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Multisegment Duality, Canonial Bases

and Total Positivity
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Abstract. We illustrate recent interactions between algebraic combi-
natorics, representation theory and algebraic geometry with a piecewise-
linear involution called the multisegment duality.
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1. Introduction. We discuss some recent interactions between representation
theory, algebraic geometry and algebraic combinatorics. Classically such an inter-
action involves:

• finite-dimensional representations of symmetric and general linear groups;
• geometry of flag varieties and Schubert varieties;
• combinatorics of Young tableaux and related algorithms such as the
Robinson-Schensted-Knuth correspondence.

More recent advances in representation theory such as Lusztig’s canonical
bases [14] and Kashiwara’s crystal bases [10] require new geometric and com-
binatorial tools. On the geometric side, an important role is played by quiver
representation varieties and totally positive varieties. On the combinatorial side,
the objects of interest become rational polyhedral convex cones and polytopes,
their lattice points, and their piecewise-linear transformations.

We illustrate this interplay with a particular piecewise-linear involution, the
multisegment duality. It was introduced in [20, 21] in the context of representa-
tions of general linear groups over a p-adic field. It also naturally appears in the
geometry of quiver representations, and in the study of canonical bases for quan-
tum groups. On the combinatorial side, it is closely related to Schützenberger’s
involution on Young tableaux [19], as demonstrated in [4]. In this talk, we give a
new combinatorial interpretation of the multisegment duality as an intertwining
map between two piecewise-linear actions of the Lascoux-Schützenberger plactic
monoid [12].
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2. Multisegment duality and quiver representations. We fix a positive
integer r and consider the set Σ = Σr of pairs of integers (i, j) such that 1 ≤
i ≤ j ≤ r. We regard a pair (i, j) ∈ Σ as a segment [i, j] := {i, i + 1, . . . , j}
in [1, r]. Note that Σ can be identified with the set of positive roots of type Ar:
each segment [i, j] corresponds to a root αi + αi+1 + · · · + αj , where α1, . . . , αr

are the simple roots of type Ar in the standard numeration. Let NΣ denote the
free abelian semigroup generated by Σ. We call its elements multisegments ; they
are formal linear combinations m =

∑

(i,j)∈Σ mij [i, j] with nonnegative integer

coefficients.
Our main object of study will be the multisegment duality involution ζ on NΣ.

Following [21], we define it in terms of quiver representations of the equidirected
quiver of type Ar. Such a representation is a collection of finite-dimensional vector
spaces V1, . . . , Vr (say over C) and linear maps Xk : Vk → Vk+1 for k = 1, . . . , r−1.
Morphisms between and direct sums of representations are defined in an obvious
way. As a special case of Gabriel’s classification [8], isomorphism classes of these
quiver representations are in natural bijection with NΣ. That is, the multisegment
m =

∑

mij [i, j] corresponds to the isomorphism class I(m) = ⊕mijIij , where
the indecomposable representations Iij are defined as follows: the space Vk in
Iij is one-dimensional for k ∈ [i, j], and zero otherwise, and Xk(Vk) = Vk+1 for
k ∈ [i, j − 1].

We also consider representations of the opposite quiver: such a representation
is a collection of finite-dimensional vector spaces V1, . . . , Vr and linear maps Yk :
Vk → Vk−1 for k = 2, . . . , r. The isomorphism classes of these representations
are also labeled by multisegments: now a multisegment m corresponds to the
isomorphism class Iop(m) = ⊕mijI

op
ij , where Iopij is obtained by reversing arrows

in Iij .
Now let (V ;X) be a quiver representation in the isomorphism class I(m).

Let Z(V ;X) be the variety of opposite quiver representations (V ;Y ) on the same
collection of vector spaces Vk such that Yk+1Xk = Xk−1Yk for k ∈ [1, r] (with
the convention that X0 = Xr = Y1 = Yr+1 = 0). It is easy to show that all
generic representations from Z(V ;X) belong to the same isomorphism class (here
“generic” means that, for any (i, j) ∈ Σ, the composition Yi+1 · · ·Yj : Vj → Vi has
the maximal possible rank). We define ζ(m) to be the multisegment corresponding
to a generic representation in Z(V ;X); that is, the isomorphism class of this
generic representation is Iop(ζ(m)). The definition readily implies that the map
ζ : NΣ → NΣ is an involution.

3. Formula for the multisegment duality. We now present a closed for-
mula for ζ obtained in [11]. For (i, j) ∈ Σ, let Tij denote the set of all maps
ν : [1, i] × [j, r] → [i, j] such that ν(k, l) ≤ ν(k′, l′) whenever k ≤ k′ and l ≤ l′ (in
other words, ν is a morphism of posets, where [1, i] × [j, r] is supplied with the
product order). For any multisegment m =

∑

mij [i, j], we set

ρij(m) = minν∈Tij

∑

(k,l)∈[1,i]×[j,r]

mν(k,l)+k−i,ν(k,l)+l−j(1)

(with the understanding that ρij(m) = 0 for (i, j) /∈ Σ).
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Theorem 1. For every multisegment m, the multisegment ζ(m) =
∑

m′
ij [i, j] is

given by

m′
ij = ρij(m)− ρi−1,j(m)− ρi,j+1(m) + ρi−1,j+1(m) .(2)

The function ρij(m) in (1) has the following meaning: it is the rank of the
map Yi+1 · · ·Yj : Vj → Vi for any quiver representation (V ;Y ) in the isomorphism
class Iop(ζ(m)).

The proof of Theorem 1 in [11] is elementary, using only linear algebra and
combinatorics. The main ingredients of the proof are: the “Max Flow = Min Cut”
theorem from the network flow theory [7], and the result of S. Poljak describing
the maximal possible rank for a given power of a matrix with a given pattern of
zeros [18].

4. Representation-theoretic connections. It was conjectured in [20, 21]
that the multisegment duality describes a natural duality operation acting on
irreducible smooth representations of general linear groups over p-adic fields. In
[17], this conjecture was reformulated in terms of representations of affine Hecke
algebras and then proved. We recall (see [17, I.2]) that the affine Hecke algebra
Hn can be defined as the associative algebra with unit over Q(q) generated by the
elements S1, . . . , Sn−1, X

±1
1 , . . . , X±1

n subject to the relations:

(Si − q)(Si + 1) = 0, SiSi+1Si = Si+1SiSi+1,

XjXk = XkXj , SiXj = XjSi (j 6= i, i+ 1), SiXi+1Si = qXi.

As shown in [17] using the results of [20], irreducible finite-dimensional repre-
sentations of Hn are naturally indexed by multisegments m =

∑

mij [i, j] with
∑

i,j(j+1−i)mij = n (here we have to take the multisegments supported on some

segment [a, b] ⊂ Z, not only on [1, r]). According to [17, Proposition I.7.3], the in-
volution ζ corresponds to the following involution on irreducible finite-dimensional
representations of Hn: π 7→ π ◦ ϕ, where ϕ is the automorphism of Hn defined by

ϕ(Si) = −qS−1
n−i, ϕ(Xj) = Xn+1−j .

(This result was extended from GLn to other reductive groups in [1].)
Another interpretation of ζ is in terms of quantum groups. Let Cq[N ] be

the q-deformation of the algebra of regular functions on the group N of unipotent
upper triangular (r+1)× (r+1) matrices (see, e.g., [4]). We recall that Cq[N ] is
an associative algebra with unit over Q(q) generated by the elements x1, . . . , xr

subject to the relations:

xixj = xjxi for |i− j| > 1,

x2
ixj − (q + q−1)xixjxi + xjx

2
i = 0 for |i− j| = 1.

This algebra has a distinguished basis B, the dual canonical basis (it is dual to
Lusztig’s canonical basis constructed in [14]). It follows from the results in [14]
that B is invariant under the involutive antiautomorphism b 7→ b∗ of Cq[N ] such
that x∗

i = xi for all i. As shown in [4], there exists a natural labeling m 7→ b(m)
of B by multisegments such that b(m)∗ = b(ζ(m)) for every m ∈ Σ.
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Recently in [13], a duality similar to the multisegment duality was introduced
and studied; it involves affine Hecke algebras at roots of unity, modular represen-
tations of the groups GLn over p-adic fields, and Kashiwara’s crystal bases for
affine Lie algebras.

5. Mœglin–Waldspurger rule. We now turn to a more detailed discussion of
combinatorial properties and connections of the multisegment duality ζ. We start
with a recursive description of ζ given in [17].

Take any nonzero multisegment m =
∑

(i,j)∈Σ mij [i, j]. Let k be the minimal

index such that mkj 6= 0 for some j. Define the sequence of indices j1, j2, . . . , jp
as follows:

j1 = min {j : mkj 6= 0}, jt+1 = min {j : j > jt,mk+t,j 6= 0} (t = 1, . . . , p− 1) .

The sequence terminates when jp+1 does not exist: that is, when mk+p,j = 0 for
jp < j ≤ r. We associate to m the multisegment m′ given by

m′ = m+

p
∑

t=1

([k + t, jt]− [k + t− 1, jt])(3)

(with the convention [i, j] = 0 unless 1 ≤ i ≤ j ≤ r). The Mœglin–Waldspurger
rule states that

ζ(m) = ζ(m′) + [k, k + p− 1] .(4)

Setting |m| :=
∑

(j + 1 − i)mij ∈ N, we see that |m′| = |m| − p < |m| for any
nonzero multisegment m; thus (4) (combined with ζ(0) = 0) indeed provides a
recursive description of ζ.

6. Relations with plactic monoid. We now give a new combinatorial in-
terpretation of the multisegment duality as an intertwining map between two
piecewise-linear actions of the Lascoux-Schützenberger plactic monoid [12]. Let
Plr denote the plactic monoid on r + 1 letters. By definition, Plr is an associa-
tive monoid with unit generated by r + 1 elements p1, p2, . . . , pr+1 subject to the
relations

pjpipk = pjpkpi, pipkpj = pkpipj (1 ≤ i < j < k ≤ r + 1) ,

pjpipj = p2jpi, pipjpi = pjp
2
i (1 ≤ i < j ≤ r + 1)

(sometimes called the Knuth relations). As shown by A. Lascoux and M.-P.
Schützenberger, this structure provides a natural algebraic framework for the study
of Young tableaux and symmetric polynomials.

We now define two right actions of Plr on NΣ, which we shall denote (m, p) 7→
m·p and (m, p) 7→ m∗p, respectively. Given a multisegmentm =

∑

(i,j)∈Σ mij [i, j]

and an index k ∈ [1, r + 1], the multisegments m · pk and m ∗ pk are defined as
follows.

To define m · pk, let j1, j2, . . . , jp be a sequence of indices given recursively as
follows:

j1 = k − 1, jt+1 = min {j : jt < j ≤ r, mtj > 0} (t = 1, . . . , p− 1) .
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The sequence terminates when the set under the minimum sign becomes empty:
that is, when mpj = 0 for jp < j ≤ r. Now we set

m · pk = m+

p
∑

t=1

([t, jt]− [t− 1, jt]) .(5)

To definem∗pk, we construct recursively two sequences of indices c0, c1, . . . , cp
and i1, i2, . . . , ip+1:

c0 = r, i1 = k; ct = max
(

{c : 0 ≤ c < ct−1, mit,it+c > 0} ∪ {−1}
)

,

it+1 = max
(

{i : 1 ≤ i < it, mi,i+ct = 0} ∪ {0}
)

(t = 1, . . . , p) .

The process terminates when ip+1 = 0. Now we define

m ∗ pk = m+

p
∑

t=1

∑

it+1<i≤it

([i− 1, i+ ct]− [i, i+ ct]) .(6)

Theorem 2. (a) Each of the correspondences given by (5) and (6) extends by
associativity to a right action of Plr on NΣ.
(b) Each of the two actions in (a) is transitive: i.e., for every two multisegments
m1 and m2, there exist p, p′ ∈ Plr such that m2 = m1 · p = m1 ∗ p

′.
(c) The multisegment duality ζ intertwines the two actions: ζ(m · p) = ζ(m) ∗ p
for any multisegment m and any p ∈ Plr.

In view of part (b), ζ is uniquely determined by the intertwining property (c)
combined with the normalization ζ(0) = 0. The following proposition, a direct
consequence of the definitions, shows that the Mœglin–Waldspurger rule (4) is a
special case of Theorem 2 (c).

Proposition 3. Let m be a nonzero multisegment. Suppose k is the minimal
index such that mkj 6= 0 for some j, and l is the maximal index such that mkl 6= 0.
Then m · (pkpk−1 · · · p1) is the multisegment m′ in (3), while m∗ (pkpk−1 · · · p1) =
m− [k, l].

The idea to relate the multisegment duality with the plactic monoid was
suggested to the author by M.-P. Schützenberger during the author’s visit to Uni-
versité de Marne-la-Vallée in May-June 1994. Theorem 2 was proved soon after,
but never published.

7. Schützenberger involution. Let us now explore the relation between the
multisegment duality and the Schützenberger involution on Young tableaux. We
need some terminology and notation related to tableaux. Let λ = (λ1 ≥ · · · ≥
λr ≥ 0) be a partition of length ≤ r. We identify λ with its diagram (denoted by
the same letter)

λ = {(i, j) ∈ Z× Z : 1 ≤ i ≤ r, 1 ≤ j ≤ λi} .

An Ar-tableau of shape λ is a map τ : λ → [1, r + 1] satisfying

τ(i, j + 1) ≥ τ(i, j), τ(i+ 1, j) > τ(i, j)

for all (i, j) ∈ λ (with the convention that τ(i, j) = +∞ for i > r or j > λi). The
Schützenberger involution τ 7→ η(τ) (also known as the evacuation involution) is
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an involution on the set of Ar-tableaux of shape λ which can be defined recursively
as follows (cf. [19]).

To any Ar-tableau τ of shape λ we associate a sequence of entries
(i1, j1), . . . , (ip, jp) ∈ λ in the following way. We set (i1, j1) = (1, 1) and

(it+1, jt+1) =

{

(it, jt + 1) if τ(it, jt + 1) < τ(it + 1, jt) ;

(it + 1, jt) if τ(it, jt + 1) ≥ τ(it + 1, jt) .

The sequence terminates at a corner point (ip, jp) ∈ λ, i.e., when none of (ip+1, jp)
and (ip, jp+1) belong to λ. Now we set λ′ = λ−{(ip, jp)} and consider the tableau
τ ′ of shape λ′ obtained from τ by changing the values at (i1, j1), . . . , (ip−1, jp−1)
according to τ ′(it, jt) = τ(it+1, jt+1). The tableau η(τ) is defined recursively
as the tableau η(τ ′) of shape λ′ extended to a tableau of shape λ by setting
η(τ)(ip, jp) = r + 2− τ(1, 1).

There are (at least) two natural ways to encode tableaux by multisegments:
to each tableau τ : λ → [1, r + 1] we associate two multisegments ∂(τ) and ∂′(τ)
given by

∂(τ)ij = #{s : τ(i, s) = j + 1}, ∂′(τ)ij = #{s : τ(i, s) ≤ j, τ(i+ 1, s) ≥ j + 2} .

For a given shape λ, a tableau τ is uniquely recovered from each of the multiseg-
ments ∂(τ) and ∂′(τ). More precisely, the correspondence τ 7→ ∂(τ) is a bijection
between the set of all Ar-tableaux of shape λ and the set of multisegments m

satisfying
r

∑

k=j

(mi,k −mi+1,k+1) ≤ λi − λi+1 (1 ≤ i ≤ j ≤ r) ;

and the multisegments m = ∂(τ) and m′ = ∂′(τ) are related as follows:

m′
ij = λi − λi+1 −

r
∑

k=j

(mi,k −mi+1,k+1) ;

mij = λr−j+i − λr−j+i+1 −

r
∑

k=j

(m′
k−j+i,k −m′

k−j+i,k+1) .

The relationship between the Schützenberger involution η and the multiseg-
ment duality ζ is now given as follows.

Theorem 4. For every tableau τ , the multisegment ∂′(η(τ)) is obtained from
ζ(∂(τ)) by the following permutation of indices: ∂′(η(τ))j−i+1,r−i+1 = ζ(∂(τ))ij .

Theorem 4 was formulated in [11] and proved in [4]; the proof uses some
properties of canonical bases, and an equivalent definition of the Schützenberger
involution in terms of the so-called Bender-Knuth operators (this definition is due
to Gansner [9]).

8. Lusztig’s transition maps and total positivity. We now show that the
multisegment duality is a special case of Lusztig’s piecewise-linear transition maps
between various parametrizations of the (dual) canonical basis B. This will require
some terminology.
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Recall that Σ = Σr stands for the set of all segments [i, j] ⊂ [1, r]. We say
that a triple of distinct segments is dependent if one of these segments is the
disjoint union of two remaining ones; the largest segment in a dependent triple
will be called the support of the triple, and two remaining ones the summands. Let
ν = (ν1, . . . , νm) be a total ordering of Σ; here m = r(r + 1)/2, the cardinality of
Σ. We say that ν is normal if the support of every dependent triple of segments lies
between its summands. The bijection between segments and positive roots given
in Section 2 identifies normal orderings of Σ with the well-known normal orderings
of positive roots; thus normal orderings are in natural bijection with reduced
words for w0, the longest permutation in the symmetric group Sr+1 (see e.g., [3,
Proposition 2.3.1]). Two examples: in the lexicographic normal ordering νmin a
segment [i, j] precedes [i′, j′] if i < i′ or i = i′, j < j′; the reverse lexicographic
normal ordering νmax is obtained from νmin by replacing each segment [i, j] with
[r + 1− j, r + 1− i].

Now consider the dual canonical basis B in Cq[N ] (see Section 4). Translating
results of [15, 16] (see also [3]) into the language of segments, we see that every
normal ordering ν of Σ gives rise to a bijective parametrization bν : NΣ → B. (In
particular, bνmin

is the parametrization m → b(m) discussed in Section 4.) For
any two normal orderings ν and ν′, Lusztig’s transition map between ν and ν′ is
a bijection Rν′

ν of NΣ onto itself given by

Rν′

ν = b−1
ν′ ◦ bν .(7)

The multisegment duality turns out to be one of these maps (see [3, Theorem 4.2.2
and Remark 4.2.3]):

ζ = Rνmax

νmin
.(8)

In [3], closed formulas for the transition maps Rν′

ν were obtained using a
parallelism discovered by Lusztig [16] between canonical bases and total positivity.
In particular, a new proof of Theorem 1 was obtained. We conclude with a brief
discussion of the ideas and methods used in [3].

Clearly, the set of all normal orderings of Σ is closed under the following
elementary moves:

2-move. In a normal ordering ν, interchange two consecutive (with respect to
ν) segments provided they do not belong to a dependent triple.

3-move. Interchange the summands of a dependent triple that occupies three
consecutive positions in ν.

As a consequence of the corresponding well-known property of reduced words,
every two normal orderings of Σ can be obtained from each other by a sequence
of 2- and 3-moves. It follows that every transition map can be expressed as a
composition of “elementary” transition maps Rν′

ν for pairs (ν, ν′) related by a 2-
or 3-move. These elementary transition maps were computed by Lusztig in [15].
Translated into the language of multisegments they take the following form:

• if ν and ν′ are related by a 2-move then Rν′

ν is the identity map;
• if ν′ is obtained from ν by a 3-move

· · ·α, α ∪ β, β · · · → · · ·β, α ∪ β, α · · ·
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then the only components of the multisegment m′ = Rν′

ν (m) different from
the corresponding components of m are

m′
α = mα +mα∪β −min (mα,mβ), m′

α∪β = min (mα,mβ) ,

m′
β = mβ +mα∪β −min (mα,mβ) .

(9)

The key observation now is as follows: the piecewise-linear expressions that
appear in (9) can be interpreted as rational expressions if one uses an exotic “semi-
field” structure on Z, where the usual addition plays the role of multiplication,
and taking the minimum plays the role of addition. The semifield (Z,min,+) is
known under various names. We use the term tropical semifield, which we learned
from M.-P. Schützenberger. A detailed study of its algebraic properties, along
with numerous applications, can be found in [2].

The “rational” version of (9) takes the form

m′
α =

mαmα∪β

mα +mβ

, m′
α∪β = mα +mβ , m′

β =
mβmα∪β

mα +mβ

.(10)

We use this version to define rational transition maps Rν′

ν : R>0Σ → R>0Σ;
here the components mij of multisegments can be any positive real numbers, and
the algebraic operations in (10) are understood in the most common sense. It

is not hard to show that a closed formula for some rational transition map Rν′

ν

would imply such a formula for the corresponding piecewise-linear transition map,
by simply translating it into the tropical language; the only caveat is that the
formula in question must be subtraction-free because the tropical structure does
not allow subtraction.

This is precisely the method used in [3]. To compute rational transition maps,
we use the observation (due to Lusztig) that they have another interpretation par-
allel to that in (7). Namely, they describe the relationships between different
parametrizations of the variety N>0 of all totally positive unipotent upper trian-
gular matrices (recall that a matrix x ∈ N is totally positive if all the minors that
do not identically vanish on N take positive values at x). We refer the reader to
[3] for the details; let us only mention that the computations in [3] are based on
algebraic and geometric study of totally positive varieties. This study is put into
a much more general context in [5, 6].
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