and are
related to the simple Suzuki groups Sz(q). For even order no other nonclassical
inversive planes than the ones associated to the Tits ovoids are known.

Let J be an inversive plane of order n. For any point x of J , the points
of J different from x, together with the circles containing x (minus x), form a
2 − (n2, n, 1) design, that is, an affine plane of order n. That affine plane is
denoted by Jx, and is called the internal plane or derived plane of J at x. For an
egglike inversive plane J (O) of order q, each internal plane is Desarguesian, that
is, is the affine plane AG(2, q). The following theorem, due to Thas [1994], solves
a longstanding conjecture on circle geometries.

Theorem 7. Let J be an inversive plane of odd order n. If for at least one point
x of J the internal plane Jx is Desarguesian, then J is Miquelian.

The key idea in the proof of this theorem on Möbius planes is to use a fundamental
result on Minkowski planes (another type of circle geometries), which in turn
depends on the classification of a particular class of quasifields. As a corollary
of Theorem 7 we obtain the first computer-free proof of the uniqueness (up to
isomorphism) of the inversive plane of order 7.
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Another beautiful illustration of this second approach is a characterization of
all polar spaces of rank at least three. Here, starting from about nothing we get
everything. First, let us give Tits’ axioms for a polar space of rank r, with r ≥ 3.

A polar space S of rank r, with r ≥ 3, is a set P of elements called points,
provided with distinguished subsets called subspaces, such that the following prop-
erties are satisfied.

(i) Any subspace, together with the subspaces it contains, is a projective space
of dimension at most r − 1.

(ii) The intersection of any family of subspaces is a subspace.

(iii) Given a subspace π of dimension r − 1 and a point p in P\π, there exists a
unique subspace π′ containing p such that the dimension of π ∩ π′ is r − 2.
Also, the subspace π ∩ π′ is the set of all points p′ of π such that p and p′

are contained in some subspace of dimension one.

(iv) There exist two disjoint subspaces of dimension r − 1.

Isomorphisms between polar spaces are defined in the usual way.

Examples of finite polar spaces

(a) Let Q be a nonsingular quadric in PG(n, q) of rank r (that is, Q contains (r−1)-
dimensional projective spaces, but no r-dimensional projective space), with r ≥ 3.
Then Q together with the projective spaces lying on it is a polar space of rank r.
(b) Let H be a nonsingular Hermitian variety of PG(n, q2), n ≥ 5. Then H
together with the subspaces lying on it is a polar space of rank [n+1

2
] (here [n+1

2
]

is the greatest integer less than or equal to n+1

2
).

(c) Let ζ be a (nonsingular) symplectic polarity of PG(n, q), with n odd. Then
PG(n, q) together with all absolute subspaces of ζ, is a polar space of rank (n+1)/2
(a projective subspace π of PG(n, q) is absolute for ζ if πζ ⊆ π).

A complete classification of all polar spaces of rank at least three has been
obtained by Tits [1974], building on work of Veldkamp [1959]. We state now this
celebrated deep result in the finite case.

Theorem 8. If S is a finite polar space of rank at least three, then S is isomorphic
to one of (a), (b), (c).

Polar spaces of rank 2 were also defined by Tits [1959]; these polar spaces
are usually called generalized quadrangles. The role of generalized quadrangles in
the theory of polar spaces, can be compared to the role of projective planes in the
theory of projective spaces. Just as for projective planes a complete classification
of all generalized quadrangles seems to be hopeless. For more on generalized
quadrangles we refer to the monograph by Payne and Thas [1984] and to Thas
[1995b].

Now we will describe polar spaces in an extremely simple way, just using
points and lines.
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A Shult space S is a nonempty set P of points together with distinguished
subsets of cardinality at least two called lines such that for each line L of S and
each point p of P \ L, the point p is collinear with either one or all points of L;
here two not necessarily distinct points p1 and p2 are called collinear if there is at
least one line of S containing these points. A Shult space is nondegenerate if no
point of S is collinear with all points of S. A subspace X of a Shult space S is
a set of pairwise collinear points such that any line meeting X in more than one
point is contained in X. The Shult space S has rank r, with r ≥ 1, if r is the
largest integer for which there is a chain

X0 ⊂ X1 ⊂ . . . ⊂ Xr

of distinct subspaces X0 = ∅, X1, X2, . . . , Xr.
From Theorem 8 it follows that, for any finite polar space S of rank r, with

r ≥ 3, the pointset P together with the subspaces of dimension one is a Shult space
of rank r. In fact this result also holds for infinite polar spaces. The following
beautiful and extremely strong converse is due to Buekenhout and Shult [1974].

Theorem 9. Any nondegenerate Shult space of rank r, with r ≥ 3, all of whose
lines have cardinality at least three, together with its subspaces, is a polar space of
rank r.

We remark that Buekenhout and Shult [1974] also classified all degenerate
Shult spaces; in fact, the problem is reduced to the classification of the nondegen-
erate ones.

Finally, let us mention that further fundamental and deep work on polar
spaces, point-line geometries related to buildings, and, more generally, incidence
geometry, was done in the first place by Tits, and further by Buekenhout, Cohen,
Cooperstein, Kantor, Shult and others; these developments gave a new dimension
to finite geometry. As excellent reference we mention the “Handbook of Incidence
Geometry: Buildings and Foundations”, edited by Buekenhout in 1995.

4 An exemplary illustration of the interplay between Galois ge-

ometry, coding theory and algebraic geometry

Let C be a code of length k over an alphabet A of size q, with q ∈ N\{0, 1}. In
other words C is simply a set of (code) words where each word is an element of Ak.
Having chosen m, with 2 ≤ m ≤ k, we impose the following condition on C: no
two words in C agree in as many as m positions. It then follows that |C| ≤ qm. If
|C| = qm, then C is called a Maximum Distance Separable code (MDS code). MDS
codes are exactly the codes which meet the Singleton bound; see e.g. Hill [1986].
There is a voluminous literature on the subject; we refer e.g. to the standard work
by MacWilliams and Sloane [1977] and to the book by Hill [1986]. MacWilliams
and Sloane introduce their chapter on MDS codes as “one of the most fascinating
in all of coding theory”.

The Hamming distance between two code words x = (x1, x2, . . . , xk) and
y = (y1, y2, . . . , yk) is the number of indices i for which xi 6= yi; it is denoted by
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d(x, y). The minimum Hamming distance of C is

min(d(x, y) : x, y ∈ C and x 6= y)

and is denoted by d(C). If C is an MDS code, then one easily shows that

d(C) = k −m+ 1,

that is, the Singleton bound is met. One of the main problems concerning such
codes is to maximize d(C), and so k, for given m and q. Also, what is the structure
of C in the optimal case?

Now the problem will be formulated for the case when C is linear, i.e., for
the case that C is an m-dimensional subspace of the k-dimensional vector space
V (k, q) over GF(q). It goes like this. Choose any basis for C and represent it as
an m × k-matrix A over GF(q) of rank m. Then C is MDS if and only if every
set of m columns of A is linearly independent.

Next, let us turn to particular pointsets of PG(n, q) introduced by Segre in
1955. A k-arc in PG(n, q), with n ≥ 2, is a set K of k points with k ≥ n+ 1 such
that no n+ 1 points of K lie in a hyperplane, that is, such that any n+ 1 points
are linearly independent. A k-arc K is complete if it is not properly contained in
a larger arc. Otherwise, if K ∪ {x} is a (k + 1)-arc for some point x of PG(n, q)
we say that x extends K.

A normal rational curve (NRC) of PG(n, q), with q > n + 1, is any set of
points in PG(n, q) which is equivalent under the group PGL(n+ 1, q) to

{(tn, tn−1, . . . , t, 1) : t ∈ GF (q)} ∪ {(1, 0, . . . , 0, 0)}.

Clearly any NRC is a (q + 1)-arc. A NRC of PG(2, q) is a nonsingular conic; a
NRC of PG(3, q) is a twisted cubic.

k-Arcs were introduced by Segre [1955], who also posed the next three fun-
damental problems.

(a) For given n and q what is the maximum value of k for which there exist
k-arcs in PG(n, q)?

(b) For what values of n and q, with q > n+ 1, is every (q + 1)-arc a NRC?

(c) For given n and q, with q > n+ 1, what are the values of k for which every
k-arc is contained in a (q + 1)-arc of this space?

The famous Theorem 1 of Segre gives the answer, for q odd, to Problem (b)
in the twodimensional case.

Hundreds of papers were written on k-arcs, in particular on the above prob-
lems, which are now solved for “most” values of the parameters. For example, if
q > f(n) with f some quadratic polynomial over Q, then k ≤ q+1 for n ≥ 3, and
any (q + 1)-arc in PG(n, q), with n ≥ 3 and (n, q) 6= (3, 2h), is a NRC; also, by

Documenta Mathematica · Extra Volume ICM 1998 · III · 397–408



Finite Geometries, Varieties and Codes 405

Casse and Glynn [1982] any (q + 1)-arc of PG(3, q), q = 2h, is equivalent under
PGL(4, q) to

{(t2r+1, t2
r

, t, 1) : t ∈ GF(q)} ∪ {(1, 0, 0, 0)},
with (r, h) = 1.

The main tool in the proofs is that with any k-arc of PG(n, q) there corre-
sponds an algebraic hypersurface in the dual space of PG(n, q). For n = 2 this
was proved by Segre [1967] and for n > 2 twenty years later, by Bruen, Thas and
Blokhuis [1988]. Essential also are the bounds on the number of points of an alge-
braic curve in PG(2, q), particularly the Hasse-Weil bound (see, e.g., Sections 2.9
and 2.15 of Hirschfeld [1988] for references) and the Stöhr-Voloch [1986] bound.

For surveys on k-arcs we refer to Hirschfeld and Thas [1991], Thas
[1992b,1995a] and Hirschfeld and Storme [1998].

The main conjecture on k-arcs is the following.

Conjecture. If K is a k-arc of PG(n, q), with q ≥ n+ 1, then

(a) for q even and n ∈ {2, q − 2} we have k ≤ q + 2,

(b) k ≤ q + 1 in all other cases.

We remark that (q + 2)-arcs exist in PG(2, q) and PG(q − 2, q), q = 2h and h ≥ 2;
see Hirschfeld and Thas [1991].

As already mentioned, a linear code C of length k and dimension m, with
2 ≤ m ≤ k, over GF(q) is MDS if and only if it is generated by the rows of anm×k-
matrix A over GF(q) for which every set of m columns is linearly independent.
Now we regard the columns of A as points p1, p2, . . . , pk of PG(m − 1, q). Then,
for a linear MDS code, no m of these points lie in a hyperplane, that is, for
m ≥ 3 these points form a k-arc of PG(m − 1, q). Conversely, with any k-arc
of PG(m − 1, q),m ≥ 3, there corresponds a linear MDS code. Remark that the
linear MDS codes of dimension two are known and are quite trivial. So we have
the following theorem.

Theorem 10. Linear MDS codes of dimension at least three and k-arcs are
equivalent objects.

So each result on linear MDS codes of dimension at least three can be tranlated
into a result on k-arcs, and conversely. This way a lot of new fundamental results
on linear MDS codes were obtained. Many of these translated results on k-arcs
were proved long before the relation with coding theory was discovered. This is
indeed a beautiful example of interrelationship between pure finite geometry and
coding theory.

5 Appendix: Recent research in finite geometries

In this appendix I will give an example of brand new research in the field.
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Let P and B be disjoint sets, each consisting of q2+q+1 lines of PG(n, q). An
element L of P and an element M of B are called incident if and only if L∩M 6= ∅.
Now assume that the point-line incidence structure with pointset P , lineset B and
the given incidence is a projective plane P of order q. Finally, we suppose that for
any incident point-line pair (L,M) of P, all points and lines of P incident either
with L or with M are contained in a common hyperplane of PG(n, q). Then the
author and Van Maldeghem just proved that the plane P is Desarguesian, that
n ∈ {6, 7, 8}, that for n = 6 q is a power of 3 and that, up to isomorphism, there
is a unique example in PG(6, q) for any such q = 3h. Also, they already handled
large part of the remaining cases n = 7, 8, and the complete classification normally
should be finished by the beginning of the conference.

The solution of this problem is a key step in the determination of all dual
classical generalized hexagons with q + 1 points on any line, whose points are
points of PG(n, q) and whose lines are lines of PG(n, q); see Thas [1995b] for the
definition of generalized hexagon.
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