
Doc.Math. J.DMV 441

On Approximating NP-Hard Optimization Problems

Johan Håstad

Abstract. We discuss the efficient approximability of NP-hard opti-
mization problems. Although the methods apply to several problems we
concentrate on the problem of satisfying the maximal number of equa-
tions in an over-determined system of linear equations. We show that
over the field of two elements it is NP-hard to approximate this problem
within a factor smaller than 2. The result extends to any Abelian group
with the size of group replacing the constant 2.

1991 Mathematics Subject Classification: 68Q25,68Q99
Keywords and Phrases: Approximation algorithms, NP-hard optimiza-
tion problems, Linear equations

1 Introduction

The basic entity in complexity theory is a computational problem which, from a
mathematical point of view, is simply a function F from finite binary strings to
finite binary strings. To make some functions more intuitive these finite binary
strings should sometimes be interpreted as integers, graphs, or descriptions of
polynomials. An important special case is given by decision problems where the
range consists of only two strings, usually taken to be 0 or 1.

The basic notion of efficiently computable is defined as computable in time
polynomial in the input-length. The class of polynomial time solvable decision
problems is denoted by P. Establishing that a problem cannot be solved efficiently
can sometimes be done but for many naturally occurring computational problems
of combinatorial nature, no such bounds are known. Many such problems fall into
the class NP; problems where positive answers have proofs that can be verified
efficiently. The standard problem in NP is satisfiability (denoted SAT), i.e. the
problem of given a Boolean formula ϕ over Boolean variables, is it possible to
assign truth values to the variables to make ϕ true? The most common version of
SAT, which is also the one we use here, is to assume that ϕ is a CNF-formula, i.e.
a conjunction of disjunctions.

It is still unknown whether NP=P, although it is widely believed that this
is not the case. It is even the case that much work in complexity theory, and
indeed this paper, would have to be completely reevaluated if it turns out that
NP=P. There is a group of problem, called the NP-complete problems, introduced
by Cook [8], which have the property that they belong to P iff NP=P. Thus being
NP-complete is strong evidence that a problem is computationally intractable and
literally thousands of natural computational problems are today known to be NP-
complete (for an outdated but still large list of hundreds of natural problems see
[13]). SAT is the most well known NP-complete problem.

Documenta Mathematica · Extra Volume ICM 1998 · III · 441–450

442 Johan Håstad

Many combinatorial optimization problems have a corresponding decision
problem which is NP-complete. As an example take the traveling salesman prob-
lem of finding the shortest tour that visits a certain set of cities. The corresponding
decision problem, namely that of, given K, determine if there is a tour of length K
is NP-complete and thus solving the optimization problem exactly in polynomial
time would mean that NP=P. Optimization problem with this property are called
NP-hard (not NP-complete as they do not fall into the class NP as they are not
decision problems). Solving NP-hard optimization problems exactly is thus hard,
but in many practical circumstances it is almost as good to get an approximation
of the optimum. Different NP-hard optimization problems behave very differently
with respect to efficient approximation algorithms and this set of questions has
lead to many interesting results.

The goal of this paper is to derive lower bounds on how well natural optimiza-
tion problems can be approximated efficiently. The type of result we are interested
in is a conclusion of the form ”If optimization problem X and be approximated
within factor c in polynomial time, then NP=P”. The techniques we discuss give
results for many optimization problem but we here concentrate on solving over-
determined systems of linear equations over finite Abelian groups. For this problem
we are given a set of m equations in n unknowns and the task is to determine the
maximal number of equations that can be simultaneously satisfied and possibly
also produce an assignment that satisfies this number of equations.

An algorithm is a c-approximation algorithm if it, for every instance, finds
a solution that is within a factor c of the optimal value. Thus if the best as-
signment satisfies o equation, such an approximation algorithm would always find
an assignment that satisfies o/c equations. For linear equations over GF[2] a
random assignment satisfies, on the average, half the equations. It is hence not
surprising that one can efficiently find an assignment that satisfies at least half the
equations. This gives a 2-approximation algorithm and the result extends to any
Abelian group G to give a size(G)-approximation algorithm. The main result we
discuss in this paper is to prove that this simple heuristic is optimal in that for
any Abelian group G and any ǫ > 0 it is NP-hard to size(G)− ǫ-approximate the
problem of linear equations over G.

The main tool for deriving such strong approximability results was introduced
in the seminal paper [10]. It gives a connection to multiprover interactive proofs
and let us here give an informal description of a variant of this concept. We later
give some formal definitions in Section 1.1.

NP can be viewed as a proof system where a single prover P tries to convince a
polynomial time verifier V that a statement is true. For concreteness let us assume
that the statement is that a formula ϕ is satisfiable. In this case, P displays a
satisfying assignment and V can easily check that it is a correct proof. This proof
system is complete since every satisfiable ϕ admits a correct proof, and it is sound
since V can never be made to accept an incorrect statement.

If ϕ contains n variables, V reads n bits in the above proof. Suppose we limit
V to reading fewer bits where the most extreme case would be to let this number
be constant independent of the the number of variables in ϕ. It is not hard to see
that the latter is impossible unless we relax the requirements of the proof. The

Documenta Mathematica · Extra Volume ICM 1998 · III · 441–450

On Approximating NP-Hard Optimization Problems 443

proof remains a finite binary string, but we allow the verifier to make random
choices. This means that given ϕ we should now speak of the probability that V
accepts a certain proof π. Soundness is relaxed in that when ϕ is not satisfiable
then there is some constant s < 1 such that for any proof π the probability that
V accepts is bounded by s. A bit surprisingly it turns out that it is convenient
also to relax completeness in that we only require the verifier to accept a correct
proof for a correct statement with probability c > s where we might have c < 1.
Note that both completeness and soundness probabilities are taken only over V ’s
internal random choices and hence we can improve these parameters by making
several independent verifications and taking a majority decision. Naturally this
increases other parameters that we want to keep small such as the number of bits
of the proof that V reads.

It is an amazing fact, proved by Arora et al [1], that any NP-statement has a
proof of the above type, usually called probabilistically checkable proof or simply
PCP, where V only reads a constant, independent of the size of the statement
being verified, number of bits of the proof and achieves soundness s = 1/2 and
completeness c = 1. Apart from being an amazing proof system this gives a
connection to approximation of optimization problems as follows.

Fix a formula ϕ and consider the PCP by Arora et al. Since everything is
fixed except the proof π, we have a well defined function acc(π), the probability
that V accepts a certain proof π. Consider maxπ acc(π). If ϕ is satisfiable then
this optimum is 1, while if ϕ is not satisfiable then the optimum is ≤ s. Thus, even
computing this optimum approximately would enable us to decide an NP-complete
question. Now by choosing the test appropriately this optimization problem can
be transformed to more standard optimization problems leading to the desired
inapproximability results.

1.1 Probabilistic proof systems

As discussed in the introduction we are interested in proof systems where the
verifier is a probabilistic Turing machine. The simplest variant is a probabilistically
checkable proof.

Definition 1.1 A Probabilistically Checkable Proof (PCP) with completeness c
and soundness s for a language L is given by a verifier V such that for x ∈ L there
is a proof π such that V π outputs 1 on input x with probability at least c, and for
x 6∈ L and all π the probability that V π outputs 1 on input x is bounded by s.

We are interested in efficient PCPs and hence we assume that V runs in worst
case polynomial time. It is also important for us to efficiently enumerate all the
random choice of V and hence we need that V only makes O(log |x|) binary random
choices on input x. We maintain this property without mentioning it explicitly.

We also need what is generally called a two-prover one-round interactive proof.
Such a verifier has two oracles but has the limitation that it can only ask one
question to each oracle and that both questions have to be produced before either
of them is answered. We do not limit the answer size of the oracles. We call the
two oracles P1 and P2.

Documenta Mathematica · Extra Volume ICM 1998 · III · 441–450

444 Johan Håstad

Definition 1.2 A probabilistic polynomial time Turing machine V is a verifier
in a two-prover one-round proof system with completeness c and soundness s for
a language L if on input x it produces two strings q1(x) and q2(x), such that for
x ∈ L there are two oracles P1 and P2 such that the probability that V accepts
(x, P1(q1(x)), P2(q2(x))) is c while for x 6∈ L, for any two oracles P1 and P2 the
probability that V accepts (x, P1(q1(x)), P2(q2(x))) is bounded by s.

In all our two-prover interactive proofs the verifier always accepts a correct
proof for a correct statement, i.e. we have c = 1 in the above definition.

Brief history. The notion of PCP was introduced by Arora and Safra [2].
It was a variation of randomized oracle machines discussed by Fortnow et al [12]
and transparent proofs by Babai et al [4]. Multiprover interactive proofs were
introduced by Ben-Or et al [7], and all these systems are variants of interactive
proofs as introduced by Goldwasser, Micali, and Rackoff [14] and Babai [3].

1.2 Essential previous work

The surprising power of interactive proofs was first established in the case of one
prover [17], [20] and then for many provers [5]. After the fundamental connection
with approximation was discovered [10] the parameters of the proofs improved,
culminating in the result [2, 1] that it is sufficient to read a constant number of
bits. Using a transformation of [18] and massaging the result slightly we arrive at
the following theorem.

Theorem 1.3 [1] Let L be a language in NP and x be a string. There is a univer-
sal constant c < 1 such that, we can in time polynomial in size(x) produce a CNF
formula ϕx,L with exactly 3 literals in each clause such that if x ∈ L then ϕx,L

is satisfiable while if x 6∈ L, any assignment satisfies at most a fraction c of the
clauses of ϕx,L. Furthermore, we can assume that each variable appears exactly
12 times.

Let us now turn to two-prover interactive proofs. Given a one-round protocol
with soundness s and completeness 1 we can repeat it k times in sequence im-
proving the soundness to sk. This creates a many round protocols, whereas we
need our protocols to remain one-round. This can be done by parallel repetition

in that V repeats his random choices to choose k pairs of questions (q
(i)
1 , q

(i)
2)ki=1

and sends (q
(i)
1)ki=1 to P1 and (q

(i)
2)ki=1 to P2 all at once. V then receives k answers

from each prover and accepts if it would have accepted in all k protocols given each
individual answer. The soundness of such a protocol can be greater than sk, but
Raz [19] proved that when the answer size is small the soundness is exponentially
decreasing with k.

Theorem 1.4 [19] For all integers d and s < 1, there exists cd,s < 1 such that
given a two-prover one-round proof system with soundness s and answer sizes
bounded by d, then for all integers k the soundness of k protocols run in parallel
is bounded above by ckd,s.

Documenta Mathematica · Extra Volume ICM 1998 · III · 441–450

On Approximating NP-Hard Optimization Problems 445

1.3 Definitions for approximation algorithms

Definition 1.5 Let O be a maximization problem. For an instance x of O let
OPT (x) be the optimal value. An efficient C-approximation algorithm is an al-
gorithm that on any input x outputs a number V such that OPT (x)/C ≤ V ≤
OPT (x) and runs in worst case polynomial time.

2 First steps towards a good proof system

We want to construct a proof system for an arbitrary language in NP and let us
start by an overview.

We start by a simple two-prover one-round protocol which is obtained more
or less immediately from Theorem 1.3. We improve the soundness of this protocol
by running several copies of it in parallel and using Theorem 1.4. It is possible
to transform this improved two-prover protocol to a PCP simply by writing down
the prover answers. The answers are, however, long and since we want to keep
the number of read bits very small we write the answers in a more useful form by
asking the prover to supply the value of all Boolean functions of these answers.
This is the long code of the answers as defined in [6]. We now proceed to give the
details.

Suppose ϕ = C1 ∧C2 ∧ . . .∧Cm, where Cj contains the variables xaj
, xbj and

xcj . Consider the following one-round two-prover interactive proof.

Simple two-prover protocol

1. V chooses j ∈ [m] and k ∈ {aj , bj , cj} both uniformly at random. V sends j
to P1 and k to P2.

2. V receives values for xaj
, xbj and xcj from P1 and for xk from P2. V accepts

if the two values for xk agree and Cj is satisfied.

We have the following proposition which can be proved by a straightforward ar-
gument which we omit.

Proposition 2.1 If any assignment satisfies at most a fraction e of the clauses
of ϕ, then V accepts in the simple two prover protocol with probability at most
(2 + e)/3.

We now concentrate a protocol we called the u-parallel 2-prover game and
which consists of u copies of this basic game. That is, the verifier picks u clauses
(Cjk)

u
k=1 and then uniformly at random for each k he picks a random variable

xik contained in Cjk . The variables of (Cjk)
u
k=1 are sent to P1 while (xik)

u
k=1 are

sent to P2. The two provers respond with assignments on the queried variables
and the verifier checks that the values are consistent and that the chosen clauses
are satisfied. We get completeness 1 and the soundness is in the case of ϕx,L of
Theorem 1.3 is, by Theorem 1.4 and Proposition 2.1, bounded by cu1 for some
constant c1 < 1. To fix notation, Let U = {xi1 , xi2 . . . xiu} be the set of variables
sent to P2, and W the set of variables sent to P1.

Documenta Mathematica · Extra Volume ICM 1998 · III · 441–450

446 Johan Håstad

As discussed in the introduction to this section we want to replace this two-
prover interactive proof by a PCP consisting of the answers of P1 and P2 given in
a more redundant form. We use the powerful long code introduced in [6].

Definition 2.2 The long code of a string x of length w is of length 22
w

. The
coordinates of the codeword are identified with all possible functions f : {0, 1}w 7→
{0, 1} and the value of coordinate f is f(x).

Before we continue, let us fix some more notation. The written part of
the PCP described above is called a Standard Written Proof of size u or sim-
ply SWP(u). Let FT denote the set of functions on a set T and let AT be the
supposed long code of the restriction of the satisfying assignment to the set T .
It is convenient to have {−1, 1} as our set of two values for Boolean functions
and Boolean variables and thus exclusive-or turns into multiplication. For the
supposed long code AT we assume that AT (f) = −AT (−f). This is achieved by,
for each pair (f,−f), having only one value in AT . This value is negated if the
value of AT (−f) is needed. For the tables AW , we know that it should be a long
code for some assignment that satisfies ∧kCjk and instead of storing an entry for
each g ∈ FW we only store an entry for each function of the form g ∧ (∧kCjk).
When we want the value of a function h we access the entry for h ∧ (∧kCjk). A
SWP(u) is correct for ϕ if there is an assignment x that satisfies ϕ and thus that
AT (f) = f(x|T) for any supposed long code AT for any set T obtained as U or W
in a run of the u-parallel 2-prover game.

We need the discrete Fourier transform defined by

Âα,T = 2−2size(T) ∑

f

AT (f)
∏

x∈α

f(x)

for any α ⊆ {−1, 1}T . It is inverted by

AT (f) =
∑

α

Âα,T

∏

x∈α

f(x).

and since |A(f)| = 1 for any f we have, by Parseval’s identity,
∑

α Â2
α,T = 1. For

a set β ⊆ {−1, 1}W and U ⊂ W we let πU
2 (β) ⊆ {−1, 1}U be those elements that

have an odd number of extensions in β. This a mod 2 projection and note that it
might be empty even if β is not empty.

3 Linear equations

We now study the optimization problem of satisfying the maximal number of
equations mod 2. For natural reasons we want to design a test for SWP(u) that
accepts depending only on the exclusive-or of three bits of the proof.

Test Lǫ
2(u)

Written proof. A SWP(u).

Documenta Mathematica · Extra Volume ICM 1998 · III · 441–450

On Approximating NP-Hard Optimization Problems 447

Desired property. To check that it is a correct SWP(u) for a given formula
ϕ = C1 ∧ C2 . . . Cm.
Verifier. Choose set U and W as in the u-parallel 2-prover game. Choose
f ∈ FU and g1 ∈ FW with the uniform probability. Choose a function µ ∈ FW by
setting µ(y) = 1 with probability 1−ǫ and µ(y) = −1 otherwise, independently for
each y ∈ {−1, 1}W . Define g2 by for each y ∈ {−1, 1}W , g2(y) = f(y|U)g1(y)µ(y).
Accept if AU (f)AW (g1)AW (g2) = 1.

We need to analyze the soundness and completeness of this test.

Lemma 3.1 The completeness of Test Lǫ
2(u) is at least 1− ǫ.

Proof: Fix a correct SWP(u) obtained from the assignment x satisfying ϕ
We claim that V accepts unless µ(x|W) = −1 and leave the verification to the
reader.

Lemma 3.2 For any ǫ > 0, δ > 0, suppose that the probability that the verifier
of Test Lǫ

2(u) accepts is (1 + δ)/2. Then there is a strategy for P1 and P2 in the
u-parallel two prover protocol that makes the verifier of that protocol accept with
probability at least ǫδ2/2.

Proof: Let us first fix U and W and for notational convenience we denote the
function AU by A and the function AW by B. We want to consider

Ef,g1,µ[A(f)B(g1)B(g2)] (1)

since by the assumption of the lemma

EU,W,f,g1,µ[AU (f)AW (g1)AW (g2)] = δ. (2)

Using the Fourier expansion and moving the expected value inside (1) equals

∑

α,β1,β2

ÂαB̂β1
B̂β2

Ef,g1,µ

∏

x∈α

f(x)
∏

y∈β1

g1(y)
∏

y∈β2

(f(y|U)g1(y)µ(y))

 . (3)

If β1 6= β2 then since g1(y) for y ∈ β1∆β2 is random and independent of all other
variables the inner expected value in this case is 0 and thus we can disregard all
terms except those with β1 = β2 = β. Now consider such a term and let sx be
number of y ∈ β such that y|U = x. Since f(x) is random and independent for
different x, unless for every x either x ∈ α and sx is odd or x 6∈ α and sx is even
again the inner expected value is 0. These conditions imply that we only keep
terms with πU

2 (β) = α and finally since Eµ[
∏

y∈β µ(y)] = (1 − 2ǫ)size(β) we have
reduced the sum (1) to

∑

α

∑

β|πU
2 (β)=α

ÂαB̂
2
β(1− 2ǫ)size(β). (4)

Documenta Mathematica · Extra Volume ICM 1998 · III · 441–450

448 Johan Håstad

We want to prove that if the expected value of this (over random choices of U
and W) is at least δ then we have a good strategy of the provers. We define good
randomized strategies for P1 and P2.

The strategy of P2 is first to pick a random α with and Âα ≥ δ/2. The
probability of picking α is defined to be proportional to Âα and hence by Parseval’s
identity it is at least δÂα/2. P2 sends a random x ∈ α. Note that α is nonempty
since AU (f) = −AU (−f) implies that Â∅ = 0.

The strategy of P1 is to pick a random β with probability B̂2
β and then answer

with a random y ∈ β.
Let us evaluate the success-rate of this strategy. By the property that AW (h)

only depends on h ∧ (∧kCjk) it is not hard to establish that every y sent by P1

satisfies the corresponding clauses and thus we only need to look at the probability
that the answers are consistent. This probability is at least size(β)−1 times the
probability that for the picked α and β we have α = πU

2 (β). The probability of
picking a specific pair α and β is, provided Âα > δ/2, at least ÂαB̂

2
βδ/2 and thus

the overall success-rate for a fixed choice of U and W is at least

δ/2
∑

α|Âα|≥δ/2

∑

β|πU
2 (β)=α

ÂαB̂
2
βsize(β)

−1. (5)

Comparing this sum to (4) and making some calculations one can establish that
expected value over U and W is at least δ2ǫ/2 and the proof of Lemma 3.2 is
complete.

Armed with the very efficient PCP given by Test Lǫ
2(u) we can now establish

the main theorem of this paper.

Theorem 3.3 For any ǫ > 0 it is NP-hard to approximate the problem of max-
imizing the number of satisfied equation in a system of linear equations mod 2
within a factor 2 − ǫ. The result applies to systems with only 3 variables in each
equation.

Proof: (Sketch) Let L be an arbitrary language in NP and given an input x,
create the formula ϕx,L as given in Theorem 1.3. Let δ be small positive number
to be determined and consider test Lδ

2(u) where u is chosen sufficiently large so
that the acceptance probability in the u-parallel 2-prover game is smaller than
δ3/2.

For each bit b in a SWP(u) introduce a variable xb. To accept in the test
Lδ
2(u) is equivalent to the condition

bU,fbW,g1bW,g2 = c

where bU,f , bW,g1 and bW,g2 are the bits in the proof corresponding to AU (f),
AW (g1) and AW (g2), respectively

1. Write down the equation

xbU,f
xbW,g1

xbW,g2
= c

1One might think that the right hand size would always be 1, but because of our convention
on having one entry in AU to represent the value on two functions this might be the case since
the value corresponding to AU (f) in the proof might actually give the value of AU (−f)

Documenta Mathematica · Extra Volume ICM 1998 · III · 441–450

On Approximating NP-Hard Optimization Problems 449

with a weight that is equal to the probability that the verifier chooses the tuple
(U,W, f, g1, g2). Now each proof corresponds to an assignment to the variables xb

and the total weight of all satisfied equations is exactly the probability that this
proof is accepted. This implies that if x ∈ L this maximal weight is 1 − δ while
if x 6∈ L, it is, in view of Lemma 3.2 and the choice of u, at most (1 + δ)/2. It
is not difficult to check that we have a polynomial number of equations and an
approximation algorithm with performance ratio smaller than 2− ǫ would enable
us, for sufficiently small δ, to answer a NP-hard question.

As is standard, the weights can be eliminated by duplicating each equation a
suitable number of times. This creates a slight degrade in the value of ǫ, but since
ǫ is arbitrary anyway this can easily be compensated. We omit the details.

Note that there is a meta reason that we have to introduce the error function µ
and make our test have non perfect completeness. If we had perfect completeness
then the equations produced in the proof of Theorem 3.3 could all be satisfied
simultaneously. However, to decide if a set of linear equations have a common
solution can be done in polynomial time by Gaussian elimination.

Finally, let us just state the extension to an arbitrary Abelian group.

Theorem 3.4 For any ǫ > 0 and any Abelian group G, given a system of linear
equations over G, it is NP-hard to approximate the maximal number of simul-
taneously satisfiable equations within a factor size(G) − ǫ. The result applies to
systems with only 3 variables in each equation.

4 Final remarks

As mentioned in the introduction the efficient multiprover interactive proofs give
strong inapproximability results for many combinatorial optimization problems.

Independence number is to, given a graph G, find the largest set S of nodes
such that no two nodes in S ares pairwise connected. It is established in [15]
that it is, assuming that NP cannot be done in probabilistic polynomial time, for
any ǫ > 0, hard to approximate independence number within n1−ǫ where n is the
number of nodes G. A very related problem is that of chromatic number where we
want to color the nodes in G with the minimal number of colors so that adjacent
nodes get different colors. The result for independence number can be extended to
chromatic number [11]. The problem of set cover is that given a number of subsets
Si of [n] to find the minimal size sub-collection of the Si that covers the entire set.
This problem is, under standard complexity assumptions, hard to approximate
within (1 + o(1)) lnn [9] and this result is tight. For inapproximability results on
other problem, some optimal and some non-optimal we refer to the full versions
of [6] and [16].

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof verification and
intractability of approximation problems. Proc. of the 33rd Annual IEEE Symposium on
Foundations of Computer Science, Pittsburgh, 1992, pp 14-23.

Documenta Mathematica · Extra Volume ICM 1998 · III · 441–450

450 Johan Håstad

[2] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of NP.
Journal of the ACM, Vol 45, 1998, pp 70-122.

[3] L. Babai. Trading group theory for randomness. Proc. of the 17th Annual ACM Symposium
on Theory of Computation, Providence, 1985, pp 420-429.

[4] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in polynomial
time. Proc. of the 23rd Annual ACM Symposium on Theory of Computation, New Orleans,
1991, pp 21-31.

[5] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover
interactive protocols. Computational Complexity, Vol 1, 1991, pp 3-40.

[6] M. Bellare, O. Goldreich and M. Sudan. Free Bits, PCPs and Non-Approximability-
Towards tight Results. Proc. of the 36th Annual IEEE Symposium on Foundations of Com-
puter Science, 1995, Milwaukee, pp 422-431. Full version available from ECCC, Electronic
Colloquium on Computational Complexity (http://www.eccc.uni-trier.de/eccc).

[7] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multiprover interactive
proofs. How to remove intractability. Proc. of the 20th Annual ACM Symposium on Theory
of Computation, Chicago, 1988, pp 113-131.

[8] S. A. Cook. The complexity of Theorem Proving Procedure. Proceeding 3rd ACM Sym-
posium on Theory of Computing, 1971, pp 151-158.

[9] U. Feige. A threshold of lnn for approximating set cover. Proc. of the 28th Annual ACM
Symposium on Theory of Computation, Philadelphia 1996, pp 314-318.

[10] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Interactive proofs and
the hardness of approximating cliques. Journal of the ACM, Vol, 43:2, pp 268-292.

[11] U. Feige and J. Kilian. Zero-Knowledge and the chromatic number. Proc. of the 11th
Annual IEEE conference on Computational Complexity, Philadelphia 1996, pp 278-287.

[12] L. Fortnow, J. Rompel, and M. Sipser. On the power of Multi-Prover Interactive Pro-
tocols. Proc. 3rd IEEE Symposium on Structure in Complexity Theory, pp 156-161, 1988.

[13] M.R. Garey and D.S. Johnsson. Computers and Intractability. W.H. Freeman and Com-
pany, 1979.

[14] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, Vol 18, pages 186-208, 1989.

[15] J. Håstad. Clique is hard to approximate within n1−ǫ. Proc. of the 37th Annual
IEEE Symposium on Foundations of Computer Science, Burlington 1996, pp 627-636.
Full version available from ECCC, Electronic Colloquium on Computational Complexity
(http://www.eccc.uni-trier.de/eccc).

[16] J. Håstad. Some Optimal In-approximability Results. Proc. 29th Annual ACM Symposium
on Theory of Computation, 1997, pp 1-10. Full version available from ECCC, Electronic
Colloquium on Computational Complexity (http://www.eccc.uni-trier.de/eccc).

[17] C. Lund, L. Fortnow, H. Karloff and N. Nisan. Algebraic methods for interactive proof
systems. Journal of the ACM, Vol 39, No 2, pp 859-868.

[18] C. Papadimitriou and M. Yannakakis. Optimization, approximation and complexity
classes. Journal of Computer and System Sciences, Vol 43, 1991, pp 425-440.

[19] R. Raz. A parallel repetition theorem. Proc. of the 27th Annual ACM Symposium on
Theory of Computation, Las Vegas 1995, pp 447-456.

[20] A. Shamir. IP=PSPACE. Journal of the ACM, Vol 39, No 2, pp 869-877.

Johan H̊astad
Dept of Numerical Analysis and
Computing Science
Royal Institute of Technology
S-100 44 Stockholm
Sweden

Documenta Mathematica · Extra Volume ICM 1998 · III · 441–450

