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Worst-Case Complexity,

Average-Case Complexity and Lattie Problems

Miklós Ajtai

Abstract. There is a need both from a theoretical and from a practical
point of view to create computational problems (in NP) that are hard
(that is, they have no polynomial time solutions). Currently there are
no methods to prove that such problemx exist at all. We may assume
however as an axiom, that certain problems are hard, where the choice
of the problems may have historical or theoretical motivations. These
problems however are usually worst-case problems, while, e.g. for cryp-
tographic application, we need hard average-case problems. In this paper
we desrcibe two different average-case problems, and their cryptographic
applications, which are at least as difficult as some well-known worst-case
problems concerning lattices.
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1. Introduction. The goal of complexity theory is to describe the necessary
resources, in terms of time, memory etc. for the solutions of computational prob-
lems. For cryptographic applications it would be particularly important to know
that certain problems (e.g. finding the prime factors of a large integer) cannot
be solved in a reasonable amount of time. (In fact the popular RSA public-key
cryptosystem is based on that assumption.) Unfortunately we do not have yet
any results of this type. Still we may get some information about the (relative)
hardness of such problems if we accept as an axiom the hardness of a well-known
computational problem which was attacked for a long time by many mathemati-
cians without success (that is, we accept that there is no polynomial time solution
of the problem in the size of the input) and prove from this axiom the hardness of
other problems or the security of a cryptographic protocol. E.g. factoring integers,
finding the discrete logarithm can be such problems.

Another similar solution would be to accept as an axiom that there is a
problem in NP (that is a problem where the correctness of a proposed solution
can be checked in polynomial time) which has no polynomial time solution. This
is the famous P 6= NP conjecture. There are known problems (namely each NP -
complete problem) whose hardness follows from this assumption. E.g. “find a
Hamilton-cycle in a given graph” is an NP -complete problem.
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Unfortunately these methods (either we choose the hardness of a famous prob-
lem or an NP -complete problem as an axiom) has an inherent limitation. The
problems in both categories are so-called worst-case problems. That is, they are
hard in the sense that finding a solution is assumed to be difficult only for some
unknown values of the input and can be very easy for other values. E.g. there are
integers whose factors are very easy to find. For cryptographic applications we
have to present a hard instance of the problem, that is, a particular input where
the solution cannot be found easily. The practical solution in the case of factoring
e.g. is to pick the integer as the product of two random primes with some ad-
ditional constraint to make sure that factoring is not made easier by the specific
structure of the prime factors. That is, we use an average-case problem instead of
a worst-case problem. We assume now that this problem whose input is chosen
at random is difficult on the average (or for almost all choice of the input). We
gave up however our original requirement namely that we use only simply stated
and well-studied problems. The algorithmic theory of average-case problems are
ususally only a few decades long, while the history of certain worst-case problems
go back for hundreds of years. The statement of an average-case problem is also
generally less clear-cut because of the many possible choices of the parameters
involved in the randomization. In the case of the Hamilton cycle problem it is not
even clear what would be a good randomization.

There is however a possiblitiy which unites the advantages of the two (worst-
case average-case) methods. Namely we need an average-case problem which is
just as difficult as a well-known worst-case problem. There are two different worst-
case problems concerning short vectors for lattices which has been used recently
in this way to create average-case problems which are at least as difficult as the
original worst-case problems and can be used for various cryptographic purposes.
It is important that individual random instances of these average-case problems
can be created together with a known solution. To formulate these problems we
need some basic defintions about lattices.

A lattice is a subset of the n-dimensional spaceRn over the reals which consist
of the integer linear combinations of n fixed linerly independent vectors. Such a set
of vectors will be called a basis of the lattice. The history of finding short vectors
in lattices goes back to the works of Gauss and Dirichlet. With the fundamental
results of Minkowski about a hundred years ago the theory of lattices became a
separate branch of number theory with a huge literature. Finding short vectors
in a lattice (in various possible senses) was always one of the main goals of this
theory. (The reader may find more information about lattices e.g. in [6] and [11].
The more modern algorithmic theory of lattices is described in [12].)

The two mentioned worst-case problems are the following:

(P1) Find a basis b1, ..., bn in the n-dimensional lattice L whose length, defined
as maxni=1

‖bi‖, is the smallest possible up to a factor of nc, where c is constant.

(P2) Find the shortest nonzero vector in an n dimensional lattice L where the
shortest vector v is unique in the sense that any other vector whose length is at
most nc‖v‖ is parallel to v, where c is a sufficiently large absolute constant.

Problem (P1) is equivalent to the problem of finding a single vector shorter
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than a given number in a class of randomly generated lattices, with a positive
probability (see Ajtai [2]). Therefore finding a short vector in a random lattice is
just as difficult (with high probability) as finding a short basis in the worst-case.
This random construction also gives a one-way function which leads to some cryp-
tographic tools like pseudo-random number generators. A different cryptographic
application namely a collision-free hash function were given by Goldreich, Gold-
wasser and Halevi in [9] . Problem (P2) is somewhat weaker than Problem (P1),
but it seems to be more easily applicable for cryptographic protocols, e.g. its hard-
ness guarantees the security of a public-key cryptosystem (see Ajtai and Dwork
[4]). Another completely different public-key cryptosystem based on the hardness
of lattice problems (without worst-case average-case connection) was proposed by
Goldreich, Goldwasser and Halevi (see [10]).

2. The construction of a random lattice. In this section we describe a way
to generate random n-dimensional lattices so that, if we can find, with a positive
probablitiy and in polynomial time a short vector in the random lattice Λ (where
the probability is taken for the generation of Λ), then the worst-case problems
(P1) and (P2) can be solved in polynomial time. (This assumption also implies
that it ia possible to approximate the length of the shortest vector in an arbitrary
lattice up to a polynomial factor in polynomial time. This is, again a worst-case
problem.) The proofs of the results described in this section can be found in [2].

The definition of the random class. The definition of the lattices will depend
on a parameter n. n can be any positive integer. (The meaning of n is the following:
if it is possible to find a short vector easily in the random lattice generated with
parameter n, then the n dimensional worst-case problem (P1) have a polynomial
time solution.) The dimension of the random lattice will be somewhat larger, about
cn log n for some constant c. The lattices in the random class will be subsets of
Z

m, that is, they will contain only vectors with integer coordinates. (m will be
defined later as a function of n). We will fix an integer q as well (it will be also
a function of n) and the lattices will be defined in a way that the fact whether
a vector belongs to the lattice or not will depend only on the modulo q residue
classes of its coordinates.

Assume that the positive integers n,m and q are fixed, for the moment in an
arbitrary way, and ν = 〈u1, ..., um〉 where u1, ..., um ∈ Z

n is an arbitrary sequence
of length m from the elements of Zn. We define a latice Λ(ν, q) in the following
way: Λ(ν, q) will consist of all sequences 〈h1, ..., hm〉 of integers of length m with
the property:

∑m

i=1
hiui ≡ 0 (mod q).

Our definition of the random class will depend on the choice of two absolute
constant c1 and c2. Assume that n is fixed let m = [c1n log n] and q = [nc2 ]. For
each n we will give a single random variable λ so that Λ = Λ(λ, q) is a lattice
with dimension m. (The existence of a polynomial time algorithm which finds a
short vector in Λ will imply the existence of such an algorithm which solves the
mentioned problems in every lattice L ⊆ R

n.)

First we define an “idealized” version λ′ of λ, which we can define in a simpler
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way. The disadvantage of λ′ is that we do not know how to generate λ′ together
with short vector in Λ(λ′, q). Then we define λ (in a somewhat more complicated
way) so that we can generate it together with a short vector in Λ(λ, q) and we will
also have that P (λ 6= λ′) is exponentially small. This last inequality implies that
if we prove our theorem for Λ(λ′, q) then it will automatically hold for Λ(λ, q) too.

Let λ′ = 〈v1, ..., vm〉 where v1, ..., vm are chosen independently and with uni-
form distribution from the set of all vectors 〈x1, ..., xn〉 where x1, ..., xn are integers
and 0 ≤ xi < q. To find a short vector in the lattice Λ(λ′, q) is equivalent of finding
a solution for a linear simultaneous Diophantine approximation problem. Dirich-
let’s theorem implies that if c1 is sufficiently large with respect to c2 then there
is always a vector shorter than n. (The proof of Dirichlet’s theorem is not con-
structive, it is based on the Pigeonhole Principle applied to a set of exponential
size.)

Definition of λ. We randomize the vectors v1, ..., vm−1 independently and with
uniform distribution on the set of all vectors 〈x1, ..., xn〉 ∈ Z

n, with 0 ≤ xi < q.
Independently of this randomization we also randomize a 0, 1-sequence δ1, ..., δm−1

where the numbers δi are chosen independently and with uniform distribution
from {0, 1}. We define vm by vm ≡ −

∑m−1

i=1
δivi (mod q) with the additional

constraint that every component of vm is an integer in the interval [0, q − 1]. Let
λ = 〈v1, ..., vm〉. (If we want to emphasize the dependence of λ on n, c1, c2 then we
will write λn,c1,c2 .) It is possible to prove that the distribution of λ is exponentially
close to the uniform distribution in the sense that

∑
a∈A |P (λ = a)−|A|−1| ≤ 2−cn,

where A is the set of possible values of λ. This will imply that the random
variable λ′ with the given distribution can be chosen in a way that P (λ′ 6= λ) is
exponentially small.

With this definition our theorem will be formulated in the following way: “if
there is an algorithm which finds a short vector in Λ(λ, q) given λ as an input, then
etc.” That is, we allow the algorithm whose existence is assumed in the theorem
to use λ.

Definitions. 1. If v is a shortest nonzero vector in the lattice L ⊆ R
n, and

α > 1, we say that v is α-unique if for any w ∈ L, ‖w‖ ≤ α‖v‖ implies that v and
w are parallel.

2. If k is an integer then size(k) will denote the number of bits in the
binary representation of k, (size(0) = 1). If v = 〈x1, ..., xn〉 ∈ Z

n then
size(v) =

∑n

i=1
size(xi). Our definition implies that for all v ∈ Z

n, size(v) ≥ n.

Theorem . There are absolute constants c1, c2, c3 so that the following holds.
Suppose that there is a probabilistic polynomial time algorithm A which given a
value of the random variable λn,c1,c2 as an input, with a probability of at least
1/2 outputs a vector of Λ(λn,c1,c2 , [n

c2 ]) of length at most n. Then, there is a
probabilistic algorithm B with the following properties. If the linearly independent
vectors a1, ..., an ∈ Z

n are given as an input, then B, in time polynomial in σ =∑n

i=1
size(ai), gives the outputs z, u, 〈d1, ..., dn〉 so that, with a probability of

greater than 1− 2−σ, the following three requirements are met:

(1.1) if v is a shortest non-zero vector in L(a1, ..., an) then z ≤ ‖v‖ ≤ nc3z
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(1.2) if v is an nc3 -unique shortest nonzero vector in L(a1, ..., an) then u = v or
u = −v

(1.3) d1, ..., dn is a basis with maxni=1
‖di‖ ≤ nc3bl(L).

Remarks. 1. The probability 1/2 in the assumption about A can be replaced
by n−c. This will increase the running time of B by a factor of at most nc but
does not affect the constants c1, c2 and c3.

2. If we assume that A produces a vector of length at most nc′ for some c′ > 1
then the theorem remains true but c1, c2 and c3 will depend on c′.

3. A public-key cryptosystem. The following public-key cryptosystem was
constructed by Ajtai and Dwork (see [4]). It is secure if problem (P2) has no
polynomial time solution. Here we give only a very high level and somewhat
simplified description of the cryptosystem and its mathematical background, and
we refer the reader to [4] for the exact definitions and proofs.

A public cryptosystem serves an unlimited number of participants. Each of
them publishes a public key and keeps a private key. The public key is available
for everybody, but the private key is known only for its owner. Assume now that
Alice wants to send a message to Bob, who published a public key. (We do not
assume that Alice has a public or private key.) Alice, gets Bob’s public key from a
directory available for everybody. Then, using Bob’s private key, she encodes the
message and sends it to Bob through an open channel. Bob using his private key
is able to decode the message, but without this private key the message cannot be
decoded.

The RSA public key cryptosystem (see [14]) for example, fulfils this require-
ment, provided that each participant B can find a positive integer mB = pBqB
where pB , qB are primes known to B, but nobody else in the knowledge of the
number nB alone is able to find the primes pB , qB . Since there is no known fac-
toring algorithm which can factor in a reasonable amount of time a number n
with several hundred digits we may think that the assumption is justified. No-
tice however that the fact that there is no such algorithm implies only that if B
would be able to find the worst possible number nB then his private key would be
safe. However Bob has no way of knowing which is the “worst” number nB . In
practice the pair pX , qX is generated at random with some care of avoiding such
pairs where the factoring of pBqB can be easy. Therefore the assumption used in
practice is that a certain (rather complicated) average-case problem is hard (with
high probability).

In the cryptosystem described below the assumption is the hardness of the
worst-case problem (P2). Still it is proved that this assumption implies that with
a probability very close to one not a single message can be broken without acces
to the private key.

The private key of Bob will be a sequence of equidistant n − 1 dimensional
hyperplanes in the n dimensional real space R

n. More precisely, Bob picks a
random vector uB with uniform distribution from the n dimensional unit ball and
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this vector uB is his private key. For each integer k the set of all x ∈ R
n whose

inner product with uB is k forms a hyperplane Hk. The sequence 〈Hi〉 is the
sequence of hyperplanes mentioned at the beginning. Of course Bob has only the
vector uB , we mentioned the hyperplanes only to make it easier to visualize the
steps in the protocol.

The public key will be a sequence of vectors v1, ..., vm, where m = nc3 , that
Bob picks at random close to the hyperplanes. More precisely assume that Q is
a large cube and U is the union of the hyperplanes Hi. Bob first picks vectors
v′
1
, ..., v′m independently and with uniform distribution from Q ∩ U (with respect

to the n − 1 dimensional Lebesgue measure). Then Bob perturbs these vectors
sightly at random so that they remain close to the hyperplanes. (Their distance
to the closest hyperplane remains smaller than, say, n−8.) The perturbed vectors
are v1, ..., vm.

It is possible to prove (assuming that (P2) has no polynomial time solution)
that the sequence v1, .., vm is computationally indistinguishable from a sequence of
length m whose elements are picked independently and with uniform distribution
from the cube Q. Therefore by making the public key available for anybody, Bob
did not give out any information about the hyperplanes.

Knowing the public key Alice is able to generate a sequence of independent
random points x1, ..., xi, ... ∈ R

n with identical distributions and with the following
properties:

(1) with high probability xi is very close to a hypeprlane Hk, more precisely
if the distance of neighboring hyperplanes is M then there is a hyperplane Hk so
that the distance of xi and Hk is smaller than M

n5 .

(2) the distribution of xi is computationally indistinguishable in polynomial
time, form the uniform distribution on a parallelepiped P, where P can be com-
puted from the public key, so it is known to everybody.

(This last property will be a consequence of the hardness of problem (P2).)

For the moment we accept that Alice has a way of generating such a distri-
bution. Assume now that Alice wants to send a single bit δ to Bob. If δ = 0
then Alice picks a random point y with uniform distribution on the set P, and
sends y as the message. If δ = 1 then Alice generates a random point x with the
distribution of the points xi, from the P and sends x as the message.

Suppose that Bob gets a message z. z is an n-dimensional vector in P. Bob
computes the inner product α = z · uB . If α is close to an integer (say closer than
1

n4 ) then Bob knows z is close to a hyperplane therefore he concludes that δ = 1.
If the distance of α from the closest integer is greater than 1

n4 , then Bob concludes
that δ = 0. (There is a small probability, about 1

n4 , that Bob makes the wrong
decision.)

Finally we sketch how can Alice generate the points xi with the required
properties. P will be a parallelepiped determined by n vectors from the sequence
v1, ..., vm, so that the parallelepiped is relatively “fat”, that is, the minimal dis-
tance between its opposite sides is not too small with respect to the length of a
side of Q. (Larger then, say, n−2 times this length.) P may be the first such par-
allelpiped with this property or Bob can designate a parallelepiped in the public
key. With a very high probability such a parallelepiped always exists. Assume
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that P is the parallelepiped determined by the vectors vi1 , ..., vin
Alice takes a random 0, 1 linear combination w of the vectors v1, ..., vm, then

reduces it to the parallelepiped P modulo vi1 , ..., vin . In other words she adds an
integer linear combination of the vectors vi1 , ..., vin to the vector w so that the
sum x is in P. x has a distribution with the required properties.

4. The NP-hardness of the shortest vector problem. We cannot prove
from any reasonable assumption from complexity theory (like P 6= NP ) that the
problems (P1) or (P2) are hard. Actually it is unlikely that Problem (P2) is NP-
hard for c > 1

2
since it would lead to a collapse in the computational hierarchy (see

Goldreich and Goldwasser [8]). However if we drop the uniqueness requirement
from the problem, that is, we want to find the shortest vector (under the Euclidean
norm) then the problem is NP -hard at least for randomized reductions (see Ajtai
[3]). The proof of this result uses lattices constructed from logarithms of small
primes. This type of lattice construction was originally used by Adleman ([1]) to
reduce factoring to the shortest vector problem (for the proof of correctness he
used number theoretical conjectures about the distribution of smooth numbers.)
The proof of the NP-hardness result also has a combinatorial part which is a
constructive/probabilistic version of Sauer’s Lemma (related to the concept VC
dimension). This is the most difficult part of the proof.

The NP-hardness of the shortest vector problem was conjectured by Van Emde
Boas almost twenty years ago (see [5]). He proved the analogue statement for the
L∞ norm (for deterministic reductions). The shortest vector problem in L2 is NP-
hard even in some approximate sense. Micciancio has proved recently, that the
problem “find a vector which is longer than the shortest vector only by a constant
factor c, where c < n

1

2 ” is NP -hard (see [13]). (The original proof in [3] gave only a
factor 1+2−nǫ

which was improved first by Cai and Nerurkar (see [7] ) to 1+n−ǫ.)
Micciancio also proved that the NP -hardness of the shortest vector problem for
deterministic reductions follows from a natural number theoretic conjecture about
the existence of square-free smooth numbers in long enough intervals.
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