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Unsolvable Systems of Equations and Proof Complexity
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Abstract. This abstract discusses algebraic proof systems for the
propositional calculus. We present recent results, current research di-
rections, and open problems in this area.
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1 Introduction

A fundamental problem in logic and computer science is understanding the effi-
ciency of propositional proof systems. It has been known for a long time that
NP = coNP if and only if there exists an efficient propositional proof system,
but despite 25 years of research, this problem is still not resolved. (See [21] for
an excellent survey of this area; see also [2] for a more recent article focusing
on open problems in proof complexity.) The intention of the present article is
to discuss algebraic approaches to this problem. Our proof systems are simpler
than classical proof systems, and purely algebraic. It is our hope that by studying
proof complexity in this light, that new upper and lower bound techniques may
emerge. This paper is a revision and update of the earlier paper ([18]); due to
space considerations, we omit all proofs and focus on current research directions.

Let C = C1∧C2∧...∧Cm be an instance of the classical NP-compete problem,
3SAT. That is, C is a propositional formula over {x1, ..., xn}, in conjunctive normal
form, where each Ci is a clause of size at most three. Each clause Ci can be
converted into an equation, Ci = 1 over F such that C is unsatisfiable if and only if
{C1 = 0, ..., Cm = 0} has no 0/1 solution. The equations Q = {Q1 = 0, ...QR = 0}
corresponding to C are: {C1 = 0, ..., Cm = 0}, plus the equations x2 − x = 0 for
all variables x.

We show how to translate from the basis {∨,∧,¬} to the basis {+,×, 1} over
a field F . For a atomic, t(a) = 1 − a; t(¬x) = 1 − t(x); t(x ∨ y) = t(x)t(y); and
lastly, t(x ∧ y) = t(¬(¬x ∨ ¬y) = t(x) + t(y) − t(x)t(y). Our translation has the
property that for any truth assignment α, and any boolean formula f , f evaluates
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to 1 under α if and only if t(f) evaluates to 0 under α. In other words, “0”
represents true over the new basis. Moreover, one could further convert Q into a
family of degree 2 equations by replacing each monomial xyz in Qi by xw (where
w is a new variable), and adding the extra equations w− yz = 0 and w2 −w = 0.

The above reduction (due to Valiant [22]) shows that solving systems of degree
2 polynomial equations is NP -complete. We are interested in defining natural
algebraic proofs in the case where the equations are unsolvable, and in studying the
complexity of the resulting proofs. What exactly is a natural algebraic proof, and
how long can such proofs be? Our starting point for defining such algebraic proof
systems is Hilbert’s Nullstellensatz. That is, if Qi(x) = 0 is a system of algebraic
equations over F (translated from an instance of 3SAT), then the equations do not
have a solution in the algebraic closure of F if and only if there exists polynomials
Pi(x) from F [x] such that

∑
i Pi(x)Qi(x) = 1. We can think of the polynomials Pi

as a proof of the unsolvability of the equations Qi. Moreover, in our scenario since
Qi includes the equations x2 − x = 0 for all variables x, there exists a solution
if and only if there exists a 0 − 1 valued solution. This is the main property
which distinguishes our investigations from earlier, classical work on the effective
Nullstellensatz. ([10, 15, 5]).

Algebraic proof systems are appealing because of their simplicity and non-
syntactic nature. Moreover, the question of how large a proof must be amounts
to asking how many field operations are required in order to generate the con-
stant polynomial from certain initial polynomials. Moreover these proof systems
are powerful, and by studying various complexity notions (degree, monomial size,
algebraic size), there are close correspondences between these systems and various
classical propositional proofs.

The organization of the paper is as follows. In Section 2, we define our
algebraic proof systems and various complexity measures on them. In Section 3,
we state basic theorems about algebraic proofs and simulation results. In Section
4, we focus our attention on lower bounds. Lastly in Section 5, we present several
open problems in this area.

2 Algebraic Proof Systems

Recall that C = C1 ∧ C2 ∧ ... ∧ Cm is a propositional formula over {x1, ..., xn}, in
conjunctive normal form, where each Ci is a clause of size at most three. Let Q

be the corresponding system of (degree 3) polynomial equations. Here is a simple
example. Let C = (b ∨ a) ∧ (¬a ∨ b) ∧ (¬b). Then Q = {Q1, Q2, ..., Q5}, where
Q1 = (1−b)(1−a) = 1−a−b+ab, Q2 = (a)(1−b) = a−ab, Q3 = b, Q4 = a2−a,
Q5 = b2 − b.

An algebraic refutation for C (over a fixed ring or field F ) is an algebraic
straight-line program, S = S1, ..., Sl such that each Si is either one of the initial
equations (from Q) or is obtained from previous equations by a valid rule, and
where the final equation Sl is 0 = 1. The two rules are as follows. (1) From
g1(x) = 0 and g2(x) = 0, derive ag1(x) + bg2(x) = 0, where a, b are constants
from F ; (2) From g(x) = 0, infer xg(x) = 0 for x a variable. (Thus, a proof is
merely an explicit derivation that 1 is in the ideal generated by Q.) In the above
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example, a refutation is: S1 = Q1, S2 = Q2, S3 = Q3, S4 = S1 + S2 = 1 − b,
S5 = S4 +S3 = 1. An algebraic refutation S for Q can also be put in an alternate
form,

∑
i Pi(x)Qi(x) = 1.

Our algebraic proof system is sound since such a straight-line program is not
possible to obtain if Q is solvable. The algebraic proof system is also complete

since every unsolvable system of equations Q (derived from an unsatisfiable 3CNF
formula C) has an algebraic proof. There are several proofs of completeness. One
follows from (the weak form of) Hilbert’s Nullstellensatz. There are also other
simpler and more constructive proofs [18, 8]; one is obtained by simulating a
truth-table proof and a second is by simulating a type of tableau proof.

2.1 Complexity measures

We will discuss several complexity measures on algebraic refutations. Perhaps
the most natural is the algebraic size. This is defined to be the number of lines,
l, in S. The degree is defined to be the maximum degree of the intermediate
polynomials Si, after simplifications. This measure has been studied quite a bit,
and the name Polynomial Calculus (PC) is given to algebraic proofs in this form,
where the Si’s are viewed as explicit sums of monomials. Another degree measure,
which is called the Nullstellensatz (HN) degree is the maximum degree of the
intermediate polynomials Si before simplifications. That is, the maximum degree
of the polynomial

∑
i PiQi in the alternate representation

∑
i PiQi = 1.

Note that the minimal Polynomial Calculus degree of a formula f is never
greater than the minimal Nullstellensatz degree of f ; however, the Polynomial
Calculus degree can sometimes be much smaller as is evidenced by the following
example. Let INDn denote the following system of degree 2 equations: (1) 1−x1 =
0; (2) xi(1− xi+1) = 0 for all 1 ≤ i ≤ n− 1; (3) xn = 0 and (4) x2

i − xi = 0 for all
1 ≤ i ≤ n − 1. (These equations formalize induction: if x1 = 1 and xn = 0, then
there must be an index i such that xi = 1 and xi+1 = 0.) It is not too hard to see
(by applying induction!) that these equations have a degree 2 PC refutation; on
the other hand, they require degree O(logn) Nullstellensatz refutatons [7].

2.2 Automatizability

An important issue in proof complexity is whether or not a given proof system can
actually be used as the basis for an efficient automated theorem prover. Intuitively,
it seems that the more expressive and powerful the proof system, the harder it is
to perform an efficient search for a short proof. A proof system S is thus said to
be automatizable if there exists a deterministic procedure A that takes as input
a (unsatisfiable) formula f and outputs an S-proof f in time polynomial in the
size of the shortest S-proof of f . In other words, if S is automatizable, then short
proofs can be found efficiently.

One of the nicest features of algebraic proofs is that small degree proofs can
be found quickly–in other words, small-degree proofs are automatizable. To see
this in the case of small-degree Nullstellensatz proofs, note that if

∑
i PiQi = 1

where Pi’s have degree at most d, and the Qi’s have degree at most 3, then the
total number of monomials on the left side is bounded by a polynomial in d and
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therefore we can set up a system of linear equations (one for each monomial) and
solve for the coefficient values in polynomial time. Using a modification of the
Gröbner basis algorithm, [11] have shown that small-degree Polynomial Calculus
proofs are also automatizable.

Theorem. [11] For all d, n, there is an algorithm A such that for any (unsatis-
fiable) 3CNF formula f with underlying variables x1, .., xn, A returns a degree-d
Polynomial Calculus refutation (if one exists) in time nO(d).

3 Relationship to classical proof systems

In this section, we will discuss the relationship between the size of algebraic proofs
under the above complexity measures and the size of more standard propositional
proofs.

3.1 Algebraic proofs versus Frege proofs

Definition. The algebraic proof system over F is polynomially-bounded if there
exists a constant c such that for every unsatisfiable 3CNF formula, f , there exists
an algebraic proof of f of size O(|f |c) (that is, the proof is of size polynomial in
the size of f).

The standard definition of a propositional proof system is as follows.
Definition. Let L ⊆ Σ∗, where Σ is a finite alphabet, and Σ∗ denotes all finite
strings over Σ. (Typically, L encodes either the set of all tautological formulas,
or the set of all unsatisfiable formulas.) Then a Cook-Reckhow proof system for
L is a function f : Σ∗ → L, where f is an onto, polynomial-time computable
function. A Cook-Reckhow proof system, f , is polynomially bounded if there is
a polynomial p(n) such that for all y ∈ L, there is an x ∈ Σ∗ such that y = f(x)
and |x| (the length of x) is at most p(|y|).

A key property of a Cook-Reckhow proof system is that, given an alleged
proof, there is an efficient method for checking whether or not it really is a proof.
For most standard, axiomatic proof systems (Extended Frege, Frege, even ZFC),
there is actually a very efficient method for checking whether or not it is really a
proof. This property leads to the following theorem.

Theorem. [13] There exists a polynomially-bounded Cook-Reckhow propositional
proof system if and only if NP = coNP .

The above theorem does not appear to hold for algebraic proofs because there
is no known deterministic polynomial time algorithm to check whether or not a
polynomial is identically 1, even in the case of finite fields. (In other words, there
is no efficient procedure to check that it is a proof.) Nonetheless, the probabilistic
polynomial-time algorithm due to Schwartz allows us to prove that if algebraic
proofs are polynomially-bounded, then the polynomial hierarchy collapses.

Theorem. [18] For any prime p, if the algebraic proof system over Zp is
polynomially-bounded, then PH = Σp

2.
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We conjecture that the above premise also implies NP = coNP . It is not too
hard to show that algebraic proof systems are at least as powerful as Extended
Frege systems, as is evidenced by the following theorem.

Theorem. [18] For any commutative ring R, Frege proofs (and Extended Frege
proofs) can be polynomially simulated by algebraic proofs with polynomial size.

It is open whether or not the simulation holds in the reverse direction.

3.2 Polynomial Calculus versus Resolution

Resolution proofs dominate the work in automated theorem proving since they
are extremely simple and can also be applied to first order theorem proving. A
Resolution proof P of an (unsatisfiable) CNF formula f = C1 ∧ ... ∧ Cm is a
sequence of clauses D1, ..., Dl such that: (a) each Di is either an initial clause
from f or follows from two previous clauses by the Resolution rule, and (b) the
final clause Dl is the empty clause. The resolution rule derives (A ∨ B) from
(A ∨ x) and (B ∨ ¬x), where A and B are disjunctions of literals. The size of the
above Resolution proof is l; a tree-like proof has the additional property that each
intermediate clause generated in the proof (not including the initial clauses) can be
used at most once in the derivation–i.e., if it is used more than once it must be re-
derived. Tree-like Resolution is of practical interest since most theorem provers are
based on tree-like Resolution proofs. The following theorem gives a relationship
between small degree Polynomial Calculus proofs and small-size Resolution proofs.

Theorem. [11] If f has a tree-like Resolution proof of size S, then f has a degree
O(logS) Polynomial Calculus refutation. If f has a Resolution proof of size S,
then f has a degree O(

√
nlogS) Polynomial Calculus refutation.

The intuition behind the above proof is as follows. Define the width of a
Resolution proof to be the maximum clause size in the proof. The proof of the
above theorem can be used to show: (1a) If f has a size S tree-like Resolution
proof, then f has a width O(logS) Resolution proof [9]; (1b) if f has a size S

Resolution proof, then f has a width O(
√
nlogS) Resolution proof. And secondly,

it is easy to show: (2) if f has a width d Resolution proof, then f has a degree
O(d) Polynomial Calculus proof.

3.3 Polynomial Calculus versus bounded-depth Frege

Bounded-depth Frege proofs are Frege proofs where the depth of each intermediate
formula is bounded by a fixed constant. (See [21, 2] for motivation and details.)
Bounded-depth Frege proofs are known to be strictly more powerful than Resolu-
tion, but strictly less powerful than unrestricted Frege proofs. AC0[p]-Frege proofs
are bounded-depth Frege proofs where the underlying connectives are: unbounded
fanin AND, OR, NOT and MODp. There are no nontrivial lower bounds known
at present for AC0[p]-Frege proofs, and the original motivation for defining and
studying small-degree algebraic proofs was to prove such lower bounds [4].

It does not seem to be possible to simulate polynomial-size AC0[p]-Frege
proofs by small degree Polynomial Calculus proofs (over GFp). This is because any
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single unbounded fanin OR gate would translate into a large degree polynomial.
To circumvent this problem, [8] extended the Polynomial Calculus by adding new
equations to the initial ones, where these new equations introduce new variables to
represent or define unbounded fanin OR gates. The new equations, R, are small-
degree polynomial equations in the original variables, plus the new “extension
variables.” The nesting level of the new equations corresponds to the depth of
the unbounded fanin formulas that can be represented. Thus, loosely speaking,
a degree d constant-depth Polynomial Calculus with Extension proof of f is a
degree d Polynomial Calculus refutation of 0 = 1 from the equations Q, R, where
Q corresponds to the original equations defining f , and R corresponds to the new
extension axioms, and such that the definitions given by R have a constant number
of levels of nestings. With these definitions, [8] show that constant-depth AC0[p]-
Frege proofs are essentially equivalent to constant-depth Polynomial Calculus with
Extension proofs.

In a different line of work, [17] show that any quasipolynomial-size ACC0[2]-
Frege proof can be simulated by a quasipolynomial-size, depth 3 Frege proof of
a very special form: the output gate is a weak threshold gate, the middle layer
consists of mod 2 gates and the input layer consists of AND gates of small fanin.
Put another way, each formula in the depth 3 Frege proof is a probabilistic small-
degree polynomial over GF2. This in turn can be viewed as another generalization
of small-degree Polynomial Calculus proofs.

4 Lower Bounds

In the last five years, there have been many lower bounds obtained on the degree
of Nullstellensatz and Polynomial Calculus proofs of various principles. The table
below summarizes the progress thus far. Of particular importance are the formulas
expressing the pigeonhole principle, and the formulas expressing various counting
principles.

The onto version of the propositional pigeonhole principle states that there
is no 1-1, onto map from m to n, m > n. This can be expressed by the following
equations, with underlying variables Pi,j , i ≤ m, j ≤ n: (1) Pi,1+ ...+Pi,n−1 = 0,
for all i ≤ m; (2) P1,j + ... + Pm,j − 1 = 0, for all j ≤ n; and (3) Pi,kPj,k = 0,
for all i, j ≤ m, k ≤ n. For each n, let the above set of equations be denoted by
¬PHP

m,n
onto. For each m = n + 1, there is a constant degree Nullstellensatz proof

over GFp of ¬PHP
m,n
onto. The proof is obtained by adding together all of the above

equations in (1) and subtracting all of the above equations in (2). Each variable
will cancel because it occurs once positively in (1) and once negatively in (2), and
we are left with m− n = 1. However, for m = nmodp, this proof fails.

The more general version of the propositional pigeonhole principle states that
there is no 1-1 map from m to n. For each m > n, the general pigeonhole principle
can be expressed by equations (1) and (3) above, and is denoted by ¬PHPm,n.

The mod q counting principle, Modqn, states that there is no way to partition
a set of size n into equivalence classes, each of size exactly q. For each n, the
negation of this principle (¬Modqn) can be expressed by the following equations,
with underlying variables Xe, e ⊆ [1, ..,m], |e| = q, m = pn+ 1:
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(1)
∑

e, i∈e Xe − 1 = 0, for all i ≤ m; (2) XeXf = 0, for all e, f , e ∩ f 6= 0.

The induction principle was explained earlier. The principle Homesitting
is a variant of strong induction. The principle Graph, stands for Tseitin’s graph
tautologies: given a connected graph, where each vertex has a 0-1 labelling (charge)
and such that the mod 2 sum of all labellings is odd, the principle states that the
mod 2 sum of the edges coming into each vertex is equal to the charge of that
vertex. Clearly this principle is unsatisfiable and when the underlying graphs
are k-regular and have good expansion properties, the associated formula is hard
to prove (as long as the field does not have characteristic 2). Subsetsum is a
single equation, m−∑

i(cixi) = 0 and this lower bound shows that over fields of
characteristic 0, there are no small Nullstellensatz degree refutations of the subset
sum principle. HN means that the degree lower bound holds for Nullstellensatz;
PC means that the degree bound holds in the stronger Polynomial Calculus.

By now, there are many families of formulas requiring large Nullstellensatz
degree, but a lack of many explicit lower bounds for Polynomial Calculus degree.
The first such lower bound for the Polynomial Calculus is the paper by Razborov
[19]. In that paper, he explicitly describes the set of all polynomials derivable
from the initial equations in degree d. The only other lower bound known for
the Polynomial Calculus, due to Kraj́ıček[16], uses important ideas from Ajtai [1]
linking the lower bound in question to the representation theory of the symmetric
group.

Formulae Reference Lower bound Notes

PHP [12] O(n1/4) (HN) nearly optimal
PHP [19] O(n1/2) (PC) nearly optimal
ontoPHP [3] O(n) (HN) nearly optimal
IND [7] O(logn) (HN) nearly optimal
Homesitting [11, 6] O(n1/2) (HN)
Graph [14] O(n) (HN) Char(F ) 6= 2
Modp [4, 1] nonconstant (HN)
Modp [8] nΩ(1) (HN)
Modp [16] nonconstant (PC)
Subsetsum [8] O(n) (HN) Char(F ) = 0

4.1 The Design Method

In this section we review the primary method that has been used to obtain the
above Nullstellensatz degree lower bounds.

LetR be any commutative ring, and letQ = {Q1, .., Qm} be a set of unsolvable
equations of degree at most 3 over R[x1, ..., xn], where m is nO(1). We want to
show that there is no degree d set of polynomials P1, ..., Pm such that

∑
i PiQi =

1. Assume for sake of contradiction that degree d Pi’s do exist. Write Pi as∑
m aimXm, where m ∈ {0, 1}n, Xm is the corresponding monomial, and aim is the

coefficient in front of that monomial in Pi. Because the total number of monomials

Documenta Mathematica · Extra Volume ICM 1998 · III · 451–460



458 Pitassi

in the Pi’s is bounded by nO(d), we can write a system of linear equations with the
coefficients aim as variables such that the system of linear equations has a solution
if and only if such Pi’s exist. In particular, the condition

∑
i PiQi = 1 can be

specified by a system of linear equations in the ami ’s where for each nonempty
monomial m of degree at most d + 3, we have one equation specifying that the
sum of all coefficients in front of this monomial must be 0, and for the empty
monomial, we have one equation specifying that the sum of all coefficients in front
of the empty monomial must be 1.

Now by weak duality, if we can find a linear combination of the equations
such that the left-hand-side of the linear combination is 0, then there can be no
solution. (Because the total sum of the right-hand-sides of the equations is 1.)
Conversely, if R is a field, then we get the converse direction as well. The name
design refers to the linear combination of the equations witnessing the fact that the
equations can have no solution; because of the structure of the original Qi’s, the
properties required of the linear combination can often be seen to be equivalent to
the existence of a particular type of combinatorial property, and thus it is called
a design.

5 Open Problems

5.1 Lower bounds for stronger proof systems

The most outstanding question is to strengthen these methods to obtain lower
bounds for stronger systems, such as AC0[2]-Frege proofs. A solution to this
problem seems to be within reach. For this system, a candidate hard tautology is
the principle Modnp for p prime.

5.2 Degree lower bounds

Lower bounds and new methods for the degree of Polynomial Calculus proofs for
other principles is another important problem. In particular, one can generate
random 3CNF formulas with m clauses and n variables and when m = 4.3n, such
formulas are believed to be hard to refute for all natural proof systems. An open
problem is to prove linear degree lower bounds for such formulas. This would
show that on average (as opposed to worst-case), unsatisfiable formulas (from this
distribution) require large degree proofs.

5.3 Degree versus monomial size

What is the relationship between the minimal degree of a Nullstellen-
satz/Polynomial Calculus refutation and the minimal number of monomials
in a refutation? This is analagous to pinning down exactly the relationship
between the minimal Resolution clause width for a formula and the minimal
Resolution proof size. Some weak results are known, establishing a connection
between them, but they are far from tight [11, 9].
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5.4 Representation theory and uniformity

Important work by Ajtai [1] exploits the uniform nature of standard unsatisfiable
families of formulas to establish a close connection between Nullstellensatz degree
lower bounds and representation theory of the symmetric group. These ideas were
further developed by Kraj́ıček[16] to obtain nonconstant degree lower bounds for
the Polynomial Calculus. This line of research is quite promising and deserves
further study.

5.5 Algebraic Theorem provers

Designing efficient theorem provers for the propositional calculus is an important
practical question. To date, Resolution-based algorithms are the champion theo-
rem provers although they are theoretically quite weak as proof systems. A recent
challenger is the Polynomial Calculus and more specifically, using variants of the
Gröbner basis algorithm to solve 3SAT [11]. This type of algorithm needs to be
fine-tuned to the same extent as Resolution based methods and then rigorously
evaluated on standard hard examples. On a more theoretical side, can the sim-
ulations of Resolution by PC be improved? Another very interesting question is
whether or not Cutting Planes can be simulated by efficient PC proofs.

5.6 Natural proofs in proof complexity?

In a major blow to circuit complexity, [20] show that, subject to some plausi-
ble cryptographic conjectures, current techniques will be inadequate for obtaining
super-polynomial circuit lower bounds. To this point, proof complexity has made
steady progress at matching the superpolynomial lower bounds currently known
in the circuit world. Unlike the circuit world, however, there is no analogue of
Shannon’s counting argument for size lower bounds for random functions, and
there does not seem to be any inherent reason for Frege lower bounds (and simi-
larly for superpolynoimal lower bounds for algebraic proofs) to be beyond current
techniques. Is there any analogue of natural proofs in proof complexity?
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